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Abstract

A quasi-logistic, non-linear model for ionization wave modes is introduced. Modes are due to

finite size of the discharge and current feed-back. The model consists of competing coupled modes

and it incorporates spatial wave amplitude saturation. The hysteresis of wave mode transitions

under current variation is reproduced. Side-bands are predicted by the model and found in exper-

imental data. The ad-hoc model is equivalent to a general - so-called universal - approach from

bifurcation theory.
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FIG. 1: Photograph of standing ionization waves in an O2 dc glow discharge. The luminous layers

are seen through a glass cylinder confining the discharge plasma.

I. INTRODUCTION

Ionization waves are a result of an ubiquitous instability in low temperature plasmas. The

waves manifest as structured regular layers representing variations of the plasma density,

densities of excited state atoms and the axial electric field as well as global modulations

of the discharge current. The fluctuations particularly affect the light emission as shown

in Fig.1. Due to their spectacular visibility, ionization waves might be the oldest experi-

mentally documented non-linear model system [1]. The multifaceted physics aspects and

its experimental accessibility make ionization waves in discharges a textbook example for

low-temperature plasma physics as well as for non-linear dynamics.

Control parameters of the experiment are the neutral gas pressure p, the discharge length

L and the discharge driven current I. The current is the superior control parameter for an

exact and flexible manipulation of the system. It is even possible to superimpose current

noise at different amplitudes to perform a variety of studies relevant to topical aspects of

non-linear physics, e.g. the behavior of saturated waves with superposed artificial noise

[2] which is accessible in discharges [3]. Furthermore, there is a variety of investigations

addressing different topics of non-linear behavior in these plasmas, e.g. [4–7].

Although the phenomenon of structured discharges is long known, important aspects of

ionization waves could be revealed quite recently only, particulary kinetic mechanisms (see

e.g. [8]) and dynamic properties [9]. As usual for non-linear phenomena, the different views

recover different aspects of the dynamics. However, the approaches limited are in many cases

or may become too complicated to be understandable at a glance. In the case of ionization

waves, a full kinetic description fails to explain the dynamics of saturated wave modes and

- on the other hand - a description of macroscopic dynamics by bifurcation theory does not

self-consistently recover the interplay of electron kinetics and wave properties. Therefore,
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simplified models of the dynamics are required to link the different aspects focusing on the

leading physical effects generating the observed dynamics.

The macroscopic dynamics of the waves is relevant to applications, e.g. in order to control

the discharges for lighting purposes and materials processing [10]. Consequently, models for

the macroscopic behavior are valuable for design considerations in discharge applications.

For basic non-linear dynamics, such models may be employed to test different descriptive

approaches.

The specific macroscopic dynamic phenomenon addressed in this paper is the hysteresis of

ionization wave modes of the so called p-type [15]. The wave modes develop due to the finite

length of the discharge and feed-back of the discharge current oscillations [11]. Hysteresis

means in this context that multiple wave mode states for a given control parameter exist,

but only one state is selected depending on the history of the control parameters or - in

other words - how the system was prepared. For the present case the options for system

preparation are the increase or decrease of the discharge current.

The specific phenomenology of the wave modes and the hysteresis will be introduced next.

The main statements of the paper follow then: first, a quasi-logistic model will be motivated

and second the model will be validated theoretically by means of a universal description

from bifurcation theory. The results are discussed in the end of this paper.

II. PHENOMENOLOGY OF IONIZATION WAVE MODES IN DC GLOW DIS-

CHARGES

This section introduces the phenomenology of ionization wave modes and specifies the

hysteresis phenomenon in more detail. Concise reviews introducing ionization waves and

their dynamical aspects may be found in [12, 13].

The discharge is a dc glow discharge operated at low currents and low pressures, typical

values are shown Fig. 2. In this paper, the sealed cylindrical discharge tube is filled with

neon gas. A set-up is shown in Fig. 3. The dynamics due to ionization waves are observed by

optical detectors allowing a non-invasive examination of the sensitive space-time dynamics.

Please note, that detailed parameters of the discharges presented in this paper may vary in

pressure and radius according to the figure captions. These differences in parameters may

lead to differences in the occurrence of the wave modes [14].
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FIG. 2: Occurrence of ionization waves in neon discharge in figures of the similarity parameters i/r

(i: discharge current, r: radius of the tube) and pr (p: neutral gas pressure). The regions indicate

the occurrence of different discharge modes, the shaded region indicates typical parameters as used

in this paper. The arrow indicates the principal variation of control parameters performed here

(adapted from [15] ).
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FIG. 3: Schematic diagram of the experimental set-up for the wave dynamics investigation. Linear

arrays of photo-sensors allow a full detection of the wave patterns.).

For typical discharges investigated here, Fig. 2 shows a transition of the discharge mode

from diffuse-homogeneous to diffuse-layered when the discharge current is varied for constant

pressure. This transition is due to the occurrence of the ionization instability [13]. In the

terminology of non-linear dynamics, this is a supercritical Hopf-bifuraction for p-waves in

the considered parameter range. The observed low amplitude fluctuations may be regarded

as noise sustained structures [16, 17].

The occurrence of the wave modes modes depends on the discharge length and the feed-

back of the discharge current [11]. Fig. 4 documents the effect of the discharge length. For

this purpose, a discharge with variable anode position was prepared allowing a variation

of the discharge length. The sequence of plots shows the power spectral density of light

4



FIG. 4: Spectra (power spectral density, PSD) of light fluctuations 0.4 cm in front to the anode

of a dc glow discharge in neon (p = 1.5Torr, r = 1 cm) vs. discharge current and frequency. The

plots refer to cathode-anode distances as indicated. The labeling of qualitatively different PSD (left

plot in the bottom row) (1) - (3) refers to damped ionization instability (1), incoherent ionization

instability (2) and ionization wave modes (3).

fluctuations close to the anode of the discharge where the fluctuations become maximum.

The power spectral density was recorded by a spectrum analyzer fed by a photo diode. The

figure is an overlay of spectra taken at discharge currents separated by δi = 0.1mA. For

the later discussion of wave modes, it is important to note that the overlay is produced

by a sequence of increasing and decreasing currents. Qualitatively, three power spectral

density levels can be identified in Fig. 4: (1) a 1/f noise region which corresponds indicates

vanishing ionization instability, (2) an intermediate fluctuation level which indicates an

amplified ionization instability (i.e. its growth rate is positive γ > 0) and (3) sharp lines

indicate the occurrence of ionization wave modes.

These wave modes can be characterized by a spatial mode number n according to n = L/λ

where λ is the wavelength. It is a peculiarity of ionization waves that group and phase

velocity are directed oppositely due to the dispersion of ionization waves (f ∼ λ, f is the

wave frequency). The group velocity points from cathode to anode of the discharge.

Two aspects relevant to the following discussion can be concluded from Fig. 4. First,

ionization wave modes (level (3) in Fig. 4) occur at higher discharge currents than the

ionization instability. Differently to the instability (level (2) in Fig. 4) the power spectral

density rises in its amplitude non-continuously when the current is increased. This indicates
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FIG. 5: Spatial distribution of harmonic light oscillations (neon discharge, length 54 cm, discharge

current 9.54 mA, neutral gas pressure 1.6 Torr, radius 1.1 cm).

a sub-critical Hopf bifurcation. The observed sequence of the ionization instability to modes

shows that a certain minimum discharge length (spacing between cathode and anode) is

required for the existence of modes. The threshold of modes is the smaller the longer the

discharge becomes. This is a result of the feed-back mechanism. To support this conclusion,

Fig. 5 shows the distribution of the light fluctuation power of a different wave modes (at

fixed frequency). The wave amplitude rises exponentially from the cathode region towards

the anode saturating at a finite distance from the cathode. This amplitude dependence is

due to the propagation direction of ionization waves in neon (group velocity from cathode

to anode). If a sufficiently high level of fluctuations arrives at the anode, modes develop

due to finite length and current feed-back in the external circuit of the discharge. The feed-

back also fixes the phases of the fluctuations both in the discharge and the external driving

circuit.

Fig. 5 also indicates strongly suppressed side-bands. These measurements were taken due

to the model predictions described later. Side-bands were also identified to play an important

role in the transition process [18, 19]: It was experimentally proven that the mode transition

is a non-linear process in which a long-wavelength instability (Eckhaus instability) provides

an energy transfer from the initial to the final wave mode. This process may be described

as a spatio-temporal periodic pulling process. The present observation explains how the

instability is triggered: the strongly suppressed neighboring modes permanently exist and

grow when a mode transition takes place.

A more detailed view of the stability of wave modes is shown in Fig. 6. The diagram

reflects the governing wave mode if the discharge current is varied. Starting from small
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FIG. 6: Experimental stability diagram of ionization wave modes. n is the longitudinal wave mode

number from wavelength measurements (neon discharge, length 54 cm, discharge current 9.54 mA,

neutral gas pressure 1.6 Torr, radius 1.1 cm).

currents, Fig. 6 shows the onset of modes (n = 23). Increasing the current leads to mode

transitions ultimately leading after a sequence of ∆n = −1 transitions to mode number

n = 17. Decreasing the current increase the mode number (∆n = +1) but the transition

current is lower than the current for the inverse transition. Ramping the current up and

down exhibits the hysteresis addressed here.

III. A QUASI-LOGISTIC MODEL

A. Motivation

First, the reasoning leading to the ad-hoc model describing the mode transition phe-

nomenology is given.

The generic model for a wave-wave interaction is a third order non-linear equation (see

Eq. 4 and [23]). From a physical point of view, the nonlinearity can be associated to

wave intensities (∼ A2
i ) fed by the free energy (represented by an energy density E) in the

discharge.

Then, the saturation of the wave amplitudes is considered by the free energy parameter

E resulting in a limitation of the wave amplitude. This also reflects the fact that discharges

are open, driven systems far from equilibrium. Since the plasma is driven by electric energy

transferred to the electrons, E is limited by the discharge current and the maximum voltage
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applied between cathode and anode. The free energy parameter is a function of applied

electric power or can be rephrased as a function of discharge current. It is an experimental

observation that the saturated wave amplitude does not change after mode transition at

constant discharge currents. This also justifies the introduction of a free energy which is

shared by all excitable waves.

As supported by Fig. 4, the frequency range of positive spatial amplification of the ion-

ization instability γ > 0 is quite broad if the discharge current is not too small. Particulary,

several mode numbers can be excited which is a prerequisite for the observed occurrence of

different predominant wave modes at a given discharge current and the observed hysteresis.

The model is termed logistic because it reflects the idea that different wave modes with

γ > 0 compete for the free energy. The mode competition is ad-hoc introduced by a mode

coupling factor κ which allows a transfer of energy between co-existing modes.

A non-explicitly time dependent, stationary spatial model is considered because the wave

amplitude was found to be stationary in a finite time after mode transitions. The basic part

of the model reflects the spatial amplification γ as well as the saturation of the wave modes

as shown in Fig. 5.

Summarizing the introduced picture one attains the following model:

dAi

dz
=

Ai

E
γi ×

(
E − A2

i − κ×
∑

i 6=k

A2
k

)
(1)

which is finally called quasi-logistic since it resembles the logistic model except the sat-

uration is given by a cubic rather than a quadratic term. The notation in Eq. 1 is Ai to

be the amplitude of the ith wave mode, z is the distance from the cathode, γi the mode

amplification, E the plasma’s free energy and κ the coupling parameter for different wave

modes. κ > 1 can be interpreted to account for power losses since the free energy E and the

wave energies do not compensate each other. Power losses occur due to thermal convection

or radiation in the discharge.

For the analysis of the model in Eq. 1, the current feed-back in the external circuit enters

twofold. First, as mentioned previously it fixes the waves’ phases at the cathode and the

anode resulting in discrete wave modes i. Second, the feed-back introduces a constraint for

the boundary condition to be obeyed when Eq. 1 is solved. The ratio of the amplitude of a

wave mode Ai at the cathode (z = 0) to its amplitude at the anode (z = L where L is the
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FIG. 7: Spatial amplifications for ionization wave modes as a function of wavenumber at different

discharge currents.

length of the discharge) is the feed-back factor r:

r =
Ai(z = 0)

Ai(z = L)
(2)

Furthermore, thermal fluctuations introduce a noise level ξ (see also Fig. 4) which seed

the excitable system. The boundary condition for Eq.1 is therefore given by

Ai(z = 0) = max (ri × Ai(z = l), ξ) (3)

The model is solved iteratively for a coupled system of differential equations 1. Practically,

only modes with γi > 0 are considered.

B. Derivation of Model Parameters from Experimental Results

For the purpose of clarity we focus on a situation for which three wave modes compete.

This corresponds to the measurement shown in Fig. 5. The model parameters in Eq. 1

can be derived from experimental results. The spatial amplification can be derived from

mesurements, see Fig. 5. Since the dispersion of ionization waves f = f(λ) is accessible as

well, the wave numbers can be determined and the amplification γi can be expressed as a

function of wave-number i which is shown in Fig. 7.

As Fig. 7 indicates, the spatial amplification is well approximated by a unimodal function

in the considered parameter range. The maximum spatial amplification becomes positive

above a critical current (supercritical Hopf bifurcation). Increasing the discharge current

9



leads to an increased maximum and a shift of the maximum to smaller wave numbers

corresponding to higher frequencies.

It is instructive to consider the spatial amplifications for fixed wave numbers under current

variations by Fig. 7. First, it is evident that currents exist for which the three wave modes

considered have a positive amplification. For a given wave mode an increase of the the

current results in a minimum and maximum current for which γi > 0. This is the current

region for which a self-excited wave can exist. In between the limiting currents, a current

for maximum amplification exists.

If two adjacent wave modes are compared, both the γi > 0 current range and the maxi-

mum amplification are shifted. Hence, for a given current there is exactly one wave mode

with a maximum amplification. If the amplification would be the leading parameter for the

selection of a wave mode only, a unique wave mode should be attained if a current is chosen.

Particularly, no hysteresis phenomena would occur.

But hysteresis may occur if the feed-back boundary conditions (cf. Eq.6) are considered.

The feed-back factor r is derived from Fig.5 as well as the typical noise level normalized to

the saturated wave amplitude at the anode (z = L). For the experimental case modeled

here, the values were r = 1/141.3 and ξ/E = 2× 10−5.

C. Model Results

Employing the model parameters derived in the previous section, there is one parameter

left not directly accessible. This is the coupling parameter κ which was varied in the mod-

eling. A value of κ = 1.2 was found to fit with the experimental stability diagram best. κ

determines the extent of the hysteresis region.

The modeled stability diagram for the modes from Fig. 5 is shown in Fig. 8. For the

calculation of the stability diagram, the set of coupled differential equations was solved

with the boundary condition in Eq. 3. The model equations were solved iteratively, i.e.

after solving the model with the initial boundary conditions, new boundary conditions were

derived according Eq. 3 to account for the feed-back. If the fed-back amplitude at the anode

(z = L) is below the noise level, the wave amplitude cannot rise in the iterative procedure.

The iteration was terminated after iteration k when the overall solution for the amplitude

does not vary more than (A(k−1)(z)− A(k)(z))/A(k(z) < 10−6.
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FIG. 8: Modeled stability diagram.

FIG. 9: Spatial distribution wave amplitudes.

A typical spatial variation of the stationary solution of the wave amplitudes is shown in

Fig.9.

It is an outcome of the model that modes γ > 0 exist but at a small amplitude. Again,

this prediction was experimentally confirmed (Fig. 5).

The stability investigation started at low currents where all modes considered were

damped. At a threshold of about I = 4.8 mA mode n = 21 occurs since γn=21 > 0.

Now the discharge current is raised in small steps ∆I = 0.01 mA and the initial boundary

conditions was taken as the stationary solution from the previous step. This resembles the

experimental procedure exactly. Along the increase of discharge currents mode jumps occurs

to n = 20 and n = 21 occur respectively. Decreasing the current leads to opposite jumps

but at a lower current.
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Fig. 8 shows that the experimental result can be modeled. The explanation why a wave

mode j governs the dynamics of a discharge even in cases were a more unstable mode i

exists, i.e. γj < γi, is given by the feed-back mechanism. If the discharge is prepared in

a state k, the feed-back amplitude is larger than the noise excited amplitude of a mode q

Ak(z = 0) > Aq(z = 0) since r × Aq(z = L) > ξ. Mode transition occur if the feed back

amplitude of mode k gets smaller than the feed-back amplitude of mode q . Therefore,

the mode k remains the governing wave mode even though its linear spatial amplification

is even smaller than that of mode q. The transition criterion is hardly expressed in an

analytic form since the model parameters enter in the non-linear solution of the coupled

differential equations. Moreover, the iterative mapping to mimic the feed-back makes a

closed analytic expression for the transition condition impossible. Nonetheless, the basic

mechanism could be comprehended and the model is validated by its prediction of strongly

suppressed sid-bands.

IV. LINK TO UNIVERSAL DESCRIPTIONS

The theoretical explanation of the stability diagram of ionization waves may be attempted

in the framework of a hydrodynamic description of the plasma. A numerical analysis of the

underlying set of balance equations (c.f. ref.[20]) provides the asymmetric stability band ob-

served in neon, which is the prerequisite for the understanding of the hysteresis phenomenon.

Moreover, a universal description exists in terms of an amplitude equation of higher order

which is valid in the weakly nonlinear region [21]. These methods give information on the

global properties of the stability diagram, i.e. the asymmetric shape of the band that is

bent to smaller wave numbers. But the details of the mode transitions which are connected

with the interaction of neighboring modes can not be obtained in this way. These properties

require a local model of the mode-mode interactions.

Fortunately, there exists such an universal description in terms of a codimension-two bifur-

cation of the Hopf-Hopf type [22]. Note that a mode transition can also be initiated by

variation of the length of the positive column [11]. Figure 10 shows a sketch of the marginal

curves near the onset of instability of two neighboring modes. I denotes the discharge cur-

rent and k is the wave number. The stability boundaries µ1 = 0, µ2 = 0 must be calculated

from the dispersion relation of the underlying plasma model [22].
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FIG. 10: Sketch of the instability curves of two neighboring wave modes. The grey sector indicates

the coexistence region of both modes where the transition occurs.

Below these curves the homogeneous state is stable. Crossing a single marginal mode

curve by increasing the current, for example at I = I1, a Hopf bifurcation takes place and

above this critical value the mode has a well defined amplitude. Here we have chosen I1 < I2

according to the experimental data in a neon plasma. In ref. [22] all modes have the same

critical current which is a consequence of the used periodic boundary conditions. At the

critical point Ic, kc a Hopf-Hopf bifurcation can be observed and above this point there

is a region where both modes coexist. The dynamics near the critical point Ic, kc can be

described by the normal form equations up to third order in nonlinearity:

ṙ1 = µ1r1 + (a1r
2
1 + b1r

2
2)r1 + . . .

ṙ2 = µ2r2 + (a2r
2
2 + b2r

2
1)r2 + . . . (4)

More precisely, these are the truncated equations (c.f. Ref.[23]) of the normal form which

takes into account the real wave amplitudes r1, r2 only. µ1,2 = µ1,2(I, k) are denoted as the

unfolding parameters. A power series expansion near the critical point up to the first order

in I, k yields

µ1(I, k) = α

(
I − Ic +

(I1 − Ic)

(kc − k1)
(k − kc)

)

µ2(I, k) = β

(
I − Ic +

(I2 − Ic)

(kc − k2)
(k − kc)

)
, (5)

where α and β are positive constants that can be determined by means of the tangents at

the critical point (c.f. Fig.10). Eq. (5) connects the unfolding parameters to the physical
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quantities current I and wave number k.

Since we deal with wave motions, i.e. d
dt
→ c d

dz
, where c is the group velocity of ionization

waves, there is a one to one relation to the quasi-logistic model discussed in section III. We

find the relation between the coefficients:

µi → γi, a1 = a2 → −1

E
, b1 = b2 → −κ

E
. (6)

Then the behavior of the quasi-logistic model can be interpreted in terms of the station-

ary solutions of Eq. (4). For our purpose the most important asymptotic solution is the

coexisting state with r1,2 6= 0 that can be written as

r1 =

√
b1µ2 − a2µ1

a1a2 − b1b2

, r2 =

√
b2µ1 − a1µ2

a1a2 − b1b2

. (7)

Using the parameters

δ =
b2

a1

, θ =
b1

a2

and the constraints

δ > 0, θ > 0, δθ > 1,

the coexisting state of two modes exist in a range δµ1 > µ2 > µ1/θ. A stability analysis

shows that the fixed point (7) is hyperbolic with a 1-dimensional stable and a 1-dimensional

unstable manifold, i.e. the coexisting state of both modes is unstable. This corresponds

to the gray sector in Fig. 10. For experimental situations, a transient phase of unstable

coexistence of both modes finally leads to a stable fixed point, i.e. a regular wave motion.

The transition mechanism will be discussed in the following.

Figure 11 shows the corresponding bifurcation diagram. Note that [22] contains misprints

for this case. In the phenomenological model the nonlinear coupling parameter κ with a

value somewhat larger than 1 is considered. This case corresponds to b1b2 − a1a2 = ε > 0

with ε << 1 for the normal form equation. Thus, the two eigenvalues λ+,− of the stability

problem have a different magnitude, given by

λ+ = O(ε), λ− = O(1), (8)

where λ+ denotes the positive eigenvalue. We shall denote this situation as a weakly unstable

fixed point. For any initial condition the system (4) provides a well defined final state

r1 6= 0, r2 = 0 or r1 = 0, r2 6= 0 in the limit of an infinite time evolution t → ∞ or in
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FIG. 11: Bifurcation diagram for the coexistence region in the case: δθ > 1, µ1,2 > 0.

the limit of an infinite long system. The boundary of attraction of the single modes is a

heteroclinic orbit that connects the trivial solution r1 = r2 = 0 with the fixed point defined

by (7). Note, that this orbit depends on the actual values of k and I. A mode transition

occurs if there is a crossing of the hetroclinic orbit.

In a system of finite length L combined with an iterative feed-back, a more complicated

situation arises. We discuss the mode transition in Fig.12 which represents a sketch of the

dynamical states within the amplitude space. We chose parameters k = k1, µi = µi(k1, I)

and initial conditions which realize mode 1 and mode 2 has the typical noise level. A first

step of the iteration provides new initial data that are located near the origin r1 = r2 = 0

if the feed-back parameter r is sufficiently small. Of course, the new initial data must be

larger than the noise level. The following finite time step results in amplitudes ri 6= 0

which are in a neighborhood of the solution (7) because this point has a strongly attractive

and a weakly repulsive direction, respectively. Further iterations provide the stable finite

amplitudes ri 6= 0 but with r1 > r2. The final ratio r2/r1 depends upon the coupling as

well as on the feed-back. By increasing the current I one changes the position of the fixed

point (7) within the (r1, r2)-plane and therefore one changes the position of the heteroclinic

orbit which is the basin boundary between both modes. At a critical current the feed-back

sets initial conditions that cross the basin boundary and the mode transition occurs. A

similar picture can be obtained if the starting state is mode 2 with k = k2 and the current

is decreased. But now the critical current at which the transition occurs is different from

the first case by an increasing current. Of course, this is a consequence of the dependence of
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FIG. 12: Sketch of the dynamical states and the basin boundaries for a system of finite length.

the fixed point (7) and of the associated heterocyclic orbit upon the parameter k2 that has

a different value from k1. Using this explanation of the hysteresis, we conclude that there

must be at least a weak dependence of the transition current upon the initial conditions.

V. CONCLUSION

A quasi-logistic model was introduced. The model resembles a wave mode competition

under consideration of spatial growth rate, amplitude saturation, energy dissipation, finite

system length and feed-back. The feed-back mechanism is identified to be the reason for

stabilizing a wave mode even if its growth rate is less than the growth rate of another un-

stable mode. Consequently, the system may stay in its original mode under small variations

of control parameters. However, if the variation is too large even the feed-back cannot com-

pensate the enhanced growth of the most unstable mode leading to a mode transition. In

other words, the preparation of the discharge may determine which ionization wave mode

governs. This is the observed hysteresis.

Basically, the universal approach accounts for the pre-history of the discharge as well by

the control parameter dependencies of the fixed points representing the wave solutions. This

explains the hysteresis in the bifurcation model as well.

It is interesting to note, that noise is an important ingredient in both approaches since it

seeds all unstable wave modes. This is important to allow the discharge to select between
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the modes and it was shown in this paper that these wave modes exist as strongly suppressed

side-bands.

The main outcome of this paper is that the quasi-logistic model motivated by general

considerations of wave-wave bifurcations completes the theoretical picture of the discharge.

The description of the hysteresis in terms of a mode competition links the universal descrip-

tion with dynamics aspects of the mode transitions. Particulary, aspects of the formerly

observed spatio-temporal dynamics (Eckhaus instability, spatio-temporal periodic pulling)

are linked to the universal description by the hysteresis model presented in this study.
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