Applicability of different geometry approaches to simulations of turbulence in highly sheared
magnetic fields

D. Told and F. Jenko
Max-Planck-Institut fiir Plasmaphysik, Boltzmannstr. 2, D-85748 Garching, Germany

For more than a decade, Eulerian simulations of plasma turbulence have been using coordinate systems
aligned to the background magnetic field in order to exploit the elongated structure of the turbulent eddies.
Here, two possible setups of such field-aligned coordinate systems are studied with regard to their behavior
under more extreme conditions such as tokamak edge or stellarator geometries, where large global and/or local
shear are encountered. Turbulence codes employing a Fourier expansion are shown to yield correct solutions
also for large shear values, given that the radial resolution chosen is large enough. Codes which compute the
radial direction in real space, on the other hand, can benefit from the implementation of the shifted metric
approach, which may save resolution in the case of large shear.

I. INTRODUCTION

In the course of the past two decades, turbulence simula-
tions have emerged as a useful tool to gain insight into the
mechanisms that govern heat, momentum, and particle trans-
port processes in magnetized plasmas as found in fusion ex-
periments like tokamaks and stellarators.

Experimentally, it has been known for years that plasma
confinement in such devices can be much enhanced in a di-
verted geometry, facilitating the transition to the H-mode
regime [1]. In divertor geometry, the last closed flux sur-
face (separatrix) is not circular anymore as in earlier exper-
iments, and experience shows that confinement can be further
enhanced by distorting the plasma shape in an elliptical and/or
triangular fashion.

Traditionally, analytical and numerical studies of plasma
turbulence were based mostly on the § — o model, which
resembles a large-aspect ratio tokamak with circular cross-
section [2]. While this model has proven very useful for
basic turbulence studies, it lacks the accuracy that is neces-
sary for a quantitative comparison of simulation and experi-
ment. This is particularly true for simulations of the tokamak
edge, where flux surfaces deviate substantially from the cir-
cular shape and the metric coefficients show a strong parallel
dependence, which is not accurately taken into account in an-
alytical models. In addition, close to the separatrix, the safety
factor, and thus also magnetic shear, diverge to infinity, so that
large global shear values must be taken into account correctly
by turbulence codes.

Stellarator devices, on the other hand, are not axisymmet-
ric like tokamaks, and therefore geometric quantities depend
strongly on the parallel coordinate (see, e.g. Ref. [3]) even in
the core. In contrast to the large values of global (i.e. flux
surface averaged) magnetic shear that are encountered in the
tokamak edge, stellarators are generally designed such that
their rotational transform (the inverse safety factor) covers
only a small range of values. Global shear values therefore
tend to be low. Due to the strong parallel variation of the
geometry, on the other hand, considerable local shearing may
occur. In this work, we will therefore examine two established
types of field-aligned coordinate systems, their applicability
to different types of turbulence codes and their behavior in
complex geometries.

The paper is structured as follows: In Section II, we de-
scribe some properties of field-aligned coordinate systems,
along with a discussion of the differences between standard
and shifted metric. In Section III, we describe the numerical
tool we employ for this study, and show results of linear and
nonlinear simulations with both types of geometry. Section IV
provides the theoretical understanding of the numerically ob-
tained results, and in Section V we draw some conclusions.

II. PROPERTIES OF FIELD-ALIGNED COORDINATE
SYSTEMS

As has already been mentioned, it is common for plasma
turbulence codes to employ a spatial coordinate system which
is aligned to the magnetic field. Such a treatment takes ad-
vantage of the fact that in strongly magnetized plasmas all
particles experience the Lorentz force. While this does not
affect their parallel motion much, perpendicular motion can
only occur due to drift effects, which can be caused, e.g.,
by magnetic field inhomogeneities and electric fields. Since
typical drift velocities are much slower than thermal veloci-
ties, the turbulent eddies that are found under such conditions
show an elongated structure, with parallel correlation lengths
that can exceed their perpendicular counterparts by orders of
magnitude. In field-aligned coordinates (and only there), it is
therefore possible to use only few grid nodes to cover many
meters along the field line, while at the same time resolving
sub-millimeter scales perpendicular to the magnetic field.

In the literature, there exist numerous derivations of field-
aligned coordinates (see, e.g. Refs. [4-7]), which we will not
repeat here. Instead we will give a description of some prop-
erties of these coordinate systems. In addition to the standard
field-aligning approach, one of the aforementioned works [7]
also defined a ’shifted-metric’ approach, which differs from
the former one in several aspects that we wish to illuminate.

A. Magnetic shear in straight and shifted metric

In the usual transformation from cylindric to field-aligned
coordinates, one defines a set of three coordinates z, y, z,
which represent the radial, binormal and parallel directions,



respectively. For convenience, one often chooses the refer-
ence position to be where the contravariant e* = Vx vector
is parallel to the cylindrical " = Vr, i.e. where the flux
surface is perpendicular to the (cylindrical) radial direction.
For up-down symmetric geometries, this is the outboard mid-
plane. The e¥ vector, on the other hand, lies in the flux sur-
face, perpendicular to the field line direction. However, the
z and y coordinate vectors are only orthogonal at the afore-
mentioned reference position, which can be seen as follows:
Since the safety factor is not constant across the minor plasma
radius, the pitch of the magnetic field changes between dif-
ferent radii. At the reference position, where y (the field line
label) can be defined to be zero for all radial positions, a small
step in direction of e” changes only the = coordinate. At a
different parallel position, however, a small step in  direction
will in general be accompanied by a change of the y coordi-
nate, since the field lines with y = 0 that we started with are
now at different poloidal angles due to the differing safety fac-
tor. This means that e¥ = Vy now has a radial component, so
that g*¥ = Va - Vy # 0 when departing from the outboard
midplane. Therefore, the perpendicular grid is only orthogo-
nal at the reference position where y is defined to be zero for
all radial positions. As one follows the field line, the angle be-
tween the e” and e¥ vectors increases according to magnetic
shear (or local shear, if its parallel dependence is taken into
account, see, e.g., Ref. [8]).

The shifted-metric approach which has been first described
in Ref. [7], avoids these complications by introducing a dif-
ferent coordinate gy, for every position zj, along the field line.
This 3, is defined such that g”¥* = 0 everywhere, which re-
quires the following definition:
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where the metric coefficient g*¥ is to be calculated with the
unshifted y coordinate, at position z;. We note that the same
transformation is also applied in simulations employing the
standard Clebsch approach, but only at the parallel ends of
the simulation domain, and with the integrated coefficient
J(g"Y/g"*)dz = 273. In the shifted metric case, on the other
hand, the shift of the y coordinate is split into as many pieces
as there are parallel points in the simulation.

B. Adaptation of parallel derivatives for shifted metric

Since each parallel position now has a different y coordi-
nate, the calculation of parallel derivatives must be adapted
to account for the shifts, as has also been shown in Ref. [7].
As various gyrokinetic codes like GS2 [9, 10], GKW [11]
and GENE [12-15] compute the perpendicular dynamics in
Fourier space, we will give a short repetition of the calcula-
tion for such cases. If the parallel derivatives are computed
via fourth-order centered finite differences, then the function
values from two neighboring points in each direction enter the
computation. In the shifted metric case, the coordinate system
changes from point to point, so that in order to calculate the
derivative of f(z) at parallel position k, one has to perform

the following operation on data from position k& + ¢: First
execute an inverse shifted metric transformation yx4+; — y
(changing from the coordinate system at point k& + 4 to the
field-aligned reference system), then transform y — yy, (back
to the shifted coordinate at position k). The complete trans-
formation is therefore:
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Thus, when using a value of f from parallel point k + ¢, we
have to apply the following shift when calculating the deriva-
tive in terms of the coordinates at point k:
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Here, the label ‘yk+i is used to signify that the value has been
evaluated in the coordinate system ;. Due to the discretiza-
tion, in a real-space treatment an interpolation will in general
be required (especially in complicated geometries, where y1;
can take arbitrary values) to calculate the function values at
the actual spatial grid points. Performing a Fourier transform

only in the y direction on the right hand side of the above
condition yields:
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Now we shift the y; coordinate to yj;:
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Therefore, when using function values from neighboring par-
allel positions, these values have to be multiplied by a phase
factor:
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If the x direction is also treated in Fourier space, the transfor-
mation reads:
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C. Radial boundary conditions

According to Eq. (7), the shift in y is associated (in Fourier
space) to a mode shift in k; (see also Ref. [6]). Applying the
shifted metric to a code which computes both perpendicular
directions in Fourier space is therefore only possible if all &,



modes that can occur due to the shifts are present in the sys-
tem. While in the standard field-aligned approach, the only
k.. shifts occur at the parallel ends of the box, the shifts are
much smaller in the shifted metric case. To ensure the same
radial resolution, a much larger number of &, modes would be
necessary to allow for the shifts. Furthermore, the shifts can
be arbitrary in general geometry, so that no straightforward
implementation for local Fourier codes is possible.

If, on the other hand, only the y direction is treated in
Fourier space, the shifts in that direction become a multipli-
cation with a phase factor (see Eq. 6), so that in principle
arbitrary shifts become possible. If one wants to emulate flux-
tube simulations with such an implementation, however, one
has to take into account that the phase shifts can violate the ra-
dial periodic boundary condition that is used in the flux-tube
model [6, 7]. Since the phase factor depends on k,,, periodicity
can only be fulfilled if the radial box extension L, is chosen
such that the phase factor becomes a multiple of exp(ir) at
the radial boundary for each k, mode. This can, depending
on the shear value, force one to use very large radial box sizes
(corresponding to the small k, shifts from above) in order to
fulfill the periodic boundary condition for every k, mode—in
that case one would face the same problem as in a fully spec-
tral code. Note, however, that nonlocal simulations can only
be performed with non-periodic boundaries, e.g. of Dirichlet
or von-Neumann type, for which the shifted metric does not
cause any problem.

III. NUMERICAL TESTS OF STANDARD AND SHIFTED
METRIC

A. The GENE code

For the simulations shown in this study, we employ the gy-
rokinetic turbulence code GENE [12-15]. Since we intend to
focus on very basic features of the numerical treatment, the
physical complexity is kept low by using only one species
(ions) and considering the electrons as adiabatic. Effects like
magnetic fluctuations, collisions and nonlocal effects are ne-
glected. For more physically comprehensive simulations of
various plasma conditions, see e.g. Refs. [16—19].

The GENE code allows to choose between two different
modes of operation; the first one employs a Fourier space flux-
tube treatment with periodic boundary conditions in both per-
pendicular directions, while the second setting treats only the
y direction in Fourier space. The radial dynamics, instead, are
treated in real space with nonperiodic boundary conditions in
order to allow for radial profile variations. As we have shown
in section IIB, an easy implementation of the shifted met-
ric is only possible for the latter operation mode. Therefore,
all simulations with shifted metric have been carried out with
the nonlocal version, emulating however the local simulations
without profile variation.
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FIG. 1: Convergence of linear growth rates with increasing radial
box size, using periodic boundary conditions.
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FIG. 2: Convergence of linear growth rates with increasing radial
box size, using Dirichlet boundary conditions.

B. Effect of radial boundary conditions

To compare the convergence of both shifted and straight
(standard) metric with Dirichlet and periodic boundary con-
ditions, we performed some linear simulations in a Cyclone
Base Case [20] parameters set, choosing k£, 0s = 0.3 and in-
creasing the radial box size L, and the number of radial points
simultaneously in order to keep the resolution constant. Fig. 1
shows the convergence behavior for periodic boundary con-
ditions. With this approximation, the flux tube simulation al-
ways gives the same result, while the shifted metric simulation
converges to within 10% of the flux tube result for L, = 500;.
At a value of L, =~ 670, the shifted metric result is identical
to the flux tube one, since with this L, the periodic boundary
condition is exactly fulfilled. The same would also be visible
at L, ~ 26705 = 13405, but that point is not included in the
scan. For Dirichlet boundaries, on the other hand (see Fig. 2),
the speed of convergence is almost identical for both shifted
and straight metric, reaching an accuracy of 10% as soon as
L, 2 500s. Thus, for nonlocal simulations, the impact of the
radial boundary condition on the simulation is the same for
both the straight and shifted metric approach.



C. Nonlinear simulations with straight and shifted metric

In Ref. [7], it was found that turbulence simulations em-
ploying standard field-aligned coordinates become inaccurate
when studying conditions with large (global) magnetic shear:
Although a sheared slab geometry was used, in which, due
to the absence of curvature effects, the heat flux at all paral-
lel points should be equal, it was found that parallel transport
profiles yielded a *ballooned’ structure, i.e. the transport value
decreased from the center towards the ends of the flux tube.
As a remedy, the shifted-metric approach was put forward,
which was able to eliminate the artificial structure.

As we have seen above, however, for a flux tube code with
periodic boundaries (like the local GENE version), the shifted
metric approach can not be easily implemented. Therefore,
we will now study if the standard approach leads to similar
problems in a Fourier treatment, and if there is a possibility
to overcome them. In Ref. [7], a four-field model was em-
ployed that described the nonlinear electron dynamics while
assuming cold ions. The physical model thus differs clearly
from the kinetic ion/adiabatic electron model that we employ
in our study; as we will see, however, both models deliver
very comparable results with respect to the geometric proper-
ties discussed here. For the first simulation, we choose a grid
of 60ps x 207, in the perpendicular plane, with a resolution
of 32 X 32 X 16 x 32 x 8 grid points in the x, y, 2z, v|| and p
directions, respectively, keeping the same resolution as in the
original simulations (but using a smaller box in y direction).
The gradients are selected such that ion temperature gradient
modes are unstable (L”/LT =10, L”/Ln = 2.2), and global
shear is set to unity to match the metric from Ref. [7]. In
Fig. 3, the parallel heat flux profile obtained from this simu-
lation is depicted. Near the parallel boundaries, zig-zag struc-
tures appear which indicate insufficient resolution. This result
differs from the one in Ref. [7] in that it can be clearly rec-
ognized as a numerical deficiency, while in the original work,
there was a smooth reduction in transport towards the parallel
boundaries, which could not be distinguished from the natural
ballooning effect one would expect in a toroidal geometry.

As we will illuminate in more detail in the following sec-
tions, increasing the magnetic shear value will require an ac-
cording increase in the radial resolution. Indeed, as it turns
out, the zig-zag structures found in the parallel heat flux pro-
files vanish only when using four times the resolution com-
pared to the initial setup, yielding a completely flat profile
(see Fig. 4) then. For a shear value of § = 2, this is achieved
at a resolution of n, = 192 (Fig. 5).

D. Influence of numerical schemes

To illuminate the origin of the numerical problems that arise
at high magnetic shear, we will first compare the numerical
treatments of the perpendicular direction that were used in the
original and our simulations: In the original work, a second-
order upwind scheme was employed [21], whereas the local
GENE simulation uses a Fourier treatment, which yields exact
derivatives (limited only by machine accuracy). The upwind

16
14 + R

12 B
10 B

Qi

S N e O
T T
I

FIG. 3: Parallel heat flux profile for a nonlinear slab simulation with
global shear § = 1 and 32 radial grid nodes.
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FIG. 4: Parallel heat flux profile with global shear § = 1 and 128
radial grid nodes.

scheme is intrinsically dissipative, which on the one hand
serves to eliminate detrimental aliasing effects by damping
small-scale structures. On the other hand, we will see that
in combination with the field-aligned coordinates, the dissipa-
tion of the scheme facilitates the appearance of the observed
spurious ballooning, while at the same time masking its nu-
merical origin.

The necessity of employing some kind of dealiasing
scheme in gyrokinetic turbulence codes stems from the fact
that the gyrokinetic Vlasov equation as used in the GENE code
[14] contains a quadratic nonlinearity, given by

n __ Ox0g;  Ox0g;
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where x = ® — vpjvA); is the modified potential and
g9;i = f; + 2v||A||jFqu/mjvTj is the modified distribution
function. This nonlinear term couples different wavenumbers
and thus causes an excitation of waves with larger wavenum-
bers than are actually contained in the system. These are then
erroneously interpreted as lower wavenumbers, resulting in
a transfer of energy to larger scales, which often leads to a
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FIG. 5: Parallel heat flux profile with global shear § = 2 and n, =
192. Note that the temperature scale length has been increased to
Ly /Lt = 15 to compensate for the larger shear value.

’blow-up’ of the simulation. To avoid this kind of numerical
instability, often a numerical diffusion term is introduced to
damp the high-£ contributions and thus eliminate this aliasing
effect. In Ref. [7], this numerical diffusion is included implic-
itly in the upwind scheme employed there.

In GENE , on the other hand, the Fourier space treatment
allows to use the three-halves rule due to Orszag [22] to pre-
vent aliasing: For the computation of the nonlinearity (which
is done in real space to avoid computing the convolution in
the right hand side of Eq. 8), the wavenumber grid is zero-
padded in k, and k, directions with n, /2 or n, /2 modes, re-
spectively. After calculating the nonlinearity, these modes are
discarded again and the computation continues on the smaller
grid. Therefore, nonlinear simulations can usually be per-
formed without an additional hyperdiffusion term. To emulate
the conditions of the runs in [7] with the GENE code, for a test
we added a fourth-order radial hyperdiffusion term, which is
available, but not normally used in the GENE code. The term
added to the right hand side of the Vlasov equation is given
by

De = ol Arko)'f, ©)

where f is the distribution function. The expression in the
parentheses is chosen such that the prefactor €, does not have
to be adjusted when changing resolution. Nonlinear simula-
tions with finite €, do indeed show smooth ballooning in the
transport profile as well as in the temperature, density and po-
tential fluctuation amplitudes, similar to the simulation from
Ref. [7]. In Fig. 6, a nonlinear scan over ¢, is shown, which
demonstrates a clear dependence of the magnitude of balloon-
ing on the hyperdiffusion coefficient €.

As these results show, although turbulence codes with a
completely spectral perpendicular treatment can not employ
the shifted metric, correct simulation results can be achieved
even for highly sheared flux tubes, provided that a non-
diffusive dealiasing scheme, along with the necessary reso-
lution, is employed. A lack of resolution, on the other hand,
can be recognized rather easily in the parallel profiles.
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FIG. 6: (Color online) With increasing radial hyperdiffusion coeffi-
cient €., the parallel heat flux profile exhibits an increasing amount
of unphysical ballooning.

E. Studies with real space treatment of the radial direction

In a nonlocal turbulence code, only the y direction can be
computed in Fourier space, so that the Orszag scheme can not
be applied to the radial direction anymore, and different an-
tialiasing mechanisms have to be employed. We study such
a setup with the nonlocal version of GENE, which computes
radial derivatives using fourth-order centered differences.

When emulating the Orszag dealiasing scheme in real space
through Lagrange interpolation to a finer grid, it achieves, un-
like in Fourier space, only a partial elimination of aliasing ef-
fects [23], allowing one to use a smaller coefficient for the
hyperdiffusive term. A saturated nonlinear simulation with-
out such a term was not achieved, however. This difference
in behavior can be attributed to the local nature of the finite-
difference scheme, which yields only finite-order accuracy
while the spectral derivatives are given through an expansion
in global basis functions, achieving arbitrary accuracy. In
analogy to the Fourier version, the real space hyperdiffusion
term is here given by:

4
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To quantify the spurious ballooning found in a real-space sim-
ulation with standard metric, a resolution scan was conducted.
For simplicity, we chose again a sheared slab geometry with
a global shear value of § = 2 and a radial box length of
L, = 80p;. This specific value of L, was chosen to allow for
the use of periodic radial boundary conditions for comparison
with the shifted metric. For each chosen resolution, a scan in
€, was performed to find the lowest possible value of hyper-
diffusion with which a saturated simulation could be achieved.
Figure 7 shows the results of the resolution scans with and
without shifted metric. The curves labeled only by n, are runs
which use the nonlocal version of GENE with standard met-
ric, emulating the local code setup. As can be seen, increasing
the radial resolution increases the accuracy with which slab
modes are represented, but completely flat heat flux profiles
can, for this shear value and box length, not even be achieved
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FIG. 7: (Color online) Parallel heat flux profiles with and without
shifted metric in the nonlocal code version.

for 256 radial grid nodes, making converged simulations very
expensive. A sixth-order centered difference scheme was also
tested in conjunction with a sixth-order hyperdiffusion term,
but this yielded only marginally better results than the corre-
sponding fourth-order runs.

With shifted metric, even for relatively low resolution an
accurate representation of the slab heat flux profile is obtained,
shown here for three different radial resolutions.

F. Influence of the nonlinearity representation

Another test involved the implementation of an Arakawa-
type nonlinearity [24], which is used here in a mixed real-
space/Fourier-space version which was given in Ref. [25].
The implemented term is

_1 : dg;  Ox. ) . 0g; _8)(
N = 3 [ (Zkyx Oz axlkygj +iky { X oz Yoz

+ a% (g5ikyx — Xikyg;) ], (11)

where the quadratic terms in the parentheses are computed
in real space in both x and y directions. It was found that
nonlocal simulations with the Arakawa-type nonlinearity can
achieve stable nonlinear saturation even when running without
an additional radial hyperdiffusion term, yielding very robust
code operation. However, in such simulations some spurious
oscillations occur at the smallest scales, which should be pre-
vented by a small hyperdiffusion contribution to yield more
physical results.

The same resolution scan as mentioned above was done
with the Arakawa-type nonlinearity in order to find out
whether this yields improvement over the standard treatment.
The parallel heat flux profiles for different radial resolutions
are shown in Fig. 8. As can be seen, the spurious balloon-
ing effect is not completely avoided, but clearly reduced when
compared to the standard implementation. In addition, the
transport values of the runs with the Arakawa representation
are somewhat closer to the converged values. Also shown
in the figure is the comparison between the converged local
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FIG. 8: (Color online) Parallel heat flux profiles with an Arakawa-
type nonlinearity, the Fourier-space code version and the nonlocal
version with shifted metric.

(Fourier) simulation and the shifted metric simulation at the
same resolution, which coincide very well.

IV. DISCUSSION
A. Understanding the effect of artificial ballooning

To shed some light on what causes the spurious balloon-
ing induced by radial hyperdiffusion, we will now examine
a nonlinear slab run without radial hyperdiffusion (conducted
with the local GENE version)—i.e. a run where the transport
profiles found in our simulations are flat, as they should be.
In the GENE postprocessing tool, one can produce z-profiles
not only of transport quantities, but also of the fields and var-
ious moments of the distribution function. Adding all con-
tributions, one arrives at flat profiles as expected; however,
when fixing k, to a single value and examining specific k,
modes of the electrostatic potential, these can be found to ex-
hibit peaked parallel profiles with a relatively short parallel
correlation length. The peak position depends on the value of
k. one is studying (see examples in Figures 9 and 10).

The peaked behavior of each perpendicular mode (kg, ky)
is directly linked to the drive that each of these mode pairs
is subjected to: In Fourier space, the gyroaveraged potentials,
which determine the strength of the gradient drive, are calcu-
lated by just multiplying the potential with a Bessel function
Jo(k? 0%). Here, g is the gyroradius and k2 is given by

k3 = g™ k2 + 29"V kyky + 9"k (12)

Since ¢** = 1, ¢g*¥ = 5z and g¥¥Y = 1 + 5222 in a straight
metric slab, k2 is a parabola. When varying k., the position
of the parabola’s apex at zg = —k,/(8k,)—where the mode
experiences the strongest drive—is shifted along the field line.
Thus, the ballooning caused by radial hyperdiffusion becomes
understandable: While the k,, = 0 mode peaks at the center
of the flux tube, the higher k, modes that peak off the center
are increasingly damped and the total profile becomes peaked.
As shear is increased, modes which peak at a specific position



zo have an ever higher k, and therefore experience stronger
damping, explaining the stronger spurious ballooning effect.

Let us now examine Figures 9 and 10 more closely: Fig. 9
was done with the local version of GENE and with a rather
large value of hyperdiffusion, while Fig. 10 was done with
zero hyperdiffusion, as is standard in the code. Both figures
show, for k, 0, = 0.75, the same k;, modes with the values
kyo0s = 0,40.942, +1.885, where the mode with central peak
is the k; = 0 mode and the other peaks depart from the center
with increasing |k, |. As is clearly visible, in Fig. 9, with ac-
tivated hyperdiffusion, the modes that peak off the center are
rather strongly damped and their peak positions altered, coin-
ciding with a peaked transport profile (solid line in the Figure).
On the other hand, in Fig. 10, where hyperdiffusion is turned
off, there is no damping of finite-k, modes and therefore the
resulting transport profile is flat.

Considering the impact hyperdiffusion has on modes with
finite k,, one can expect a strong impact also on the heat flux
spectra. Indeed, Figs. 11 and 12 show some qualitative dif-
ferences. While the k, spectra look very similar for k, < 1,
there is a significant change of behavior for k, = 1: Whereas
the undamped spectrum decays in a roughly straight line, the
fall-off of the damped spectrum is strongly curved, so that the
difference quickly becomes several orders of magnitude. This
stronger fall-off is what disturbs the slab character of turbu-
lence.

In the k, spectrum, although not directly affected by radial
hyperdiffusion, there are still some differences to be found:
While the deviation of the xz-damped spectrum from the un-
damped case is much weaker than in the k, spectra, the dif-
ference between both cases is still an order of magnitude at
the high-k end of the spectrum. On the other hand, the coin-
cidence of the curves for lower k,, values is not as good as in
the radial spectra. The transport peak is slightly shifted toward
lower k,,, while the spectral heat flux density differs by up to a
factor of two for the lowest k,,. The overall heat flux, however,
is barely affected by these deviations: For the ’clean’, unbal-
looned case, we find an ion heat flux of 11.0£1.0 in units
of vy;07/(n;T; L), while in the ballooned case the value is
10.7£1.2.

Applying these results to the situation of the local Fourier
code, it is easy to understand the origin of the zig-zag struc-
tures observed in Fig. 3: Although there is no explicit k,-
dependent damping in the code, all unresolved modes are set
to zero. At too low radial resolution, as is the case in our first
simulation, these modes will couple strongly to the modes that
are taken into account, affecting the computation of parallel
derivatives near the parallel boundaries.

B. Understanding the correction via shifted metric

Having discussed the effect which radial hyperdiffusion has
on turbulence simulations in slab geometry, it is now straight-
forward to see how the shifted metric approach can avoid
peaked profiles even with a dissipative numerical scheme. For
easier understanding, we provide an explanation in terms of
k, and k, modes instead of viewing the problem in real space.
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0.14
0.12

0.1
0.08 |,
0.06 [
0.04

Prms/(Ti/e - pi/L1)

FIG. 9: Time-averaged electrostatic potential for ky0, = 0.75
and kyos = 0 (dashed), kzps = =£0.942 (shorter dashes) and
ke0s = £1.885 (dotted) for a nonlinear simulation with €, = 10.
The solid line shows the rescaled overall heat transport, which ex-
hibits unphysical ballooning.

0.18

(I)rms/(Ti/e'pi/LL)

FIG. 10: Time-averaged electrostatic potential for k,0, = 0.75
and kyo0s = 0 (dashed), kzps = =£0.942 (shorter dashes) and
keos = £1.885 (dotted) for a nonlinear simulation with €, = O.
The solid line shows the rescaled overall heat transport, which is flat
as expected in slab geometry.
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FIG. 11: k. spectra of the heat flux found in simulations with
(e = 10) and without (e = 0) radial hyperdiffusion. As can be seen,
for ky0s 2 1 there are significant differences, leading to ballooned

parallel transport profiles.
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FIG. 12: ky spectra of the heat flux found in simulations with (¢ =
10) and without (¢ = 0) radial hyperdiffusion. The differences here
are more subtle, but towards the high-k end of the spectrum the heat
flux is significantly damped, while it is somewhat enhanced at low
ky.

With the straight metric approach, magnetic shearing is
taken into account via the shape of the flux tube, i.e. the
flux tube is twisted when following the field line. Thus,
when calculating parallel derivatives, one can use the val-
ues from the same k, mode, since the shearing is automati-
cally included. In the shifted metric approach, however, the
flux tube is not deformed, but the shearing must *'manually’
be taken into account by applying the k, shifts discussed
above (see Figures 13 and 14 for an illustration). The radial
(hyper-)diffusion term, on the other hand, is proportional to
some (even-numbered) power of k., regardless of whether the
straight or shifted metric is used. When using straight metric,
the dissipation for a particular &, mode, is equally strong over
the entire parallel length of the flux tube. With shifted metric,
the same is true, but the k, value used to refer to one sheared
eddy depends on the parallel position, and thus the damping
of that mode also varies.

As shown above, the parallel transport profile in slab ge-
ometry consists of many single peaks that are added up. With
straight metric and hyperdiffusion, modes with finite k, are
damped, so that the transport profile is affected only off the
center position (since this is where the k£, = 0 mode peaks).
With shifted metric, on the other hand, the metric is changed
such that the modes which have a constant finite &, in straight
metric, pass through k; = 0 exactly where they peak. This
way, the peak of one mode is always undamped, instead only
its tails are damped, resulting in a flat overall transport profile.

Another way to put it is that while with straight metric
hyperdiffusion is aligned with the modes (since the grid on
which hyperdiffusion is applied is sheared along with the
eddies), with shifted metric, the hyperdiffusion is (as is the
grid) dealigned from the sheared modes and thus procures
equal damping to each mode and does not ’prefer’ particu-
lar ones. A possibility to avoid introducing dependencies
that are not there in the original system is the usage of a dis-
sipation term proportional to k2" (n = 1,2,...), since k is
a physical wavenumber, independent of the coordinates used
to describe the system. Furthermore, if only a radial dis-
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FIG. 13: (Color online) With straight metric, parallel derivatives fol-
low the sheared magnetic field automatically when using the same &,
mode, and a large shift has to be applied at the ends of the z domain
in order to connect to beyond the flux tube end.
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FIG. 14: (Color online) With shifted metric, a small &k, shift has to
be applied from each parallel position to the next in order to follow
the sheared magnetic field, and periodic boundary conditions suffice
to connect to the next flux tube. In straight metric, the mode drawn
in the picture would correspond to k; = 0 all along the flux tube.

sipation is desired, one can employ a term proportional to
k7t = (ko + kyg™ /g7")*".

C. Invariance of physics regarding the shifted-metric
transformation

Finally, we would like to note that shifting the y coordi-
nate does not change the physics contained in the simulation.
This can be seen when inserting the coordinate transformation
yr =Y — - ¢*¥/¢g"" and the shifted k¥, = k, + k, - ¢"¥ /g™
into Eq. (12), which gives k2, the Fourier space counter-
part to the perpendicular Laplacian which enters the Poisson
and Ampere equations. Considering that g¢° = Vp - Vo for
0,0 € x,Y, 2, the shifts all cancel to yield the original depen-
dence. The same is true for the nonlinearity as given in Eq.
8 and the perpendicular Jacobian J ! = ¢g®*g¥¥ — (¢'?)? =
|Vz|?|Vy|? — (Vz - Vy)?: One merely transfers part of the
z dependence from the metric coefficients to a new z depen-
dence of the radial derivative (giving the shifts in k).

However, simulations using either of the two approaches
differ in the set of modes which make up the perpendicu-
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FIG. 15: Perpendicular plane at the reference position z = 0, where
e, Le, both for shifted and straight metric.

lar plane. While with shifted metric, each parallel position
has a mode that points radially outward, with straight metric
this mode is in general only present at the reference position,
where the grid is perpendicular (Fig. 15). At all other posi-
tions, the mode labeled k, = 0 is tilted away from the outward
direction and the grid has a rhomboid shape (Fig. 16). The
direction radially outward is in general only approximately
contained in the simulation, and if radial hyperdiffusion were
used, this direction would be damped since it is labeled with
finite k, values. In an undamped simulation, on the other
hand, modes which follow the sheared field are not preferred
and a correct treatment of perpendicular dynamics is ensured.
Note, however, that such simulations may still require large
radial resolutions to take into account all modes which gener-
ate relevant transport.

With shifted metric, the situation is inverted: At the refer-
ence position, there is no difference to the standard metric, but
when going to z # 0 the grid remains perpendicular. There-
fore, in a simulation with dissipation (which is a likely setup
for a shifted-metric simulation), the modes which point ra-
dially outward are now preferred over the damped &, # 0
modes (Fig. 17). Therefore the parallel correlation length of
structures which follow the sheared field will suffer some arti-
ficial reduction. This is particularly important for small-scale
eddies, since the k&, shifts (given by Eq. (7)) are proportional
to the £, wavenumber. A small eddy in a heavily sheared
magnetic field thus quickly connects to k, modes which are
not resolved anymore, and is damped to avoid aliasing. There-
fore, in situations with large local shear, it must be ensured via
convergence tests that the radial resolution is sufficient to rep-
resent the evolution of turbulent structures along the field lines
correctly.

V. CONCLUSIONS

In this work, we examined the properties of two different
approaches to field-aligned coordinate systems. The first ap-

e

FIG. 16: Straight metric: Perpendicular plane at a finite parallel po-
sition z # 0, where e, and e, are no longer orthogonal. Radial
hyperdiffusion acts on modes with finite k., which are tilted with
respect to e.

-
>
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FIG. 17: Shifted metric: Perpendicular plane at a finite parallel posi-
tion z # 0. e, and ey are still orthogonal, so that radial hyperdiffu-
sion now acts only on modes which do not point radially outward.

proach, which is the well-known field-aligning transforma-
tion, generates a coordinate system whose perpendicular co-
ordinates are nonorthogonal in the case of sheared magnetic
fields. The other approach is the shifted metric ansatz, which
yields a whole set of coordinate systems, one for each posi-
tion along the field line, each of which is orthogonal in the
perpendicular plane.

As was known from earlier work, turbulence simulations
employing standard field-aligned coordinates can show spuri-
ous parallel dependencies when studying highly sheared mag-
netic geometries. This effect is found to arise from a lack
of radial resolution, and can be amplified by the use of a ra-
dial hyperdiffusion term (or a dissipative numerical scheme),
which is often used to prevent aliasing effects caused by en-
ergy transfer to smaller scales than described by the grid. We
studied how the creation of artificial parallel structures can be



prevented in different numerical treatments. Since flux-tube
codes which compute the perpendicular dynamics in Fourier
space need to use periodic radial boundary conditions, they
can not implement the shifted metric approach. However,
such codes may be run without hyperdiffusion, if an appro-
priate dealiasing scheme, e.g. the three-halves rule, is used.
Simulations performed in this way do not exhibit the spurious
ballooning observed in damped simulations, provided that the
radial resolution is high enough. A lack of resolution, on the
other hand, leads to zig-zag structures in the parallel profiles
and is thus easily identifiable, a property that can be impor-
tant when there is also physical ballooning, e.g. in toroidal
geometry.

In nonlocal codes, on the other hand, the radial boundary
conditions can not be periodic, excluding the use of Fourier
schemes. Therefore, to avoid aliasing effects, one has to re-
sort to a numerical diffusion term, which can, as shown above,
lead to the creation of artificial parallel structure. Although
this situation can again be improved by increasing the ra-
dial resolution, while at the same time keeping hyperdiffu-

10

sion as low as possible (possibly using a nonlinearity scheme
with low dissipation like the Arakawa discretization), reach-
ing a converged simulation proves more expensive than with
a Fourier code.

These codes, on the other hand, offer the possibility to im-
plement the shifted metric approach, which avoids the cre-
ation of spurious parallel structures. Still, large local or global
shear will lead to strong twisting of the simulated eddies with
respect to the box, resulting again in the need to perform con-
vergence checks to ensure sufficient radial resolution.

VI. ACKNOWLEDGEMENTS

The authors would like to thank G.W. Hammett, T. Gorler,
F. Merz, and M.J. Pueschel for fruitful discussions. The com-
putations have been performed on the BOB cluster and the
Power6 computer at the Garching Computing Center.

[1] F. Wagner, G. Becker, K. Behringer, D. Campbell, A. Eber-
hagen, W. Engelhardt, G. Fussmann, O. Gehre, J. Gernhardt,
G. v. Gierke, G. Haas, M. Huang, F. Karger, M. Keilhacker,
O. Kliiber, M. Kornherr, K. Lackner, G. Lisitano, G.G. Lister,
H.M. Mayer, D. Meisel, E.R. Miiller, H. Murmann, H. Nie-
dermeyer, W. Poschenrieder, H. Rapp, H. Rohr, F. Schnei-
der, G. Siller, E. Speth, A. Stibler, K.H. Steuer, G. Venus,
O. Vollmer, Z. Yii Phys. Rev. Lett. 49, 1408 (1982)

[2] J.W. Connor, R.J. Hastie, and J.B. Taylor, Phys. Rev. Lett. 40,
396 (1978)

[3] P. Xanthopoulos and F. Jenko, Phys. Plasmas 13, 092301 (2006)

[4] S.C. Cowley, R.M. Kulsrud, R. Sudan, Phys. Fluids B 3, 2767
(1991)

[5] W.D. D’Haeseleer, W.N.G. Hitchon, J.D. Callen, J.L. Shohet,
Flux Coordinates and Magnetic Field Structure (Springer Ver-
lag, Berlin, 1991), p. 100ff.

[6] M.A. Beer, S.C. Cowley, G.W. Hammett Phys. Plasmas 2, 2687
(1995)

[7] B. Scott, Phys. Plasmas 8, 447 (2001)

[8] A. Kendl and B.D. Scott Phys. Rev. Lett. 90, 035006 (2003)

[9] M. Kotschenreuther, G. Rewoldt, and W.M. Tang,
Comp. Phys. Comm. 88, 128 (1995)

[10] W. Dorland, F. Jenko, M. Kotschenreuther, and B.N. Rogers,
Phys. Rev. Lett. 85,5579 (2000)

[11] A.G. Peeters, Y. Camenen, FJ. Casson, W.A. Hornsby,
A.P. Snodin, D. Strintzi, G. Szepesi, Comput. Phys. Commun.

180, 2650 (2009)

[12] F. Jenko, W. Dorland, M. Kotschenreuther, and B.N. Rogers,
Phys. Plasmas 7, 1904 (2000)

[13] T. Dannert and F. Jenko, Phys. Plasmas 12, 072309 (2005)

[14] F. Merz, Ph.D. thesis, University of Miinster, 2008

[15] T. Gorler, Ph.D. thesis, University of Ulm, 2009

[16] F. Merz and F. Jenko, Phys. Rev. Lett. 100, 035005 (2008)

[17] T. Gorler and F. Jenko, Phys. Rev. Lett. 100, 185002 (2008)

[18] M. Kammerer, F. Merz, and F. Jenko, Phys. Plasmas 15, 052102
(2008)

[19] M.J. Pueschel, M. Kammerer, and F. Jenko, Phys. Plasmas 15,
102310 (2008)

[20] A.M. Dimits, G. Bateman, M.A. Beer, B.I. Cohen, W. Dor-
land, G.W. Hammett, C. Kim, J.E. Kinsey, M. Kotschen-
reuther, A.H. Kritz, L.L. Lao, J. Mandrekas, W.M. Nevins,
S.E. Parker, A.J. Redd, D.E. Shumaker, R. Sydora, and J. Wei-
land, Phys. Plasmas 7, 969 (2000)

[21] P. Colella, D.T. Graves, B.J. Keen, and D. Modiano, J. Com-
put. Phys. 87, 171 (1990)

[22] S. Orszag, J. Atmos. Sci. 28, 1074 (1971)

[23] X. Lapillonne, T. Dannert, S. Brunner, A. Marinoni, S. Jolliet,
L. Villard, F. Jenko, T. Goerler, F. Merz, AIP Conf. Proc. 1069,
289 (2008)

[24] A. Arakawa, J. Comput. Phys. 1, 119 (1966)

[25] J. Candy, R.E. Waltz J. Comput. Phys. 186, 545 (2003)



