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Phase diagram of the excitonic insulator
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Abstract

Motivated by recent experiments, which give strong evidence for an excitonic insulating phase in TmSe0.45Te0.55,
we developed a scheme to quantitatively construct, for generic two-band models, the phase diagram of an excitonic
insulator. As a first application of our approach, we calculated the phase diagram for an effective mass two-band
model with long-range Coulomb interaction. The shielded potential approximation is used to derive a generalized
gap equation controlling for positive (negative) energy gaps the transition from a semi-conducting (semi-metallic)
phase to an insulating phase. Numerical results, obtained within the quasi-static approximation, show a steeple-like
phase diagram in contrast to long-standing expectations.
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The possibility of an excitonic insulator (EI) phase,
separating, below a critical temperature, a semicon-
ducting from a semi-metallic phase, has been predicted
by theorists more than three decades ago [1]. However,
experimental efforts to establish this phase in actual
materials largely failed. It is only until recently, that
detailed experimental investigations of TmSe0.45Te0.55

suggested the existence of an EI phase in this com-
pound [2,3]. The pressure dependence of the electri-
cal resistivity below 270K, for instance, strongly points
towards an emerging EI phase [2]. Further evidence
for collective behavior which may have its origin in an
EI phase comes from the linear increase of the ther-
mal conductance and diffusivity at very low tempera-
tures [3].

Under the assumption that the external pres-
sure controls the energy gap Eg, the resistivity data
have been used to construct a phase diagram for
TmSe0.45Te0.55 in the Eg-T plane [2]. Although exper-
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imental data strongly suggest that this phase diagram
is the phase diagram of an EI, to unambiguously de-
cide if this interpretation is correct requires further
theoretical examination, taking the relevant parts of
the electronic structure of the material into account.
However, even for the simplest two-band models, a
quantitative phase diagram for an EI has never been
calculated. As a first step towards a theoretical scrutiny
of the phases of the Tm[Se, Te] system it is therefore
appropriate to present here such a calculation.

In close analogy to the strong-coupling theory of su-
perconductivity, we employed a matrix propagator for-
malism. Within a two-band model, the anomalous or
off-diagonal (in the band indices i = 1, 2) self-energy
Σ12(k, iωn) describing the pairing between conduction
and valence band electrons serves as an order param-
eter: Σ12(k, iωn) 6= 0 signals the existence of the EI
phase. Our selfconsistent approximation enables us to
take a variety of physical processes into account and re-
sults in a nonlinear functional equation for Σ12(k, iωn).
Linearizing this equation in the vicinity of the phase
boundary, where Σ12(k, iωn) is small, yields a general-
ized “gap equation”. The phase boundary Tc(Eg) can
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then be found by mapping out the T-Eg range for which
the “gap equation” has nontrivial solutions.

We applied this scheme to an isotropic, effective mass
two-band model for valence and conduction band elec-
trons interacting via the long-range Coulomb potential
V0(q) = 4πe2/ε0q

2. The energy gap Eg is indirect (Γ-
X) and can be positive or negative. Within the shielded
potential approximation the generalized gap equation
for the real part of the interband self-energy reads

∆(k, ẽi)=

∫

dk′

(2π)3

[

V (k −k
′, ẽi, ẽ

′

1)B2(ẽ
′

2, ẽ
′

1)∆(k′, ẽ′1)

+V (k−k
′, ẽi, ẽ

′

2)B1(ẽ
′

1, ẽ
′

2)∆(k′, ẽ′2)
]

, (1)

where ẽi(k) = ei(k) − µi, Bi(x, y) = (x − y)/[(x −
y)2 + γi(k)2], and V (k−k′, ẽi, ẽ

′

j) = ReV r
s (k−k′, ẽi −

ẽ′j)nF (ẽ′j)−P
∫

(dω/π)1/(ẽi− ẽ′j −ω)ImV r
s (k−k′, ẽi −

ẽ′j)nB(−ω) with V r
s (q) = V0(q)/εr(q, ω) the dynami-

cally screened Coulomb potential. To derive Eq. (1) we
employed a quasi-particle approximation for the intra-
band propagators with renormalized band dispersions
and lifetimes given by ei(k) = ǫi(k)+ReΣr

ii(k, ei(k)−
µi) and γi(k) = −ImΣr

ii(k, ei(k) − µi), respectively.
The chemical potentials µi are measured from the re-
spective band extrema.

The full analysis of Eq. (1) is the subject of a forth-
coming publication [4]. Here, we focus on the quasi-
static approximation, V r

s (k−k′, ẽi−ẽ′j) ≈ V r
s (k−k′, 0),

which simplifies the gap equation enormously. Ex-
cept for very small band overlaps (very small Fermi
surfaces), we expect this approximation to work rea-
sonably well, as it does for intraband self-energies.
For equal band masses and temperature independent
screening, the quasi-static approximation reduces Eq.
(1) to

∆(u) =

∞
∫

u1

du′V (u, u′)
tanh u′

2u′
∆(u′) (2)

V (u, u′) =

√

1

4π2kBT

1

k
log

[ (k + k′)2 + κ2

(k − k′)2 + κ2

]

(3)

with k =
√

u − u1, k′ =
√

u′ − u1, u1 = Eg/4kBT, and
κ2 = (2

√

|Eg|/πkBT)θ(−Eg). To construct the phase
boundary Tc(Eg), we discretize Eq. (2) and determine,
for fixed Eg, the temperature T = Tc for which the
determinant of the coefficient matrix of the resulting
system of linear equations vanishes. For Eg < 0 this
approach can be directly applied, whereas for Eg >
0, the logarithmic singularity of the kernel has to be
removed first [4].

The phase boundary Tc(Eg) is presented in Fig. 1,
measuring energy and temperatures in units of the
exciton Rydberg R0. Above T1 ≈ 0.45, the EI phase is
unstable. Below T1, we find a steeple-like phase bound-
ary which strongly discriminates between Eg > 0 and
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Fig. 1. Phase diagram for an excitonic insulator with equal

band masses.

Eg < 0. For Eg > 0, Tc(Eg) smoothly decreases to
zero at Eg = 1, the critical band gap, above which the
EI phase cannot exist. For Eg < 0, in contrast, Tc(Eg)
initially drops extremely fast, within a few percent of
R0, to a second critical temperature T2 ≈ 0.04. Be-
low T2 the EI phase is stable with an almost constant
Tc(|Eg|), which, however, for larger band overlaps
slowly decreases (see inset). The steeple-like shape
of the phase diagram reflects the different phases
from which the EI is approached: semi-conducting
for Eg > 0 and semi-metallic for Eg < 0. Entering
the EI phase from the semi-conductor side leads to
formation of strongly bound excitons. On the other
hand, when the EI phase is approached from the
semi-metal, exciton formation is strongly suppressed
due to the free carrier’s screening of the Coulomb po-
tential. In that case, loosly bound Cooper-type pairs
emerge, resulting in a rather fragile EI phase. The
crossover from excitons to Cooper-type pairs occurs
at Eg ≈ −0.3, the band overlap, where the screening
length becomes roughly equal to the exciton radius.
For |Eg| ≪ 4kBT, the critical temperature is expo-
nentially small and approximately given by kBTc ≈
(γ|Eg|/π) exp (−π

√

|Eg|/ln(1 + π
√

|Eg|/2)), with γ =
exp (0.577) (dashed line in the inset). Anisotropies
in the band structure and other pair breaking effects
would easily destroy this part of the phase diagram.
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