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By making use of the quantization rule of Raab and Friedrich �Phys. Rev. A 78, 022707 �2008��, we derive
simple and accurate formulae for the number of rotational states supported by a weakly bound vibrational level
of a diatomic molecule and the rotational constants of any such levels up to the threshold, and provide a
criterion for determining whether a given weakly bound vibrational level is rotationless. The results depend
solely on the long-range part of the molecular potential and are applicable to halo molecules.
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Recent experimental studies of ultracold molecules pro-
duced by photoassociation and magnetoassociation �1–3� and
of other halo molecules �4� rekindled an interest in the vibra-
tional and rotational structure of these weakly bound species.
In 1970, LeRoy and Bernstein �5� and—independently—
Stwalley �6� derived a WKB “near dissociation equation,”
which related the energies of the vibrational levels close to
threshold for dissociation to the long-range behavior of the
potential. However, the WKB approximation is invalid for
near-threshold molecular states, since—at threshold—the an-
ticlassical limit is reached �7�. Stimulated especially by the
rapid expansion of cold-molecule research, considerable ef-
fort has been invested in correcting the WKB approximation
to allow for the treatment of weakly bound vibrational states
�8–15�.

In 1972, LeRoy �16� applied the WKB approximation to
the rotational structure of weakly bound molecules, which
turned out to be even less accurate than for the vibrational
levels. LeRoy concluded that “only upper and lower bounds
could be given rather than accurate predicted values for un-
observed �rotational constants� near �the dissociation limit�.”
However, the rotational structure of weakly bound species is
of considerable interest, which is fueled mainly by the cur-
rent work on magnetoassociation of ultracold atoms via
higher-order Feshbach resonances �2�, creation of ultracold
molecules in highly excited rotational states �17�, and prob-
ing of halo molecules with nonresonant light �18�.

Herein, we derive simple and accurate formulae for the
number of rotational states supported by a weakly bound
vibrational level of a diatomic molecule and the rotational
constants of any such levels up to the threshold and provide
a criterion for determining whether a given weakly bound
vibrational level is rotationless.

We first introduce the quantization rule of Raab and
Friedrich �14,15� for rotationless states of diatomic mol-
ecules bound by a radial potential which behaves asymptoti-
cally as

V�r� �
r→�

−
Cn

rn with n � 2 �1�

and thus is a homogeneous function of degree −n. Our nota-
tion is tailored for molecules and therefore somewhat devi-
ates from that of Refs. �14,15�. The quantization rule is given
by

F�Eb� = vth − v , �2�

where F�Eb� is the quantization function, v is the �integral�
vibrational quantum number, and vth is the nonintegral quan-
tum number that would pertain to a level exactly at thresh-
old. The binding energy Eb=D−Ev, with D the dissociation
energy and Ev the energy of the vibrational level v, is thus
positive, Eb�0. The quantization function F�Eb� was re-
cently derived by Raab and Friedrich for an arbitrary binding
energy Eb �14,15�. For a homogeneous potential, it is given
by

F�Eb� = Fth��� + Fip����Fcr��� + FWKB���� , �3�

where the individual terms—herein introduced for
convenience—comprise a near-threshold dependence,

Fth��� =
2b� − �p��2

2��1 + �G��4�
, �4�

an “interpolation” term, which gives a smooth transition be-
tween low-� and high-� behavior,

Fip��� =
�G��4

1 + �G��4 , �5�

a term which corrects the reflection phase due to the poten-
tial of Eq. �1�,

Fcr��� = −
1

2�n − 2�
+

u

2��1−2/n , �6�

and a pure WKB contribution,

FWKB��� =
�1−2/n

���n − 2�

�� 1
2 + 1

n�
��1 + 1

n� , �7�

cf. Eq. �15� of Ref. �14�. In Eqs. �3�–�7�, the dimensionless
wave number � is defined by

� � k�Cn2m

�2 	1/�n−2�

= Eb
1/2Cn

1/�n−2��2m

�2 	n/�2�n−2��

, �8�

with k=�2mEb /� the wave number and m the diatomic’s
reduced mass. The parameters b, p, and u in Eq. �3� are
defined by

b � sin��y�y2y ��1 − y�
��1 + y�

, �9�
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p2 �
2�y4y+1

�� 1
2 + y�

��1 − y�
��1 + y�
22y�� 1

2 + 2y�
��1 + 3y�

−
�

���1 + y��2�� 1
2 − y�� , �10�

u � ��
�n + 1�

12n

�� 1
2 − 1

n�
��1 − 1

n� , �11�

with y�1 / �n−2� �cf. Eqs. �10� and �12� of Ref. �14��. Note
that in order to avoid confusion with the rotational constant
�defined below�, we changed the symbol B used in Ref. �14�
to G. The adjustable-length parameter G, which connects the
low-� and high-� behavior, was obtained in Ref. �14� for
n=4–7 and is given below.

We now turn to the case of a rotating molecule. Molecular
rotation adds a repulsive centrifugal term to the attractive
inverse-power potential, which gives rise to an effective po-
tential

U�r� = −
Cn

rn +
�2

2m

J�J + 1�
r2 , �12�

with J the rotational angular-momentum quantum number.
For J�0, the centrifugal term pushes the vibrational mani-
fold due to V�r� upward, thereby reducing the binding energy
of the vibrational levels. For each vibrational level, there is a
critical value J� of the angular momentum that pushes the
level up to threshold, thereby causing its binding energy to
vanish. Hence an angular momentum J in excess of
J�, J�J�, dissociates the molecule. The effect of the cen-
trifugal term leading to dissociation is shown schematically
in Fig. 1.

By making use of Eqs. �202�, �204�, and �205� of Ref. �7�,
we can express the threshold quantum number vth for the
effective potential �12�, as a function of J,

vth�J� =
1

��
�

rin�0�

r̃

p0�r�dr +
2�2m�1/2

���n − 2�
Cn

1/2

r̃�n−2�/2 −
�in�0�

2�
−

1

4

−
1

n − 2
�J�J + 1� +

1

4
, �13�

where rin�0� is the inner turning point, p0�r�=�2mVeff�r� is
the momentum, and �in�0� is the inner reflection phase, all at
threshold �zero energy�. The distance r̃ defining the upper
limit of the action integral must lie within a region where the
WKB approximation is sufficiently accurate and the potential
�12� is dominated by the −Cn /rn term. In such case, the sum
of the first two terms of Eq. �13� is independent of the choice
of r̃. Since the dependence of rin�0� and �in�0� on the rota-
tional quantum number is weak enough to be neglected, the
dependence of vth on J is given solely by the last term. We
note that vth�J� maintains the form given by Eq. �13� for any
positive J, unlike the quantization function and other near-
threshold properties of potential �12� �see Table 5 of Ref. �7�
and Ref. �19��. We now use Eq. �13� to derive a closed-form
expression for J� �Eq. �18��.

In the limiting case, when the molecule is transferred
from a rotationless state J=0 to a state with a critical angular
momentum J=J�, the threshold quantum number vth�0� de-
creases by

	vth�J�� = vth�0� − vth�J�� =
1

n − 2

�J��J� + 1� +

1

4
−

1

2
� .

�14�

Since, at the same time, for a critical angular momentum J�,
the vibrational state v is pushed up to threshold, its quantum
number coincides with the threshold quantum number,

vth�J�� = v , �15�

or

vth�0� − vth�J�� = vth�0� − v �16�

�see also Fig. 1�. We thus obtain that the change of the
threshold quantum number 	vth�J��=vth�0�−v is nothing
else than the quantization function �3� for the rotationless
potential V�r� �Eq. �1��,

	vth�J�� = F�Eb� . �17�

By combining Eqs. �14� and �17� we obtain a closed-form
expression for J�,

J� = F�Eb��n − 2� . �18�

This simple formula renders J� quite accurately, as exempli-
fied in Table I. For instance, for the three last vibrational
states of 85Rb2, Eq. �18� yields values of J� which are in a
very good agreement with the essentially exact values Jexact

�

obtained by solving the Schrödinger equation with the
potential-energy curves taken from Refs. �20,21�.

We note that Gao �22� used the angular-momentum-
insensitive quantum-defect theory to obtain the number of
rotational states which are supported by weakly bound vibra-
tional levels. The theory, which—in general—requires evalu-
ating the quantum defect, gives the upper bound on the num-

r

V
(r
)

ef
f

J=0

J> J*
v(J= J*) = v (J=0)th

v(J=0)

v(J> J*)

FIG. 1. �Color online� A schematic illustrating the role of the
centrifugal term in the effective potential �12�; the energy splittings
have been exaggerated. Shown is the position of a rotationless vi-
brational level v�J=0� �dashed line�, as well as the position of the
same level when pushed up by the centrifugal term to threshold
v�J=J��=vth�J=0� �full line at threshold�. When the rotational an-
gular momentum J exceeds the critical value J�, the centrifugal
term pushes the vibrational level above threshold v�J�J�� �full line
above threshold�, thus leading to dissociation.
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ber of rotational states supported by the least-bound
vibrational level Jmax=n−2. In our work, Jmax is simply
given by the integer part of J�, Jmax=Int�J��. Hence Gao’s
result is seen to be a limiting case of Eq. �18� for vth−v=1.

Neglecting any coupling of the molecular rotation, we can
estimate the rotational constant B from the rotational energy
BJ��J�+1� required to promote the vibrational level bound
by Eb to threshold

B =
Eb

J��J� + 1�
. �19�

The values of the rotational constant B obtained from Eq.
�19� for 85Rb2 are listed in Table I together with the essen-
tially exact values Bexact. The latter were calculated from

Bexact = 
v�
�2

2mr2 �v� , �20�

with the vibrational wave functions obtained from a numeri-
cal solution of the Schrödinger equation for the potential of
Refs. �20,21�.

From Table I one can see that for the least-bound state,
with v=123, whose binding energy is only 8
10−6 cm−1,
Eq. �19� yields a value of B which is by about 25% smaller
than the exact one. However, for the two lower vibrational
levels v=121 and v=122, each of which supports several
rotational states, Eq. �19� gives a value of B which is less
than 10% off the exact one.

Table I also lists values of J� and B obtained from the
LeRoy-Bernstein �LB� and the improved LeRoy-Bernstein
�iLB� approximations. The LB approximation results when,
in the quantization function of Eq. �3�, Fth��� and Fcr��� are
neglected and Fip��� is set to �1. What remains is the WKB
term which gives the semiclassical LB quantization condi-
tion �5�. The iLB approximation comprises Fcr��� and
FWKB��� but neglects Fth��� and Fip���, thereby accounting
for short-range deviations of the true potential from V�r� of

Eq. �1� �see Refs. �13,14��. The assumptions about the vari-
ous terms of Eq. �3� inherent to the approximations are listed
in Table II.

From Table I, we see that in the case of the most weakly
bound state, v=123, both the LB and iLB approximations
fail badly. The reason is the omission of the Fth��� term
which actually determines the near-threshold behavior of
F�Eb� �see Table II�. As a matter of fact, if for v=123 only
the Fth��� term were nonzero, we would obtain Jth

� =0.21 and
Bth=0.31. On the other hand, in the case of the v=121 and
v=122 levels, which are relatively far from threshold, ne-
glecting the Fth��� term is better justified. Indeed, the results
of the iLB approximation are in good agreement with the
accurate ones. However, since the v=121 and v=122 levels
are still well within the anticlassical region of binding ener-
gies, the purely semiclassical LB approximation remains in-
accurate.

In the context of the present work, one can easily answer
the question as to which of the weakly bound vibrational
levels are rotationless �see also Ref. �18��. Indeed, the value
of the binding energy Eb required in order for the first rota-
tional state to be supported by the potential is given by Eq.
�18� with J�=1. By combining this requirement with Eqs.
�3�–�8�, we obtain at once a criterion for a vibrational level to
be rotationless, namely, when its binding energy satisfies the
condition

Eb � dn� �2

mCn
2/n	n/�n−2�

. �21�

The parameter dn for an inverse-power potential �1� de-
pends solely on the power n. It can be obtained by solving
Eq. �18� with J�=1 numerically. The values of dn are listed in
Table III for n=4–7. We verified the validity of the criterion
�21� for the case of n=6 by solving the Schrödinger equation
for the Lennard-Jones �12,6� potential and found that this
agreed with the value of d6 given in Table III within 1%.

TABLE I. Comparison of the critical angular momenta J� and rotational constants B obtained for the three least-bound states of the 85Rb2

dimer in different approximations; Eb and B are given in 10−4 cm−1. See also Table II and text.

v Eb J� Jexact
� JiLB

� JLB
� B Bexact BiLB BLB

123 0.08 0.22 0.22 0.43 0.44 0.30 0.41 0.13 0.13

122 97.9 4.25 4.25 4.25 4.71 4.39 4.73 4.39 3.65

121 630.6 8.28 8.48 8.28 8.76 8.21 8.68 8.21 7.38

TABLE II. Terms of the quantization function of Raab and
Friedrich �RF� �Eq. �3�� inherent to the LB and the iLB approxima-
tions. Also shown are the ranges of the reduced wave number �
wherein the approximations apply.

RF iLB LB

Fth=0 Fth=0

All terms Fip=1 Fip=1

Fcr=0

All � ��1 ��1

TABLE III. Values of the parameter dn appearing in the criterion
�21�, which determines whether a vibrational level is rotationless.
We also present the values from Ref. �14� of the adjustable-length
parameter G.

n 4 5 6 7

dn 2.8974 1.9738 1.6014 1.3961

dn
iLB 2.8833 1.9289 1.5233 1.2835

dn
LB 0.73857 0.66932 0.63308 0.61028

G 2.3528 1.3035 0.93323 0.73446
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Also, we found that Eq. �21� provides correct predictions of
the rotational structure of the last bound states of the Rb2 and
KRb dimers, which we recently investigated �18� using the
potential curves of Refs. �20–23�.

Within the LB and iLB approximations, the parameter dn
can be evaluated analytically,

dn
LB = 
��

2

��1 + 1
n�

�� 1
2 + 1

n��2n/�n−2�

�22�

dn
iLB = � 3

4
��

2

��1 + 1
n�

�� 1
2 + 1

n�



1 +�1 − u
8�n − 2�

9�3/2
�� 1

2 + 1
n�

��1 + 1
n���2n/�n−2�

.

�23�

The values of dn
LB and dn

iLB for different n are listed in Table
III.

One can see that the dn
iLB parameters come close to the

accurate ones, especially for small n, whereas the dn
LB param-

eters are quite off. This is because at the binding energies
large enough for the molecule to support rotational states, the
wave number ��1, and thus neither �
1 �near threshold�
nor ��1 �WKB� limits apply �see also Table II�.

In summary, we undertook a study of the rotational struc-
ture of weakly bound molecules, in which we relied on the
quantization rule of Raab and Friedrich �14,15� valid from
the classical to the “anticlassical” limit. We found analytic
expressions for the critical value of the angular momentum
that leads to rotational predissociation; the number of rota-
tional states supported by a given vibrational level; the rota-
tional constants of weakly bound molecules in a given vibra-
tional state; and a criterion for rotationlessness of a
vibrational level. All of the above was found to depend just
on the long-range potential and to check well against essen-
tially exact calculations done by numerically solving
Schrödinger’s equation for the very well-known potentials of
Rb2 and KRb.

We are grateful to Gerard Meijer for encouragement and
support and to Patrick Raab for discussions.
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