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Using the nonlinear gyrokinetic code package GENE/GIST [F. Jenko, W. Dorland, M.
Kotschenreuther, B.N. Rogers, Phys. Plasmas 7, 1904 (2000); P. Xanthopoulos, W. A.

Cooper, F. Jenko, Yu. Turkin, A. Runov J. Geiger, Phys. Plasmas 16, 082303 (2009)],
we study the turbulent transport in a broad family of stellarator designs, to understand the

geometry-dependence of the microturbulence. By using a set of flux tubes on a given flux
surface, we construct a picture of the 2D structure of the microturbulence over that sur-

face, and relate this to relevant geometric quantities, such as the curvature, local shear, and
effective potential in the Schrödinger-like equation governing linear drift modes.
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The concept of “transport–optimized stellarators” (for an overview see e.g. Ref. 1)

aims at mitigating the neoclassical (nc) losses to the point where anomalous trans-

port becomes dominant over most of the plasma column. Attention is now turning to

understanding the effects of 3D geometry on microturbulence,2–6 aided by nonlinear

gyrokinetic (gk) codes valid for 3D. Supported by the scant, albeit promising, existing

findings in this area, we attempt to identify key geometrical factors which contribute to

the development and, subsequently, control of turbulent transport levels. In this Letter,

we employ the GENE/GIST code package7,8 and apply its unique capability of deter-

mining turbulence properties for a 3D VMEC equilibrium9 to a wide representative

family of optimized stellarator designs (plus one reference axisymmetric system), to

understand the geometry dependence of ion-temperature-gradient (ITG) turbulence.

Existing 3D nonlinear gk codes are “flux tube” codes,10 yielding a picture of the

turbulence along a particular field line, a 1D structure. To better relate such results to

the full geometry, we follow a novel procedure, to construct the 2D structure of the

turbulence over a flux-surface by combining results for a set of such field lines on that

flux surface, and relate this structure to relevant geometric quantities, including the

curvature, local shear, and effective potential Vef(z) in the Schrödinger-like equation

governing linear drift modes.

The volume of a torus is conveniently parametrized by flux coordinates x =

(ψ, θ, ζ), with 2πψ the toroidal flux within a flux surface, and θ and ζ the poloidal and

toroidal azimuths, chosen so that the magnetic field may be written B = ∇α × ∇ψp,

with 2πψp(ψ) the poloidal flux, α ≡ ζ − qθ, and q(ψ) ≡ ι−1 the tokamak safety fac-

tor. In its local mode of operation, GENE simulates plasma turbulence in a field-line

following coordinate system (x, y, z) within a flux tube surrounding a specified field

line, with z = θ the coordinate along a field line, x ≡ r− r0, with r(ψ) ≡ (2ψ/Ba)
1/2
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a minor radial variable with units of length, r0 the value of r on the chosen flux

surface, Ba a normalizing magnetic field strength, and y ≡ −r0ι0α the in-surface

Clebsch coordinate with units of length, satisfying B = Ba∇x × ∇y. z typically

runs for 1 full poloidal transit, and (quasi-)periodic boundary conditions are imposed

in all 3 directions. The simulations discussed here all compute collisionless electro-

static turbulence, assuming adiabatic electrons, with parameters a/Ln ≡ −a∂rn/n =

0, a/LT i ≡ −a∂rTi/Ti = 3, r0/a ' 0.7, τ ≡ Te/Ti = 1, ρs/Ly = .05/2π, and

Lx = Ly, with Lx,y the box size in the x and y directions, a the value of r at the

edge, ρs ≡ cs/Ωi, cs ≡ (Te/Mi)
1/2 the sound speed, and Ωi the ion gyrofrequency.

Nx ×Ny ×Nz = 64× 96 × (96 or 128) grid points were employed in the x, y, and z

directions, and Nv‖ ×Nµ = 32 × 8 points in velocity space.

The configurations studied include a representative from each of the 3 princi-

pal approaches to nc transport optimization1, NCSX (National Compact Stellarator

Experiment)11, a 3 field-period (N = 3) quasi-axisymmetric (QA) design, HSX (Heli-

cally Symmetric Experiment)12, an N = 4 quasi-helically-symmetric (QH) design,

and W7X (Wendelstein VII-X)13, an N = 5 quasi-isodynamic/quasi-omnigenous

(QI/QO) design. We also simulate NCSX sym, a fully axisymmetric (2D) equilib-

rium obtained from the NCSX geometry by dropping all the nonaxisymmetric Fourier

components. We construct a 2D picture of the time-averaged RMS turbulent poten-

tial amplitude 〈φ〉(θ, ζ|r0) over the flux surface at r = r0 from a set of M flux-

tube GENE simulations. The simulations for tubes j = 0, 1, ..,M − 1 are evenly

spaced over a half field-period, Nα0 = 0, π/(M − 1), .., π. Each simulation pro-

duces the turbulent amplitude 〈φ〉(z|r0, Nα0). The value of 〈φ〉 in the other half

field-period (tubes labeled j = −1, ..,−(M − 1) ) is obtained from the tubes in

the simulated half-period via stellarator symmetry, 〈φ〉(−θ,−ζ|r0) = 〈φ〉(θ, ζ|r0),
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or 〈φ〉(−z|r0,−Nα0) = 〈φ〉(z|r0, Nα0). The 2D strip for a single field period is then

replicated N times to cover a complete flux surface. The construction for any other

relevant physical quantity is essentially the same.

Fig. 1a shows a 1D plot of 〈φ〉(z|r0, Nα0) for M = 3 flux tubes for NCSX, for

Nα0 = 0 (blue), π/2 (green), and π (red), along with a single flux tube (dashed blue)

for NCSX sym (all tubes are equivalent in a 2D torus). Fig. 1b shows the correspond-

ing plot for the radial curvature component K1(z|r0, Nα0) = κ · ex whose negative

values indicate “bad curvature”14 (ex is the covariant basis vector).

In Fig. 2a is the 2D plot 〈φ〉(θ, ζ) composed from the NCSX tubes in Fig. 1a, with

red being large values, blue low values. 2b shows the corresponding plot for K1. For

NCSX sym, as expected, one sees in Fig. 1 that 〈φ〉 balloons toward the outboard side

(θ = 0), where K1 is worst (most negative). As one might also expect, 〈φ〉 and K1 for

NCSX sym look like axisymmetrized versions of those in Figs. 1 and 2.

Shown in Figs. 3 are the 1D plots 〈φ〉 and K1 for W7X, whose toroidal amplitude

εt is comparable to its helical amplitude εh, characteristic of QO/QI systems. While

B and K1 have a variation on the more rapid helical scale length Lh, the helical wells

these produce in the mode equation’s effective potential Vef are insufficient to localize

an ITG mode, leaving the longer, toroidal well to provide the dominant localization.

A similar statement holds for HSX, whose magnetic field strengthB(x) is helically

symmetric to better than one part in 400, (εt � εh). Here, while one might expect the

toroidal ballooning evident in NCSX and NCSX sym to be replaced by an analogous

ballooning within a helical ripple period, as for W7X, Lh is too narrow to localize

〈φ〉, as seen in Figs. 4, and as a result the turbulence in each tube still balloons toward

θ = 0, though not as much as for a tokamak or QA system. This surprising finding is

experimentally supported by HSX probe measurements.15
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For each of these configurations, the region of maximum 〈φ〉 and local heat flux

Qi occurs where K1 is most negative, which is around (θ,Nα0) ' (0, 0), i.e., on

the outboard side around the device “corners”. The variation along a field line of

the heat flux Qi(θ|Nα0) from GENE strongly resembles the variation of 〈φ〉, qual-

itatively given by the scaling Qi ∼
∑

k
k2

y|φ|
2, suggesting weak turbulence. The

factor of k2

y here removes the contribution to Qi from low–ky fluctuations, which ex-

amination of the GENE output spectrum φ(kx, ky, z) shows is dominated by zonal

flows (ky = 0), which give the appreciable minimum value φ0 observed in Figs. 1–4.

The tube-averaged flux Q̄i(Nα0) = −n0χ̄i〈∇Ti0 · ∇x〉 or anomalous diffusivity χ̄i

varies little with tube in NCSX, behaving in this sense like a truly 2D system (though

the metric profiles in different tubes differ considerably for QAs), while they vary a

good deal (χ̄max/χ̄min ' 3.2) for W7X, where different tubes have quite different

profiles of B and K1. Flux-surface averaging by summing over the tube results via
¯̄χi =

∑

2

j=−1
χ̄i(j)/4, one finds ¯̄χi/χgB ' 7.9, 9.9, 17, and 10.4 for NCSX sym,

NCSX, W7X, and HSX, resp., where χgB ≡ ρ2

scs/a is the gyroBohm diffusivity. Sim-

ulations using other particular plasma parameters, or including the effects of kinetic

electrons or the ambipolar electric field may be expected to change the particular val-

ues and ordering of the results for these configurations. What is more noteworthy is

that all configurations provide values comparable to a tokamak, and to each other.

It has been observed3 that 〈φ〉(θ) for ITG turbulence resembles the structure of

the linear modes.16 One may obtain an equation17 for the linear modes φ(θ) from the

quasineutrality condition 0 = ge/τ + gi, with response function gs equal to k2λ2

s times

the linear susceptibility, yielding

0 = ge/τ + 1 −

〈

J2

0

ω − ωf
∗i

ω − k‖v‖ − ωD

〉

v

' C(ω) +D(ω)(qRk‖)
2, (1)
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cubic in mode frequency ω, with velocity-space average 〈..〉, ωf
∗ ≡ ω∗[1 +

η(u2 − 3)/2], u ≡ v/vT , thermal velocity vT , diamagnetic and drift frequencies

ω∗ ≡ −ckθκnT/(eB), ωD = ωd(u
2

⊥/2 + u2

‖), ωd ≡ cTi/(eiB
3)B × ∇B · k⊥,

C(ω) ≡ (c0 + ω−1c1 + ω−2c2), D(ω) ≡ (ω−2d2 + ω−3d3), and coefficients c0−2, d2−3

collecting terms in powers of ω and k‖, e.g., c0 ≡ ge/τ + 1− I0(bi)e
−bi . For adiabatic

electrons, ge = 1.

The shape of Vef ≡ C(ω)/D(ω), shown in Fig. 5 for a single tube (j = 2) for

each of the 4 geometries, is dominated by that of K1, coming from the drift term

(∝ ωD/ω) from (1). Using the replacement ik‖ → ∇‖ = (BJ )−1∂θ in (1), with

Jacobian J ≡ 1/∇α × ∇ψp · ∇θ ≡ 1/Bθ, a Schrödinger-like mode equation is

obtained for φ along a field line, 0 = [Vef − (qRBθ/B)∂θ(qRB
θ/B)∂θ)]φ(θ), in

which curvature enters through Vef .

The local shear sl = ∂θ(g
xy/gxx) (with gij the components of the metric tensor) en-

ters Eq.(1) through locally modifying both k‖(θ), and k2

⊥(θ) through radial wavenum-

ber kx(θ). In Fig. 6 are compared sl in NCSX and NCSX sym. As for other stellara-

tors, the much stronger shaping for NCSX makes |sl| substantially larger and more

structured than for a 2D system like NCSX sym. One might expect spikes in sl to

bound modes more than would occur just through the action of Vef , since sl causes

k‖ or kx to locally appreciably deviate from 0, enhancing Landau damping, as well

as reducing the mode radial extent, similar to the function performed nonlinearly by

zonal flows. Evidence for this may be seen in comparing the spikes in sl in Fig. 6 with

the restrictions and dimples in 〈φ〉 for NCSX in Fig. 1a. Further support is found by

creating an artificial configuration, NCSX s, obtained from NCSX by artificially dou-

bling sl by doubling gxy, adjusting gyy to preserve the field alignment constraint, and

consistently modifying K1, which implicitly contains gxy. 〈φ〉(θ) in NCSX s resem-
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bles that of NCSX, but substantially more localized, restricted by the increased peaks

in sl(θ), with Qi(θ) correspondingly narrowed and Q̄i reduced by about 30%.

Summarizing, we have examined the structure of microturbulence in a broad fam-

ily of transport-optimized toroidal systems using the gk code GENE. Visualizing this,

and its relation to important geometric quantities, is facilitated by the construction of

a 2D picture of these over a flux surface from the 1D information a flux-tube code

provides. Two such quantities, K1 and sl, are seen to be important for ITG turbulence

in determining the similar structures of the heat flux Qi, and of the varying (non-zonal

flow) portion of the turbulent amplitude 〈φ〉, from both the simulation results, and be-

cause both input quantities are operative in the linear mode equation, whose solutions

φ are observed to resemble 〈φ〉 and Qi. For each stellarator, 〈φ〉 and Qi are seen to

peak toward the outboard side near the device corners (where K1 is worst), manifest-

ing a toroidal ballooning structure, which is modulated by the helical ripples, but not

enough to localize modes within them, even for HSX. Further improvements to the

present results are planned, e.g., incorporating the effect of an ambipolar electric field,

and including kinetic electrons, which provide the trapped electron drive, changing the

mode characteristics.14 The relatively simple relationship between the GENE outputs

〈φ〉 and Qi, and identifiable inputs like K1 and sl, which can be quickly computed,

suggests an optimization may be done, minimizing a semi-analytic proxy for Qi, in-

volving those inputs through solving the mode equation, to obtain a geometry which

seeks to minimize the turbulent transport.
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1

(a)

(b)

FIG. 1: (Color online)(a)Averaged turbulent potential 〈φ〉(z = θ) and (b)curvature K1(z = θ)

for NCSX sym (dashed), NCSX (solid). NCSX tubes j=0,1, and 2 are colored blue, green,

and red, marked with points, circles, and crosses, resp.
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FIG. 2: (Color)(a)〈φ〉(θ, ζ) and (b)K1(θ, ζ) for NCSX.
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1

(a)

(b)

FIG. 3: (Color online)(a)〈φ〉(z = θ) and (b)K1(z = θ) for W7X. Colors and markers as in

Fig. 1.
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1

(a)

(b)

FIG. 4: (Color online)(a)〈φ〉(z = θ) and (b)K1(z = θ) for HSX. Colors and markers as in

Fig. 1.



14

efV

FIG. 5: (Color online)Effective potential Vef (z = θ) for tube j = 2 of (from top to bottom)

NCSX sym (blue), NCSX (green), W7X (cyan), and HSX (red), for kyρs = 0.25.
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FIG. 6: (Color online)Local shear sl(z = θ) for NCSX sym (dashed), NCSX (solid). Colors

and markers as in Fig. 1.


