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B. Solitonic sectors - Non-existence of normalizable ground-states

1. Introduction

The study of noncritical string theories has recently seen a renaissance, initiated by the
appearance of [[]-f]. One of the reasons for the renewed interest in these string theoretical
toy models is the observation that the dualities between noncritical string theories and
matrix models can be seen as examples for open-closed dualities in string theory. In
particular it was proposed in [, P that the free fermionic field theory conjectured to be
dual to the ¢ = 1 string theory is nothing but the open string theory on a “gas” of unstable
DO branes. This was recently further substantiated in [f]. Another example in which the
mechanism of open-closed dualities is exhibited in a particularly explicit way is the duality
between the Kontsevich matrix model and pure topological gravity [f].

Another source of recent interest in these toy models was the realization that non-
perturbatively stable definitions of the relevant theories exist [, [i], after all [§]. These
developments open the possibility to study certain time-dependent phenomena such as
D-brane decay in an exactly soluble framework. One may therefore hope to improve our
understanding of certain foundational aspects of string theory for which time-dependent
phenomena represent a challenge. One may in particular hope to learn how to describe the
final state of a decaying D-brane, and to what extend one may describe the process with
the help of the usual perturbative approach to string theory.

Our initial aim was therefore to use the duality between noncritical string theories and
matrix models in order to find an exact description for the decay of unstable DO-branes
in the two-dimensional string theory. It then becomes possible to learn about scope and
limitations of the perturbative approach to the same problem.

A particularly interesting feature of the exact description for the D-brane decay in
two-dimensional string theory that we are about to present is the fact that it exhibits an
example of open-closed duality in a very explicit way: Insertion of decaying D0-branes can
be traded for a shift of the closed string background. It is furthermore possible to show
that this shift of the background is perturbatively generated by summing over the disc
insertions which represent the emission of closed strings from the decaying brane. This
fits well into the picture proposed in [, f]: If the ¢ = 1 background is generated by the
insertion of a gas unstable DO branes, it should be possible to trade addition of further
probe D-branes for a shift of the closed string background.

On the way we will need to clarify certain infrared issues. It will be shown that the
insertion of D-branes creates “solitonic” superselection sectors. D-branes are solitons after
all. Excitations in these sectors can not be represented by normalizable vectors in the
sector which describes pure closed string excitations. Nevertheless there is a clear sense
in which these sectors are equivalent to the sector with zero D-branes: These sectors can
not be distinguished by measuring any local observable like the expectation values of the



tachyon field. They are distinguished by the values of global observables, though. This
limits the extend to which a narrow-minded version of open-closed duality is true: The
trade of D-branes for a shift of the closed string background is not perfect, it works to
the extend to which we may regard the different sectors as physically equivalent. For
some questions it may nevertheless be important to keep in mind that the insertion of
DO0-branes does not generate a normalizable deformation of the background, similar to the
phenomenon emphasized in [f].

Previous work on similar questions is contained in [[L0, [[d, [L1]. The present paper will
describe a new approach to this problem which allows us to go somewhat further and to
clarify a number of aspects which have not yet been discussed in the literature. In order
to simplify the presentation we have chosen to focus of the case of the bosonic ¢ = 1 string
theory. However, a good part of our formalism carries over with only small changes to the
case of type OB ¢ = 1 string theory.

2. The ¢ =1 string as free fermionic field theory

We are going to revisit some aspects of the conjectured duality between the ¢ = 1 string
theory and free fermionic field theory, see [[J] for a review. One of our main aims is to
introduce a formalism which will be particularly well-suited for our later discussions of D-
branes within the free fermionic field theory. This will also allow us to present a simplified
representation for the S-matrix of bosonic excitations [[[4, [[§] within the free fermionic field
theory.

The presentation will be brief, the necessary technical details are contained in the

appendix A.

2.1 ¢ =1 string

The ¢ = 1 string theory is a two-dimensional string background with coordinates (X, ¢) €
R?, where X represents time. This background is characterized by the following expecta-

tion values for the target-space metric G,,,,, the dilaton ® and the tachyon field T

nz
Cuv =Ny =0, T =pe™. (2.1)

The worldsheet-description of this theory is characterized by the world-sheet action
9 1 1 2¢
S=[dz| — 4—3+X03_X0 + —04+00_¢ — (26 + Inmp)e*” | + (ghosts) . (2.2)
T T

The string theory has one propagating space-time field, the tachyon 7" . The vertex
operators which create the modes of this field with definite space-time energy w will be
denoted as T, (w), where « = — creates the asymptotic in-states, whereas ¢« = + corresponds

to the asymptotic out-states,

Ty(w) = e wXo 20Fiw)o, (2.3)



Standard CFT methods will allow us to define arbitrary string scattering amplitudes in an

asymptotic expansion in powers of the string coupling constant g,
<Tout(w1) cee Tout(wn) zqin((‘ull) R ﬂn(w;n) >C=1 =

© (2.4)
=Y g Toe(wr) - Do (wn) T ) - Tialwhy) )i
h=0

The amplitudes (--- )%, associated to Riemann surfaces with genus h are defined in the
usual way by integrating CFT-correlation functions over the moduli space of Riemann
surfaces.

2.2 Free fermionic field theory

Let us consider the quantum field theory of free fermions in the inverted harmonic oscillator
potential. The one-particle hamiltonian will be

a2 1
~ T Z)\Q. (2.5)

There exists a complete set of real eigenfunctions

{Fp(w\);weR, pe{+,-}}

such that the labels (w,p) of F,(wl|.) correspond to the eigenvalues of h and the parity
operator P respectively.

For each pair (w,p) of eigenvalues for the hamiltonian h and parity P, we introduce a
pair of fermionic creation- and annihilation operators (c;r,(w), ¢p(w)) and require that they
satisfy the canonical anticommutation relations

{ c l(w) , C;r)z (W) } = Op,p,0(w - ). (2.6)

We shall also use the vector notation

c(w) = <c+(W)>, F(w|\) = @*EZ:?;) A-B=A,B, +A B_.

The fermionic Fock-vacuum |u)) is defined by the conditions

c (w)|p) =0 for w>—p, 2.7)
clw)|p) = 0 for w< —p. '

The Hilbert space H of the theory is then defined as the completion of the dense subspace
spanned by vectors of the form

clfu] - clfi] cgm] -~ c'ga] [ 1),

where

c[f] = /R do f(w) - c(w), clg] = /R dw g(w) - ¢ (),



with f(w), g(w) smooth and rapidly decaying at +co. The resulting Hilbert space decom-

poses into sectors with a definite fermion number:

H = Hn. (2.8)

nez

The H,, are eigenspaces of the fermion number operator

N = /oodwcT(w)-c (w)+/“dwc (@) - cl(w). (2.9)

—u — 0

The second-quantized fermionic field operators are then defined as

V(N t) = /dw et R(WIN) ¢ (W),
(2.10)
AIOWARES /dw et cl(w) - F(wl\) .

The dynamics of the theory is generated by the hamiltonian

He (oot (-2 1e)y (2.11)
N N2 4 ' ’
As usual in fermionic field theories one may construct observables as bilinear expres-
sions in the fermionic fields. One may e.g. consider the collective field

O t) = T WA 1) = (ulTTOL)T (A 1)) (2.12)

The dynamics generated by the hamiltonian H becomes rather complicated in terms of
the field x. Consideration of observables like (2.12) will therefore only be useful in certain

limiting cases.

2.3 In- and Out-fields

A crucial feature of the inverted harmonic oscillator potential is that the asymptotic be-
havior of the wave-function ¥ (\, t) for late/early times can be represented in a very simple
way: ’

YO e (2m) TeiN €T E v (us), (2.13)

where uy = AeTt. A proof of this claim is given in appendix [A.3.This means that asymp-
totically for ¢ — oo the time evolution becomes represented by scale transformations. In
terms of the coordinate z = In |A| one finds free relativistic motion.

The asymptotic wave-functions xi(ug) can be calculated from the wave function
P(A) = (A, 0) by means of the integral transformations

a(us) = (Megh)(uy) = /R IN Ky (1| \) (), (2.14)

with kernels K4 (u4|\) given by the explicit formulae

. k3

Ky (ug|A) = e TendmtiN K (y|\) = K% (u_|N). (2.15)



These observations lead to a natural definition of the in- and out-fields. Let us consider

the asymptotics for ¢ — +oo of the fermionic operators

Wip|t) = /d)\ D) T ) = /dA DO ). (2.16)
It is then natural to define the in- and out fields ‘Ifl(u) by the asymptotic relation
du
Vilt) |y W0 = [ 5 va(e) Eh), (217)

where x4 is defined in (R.13). It is shown in the appendix [A.d that [+ |¢) indeed has
asymptotics of the required form (R.17), with \Pl(ui) being related to ¥T(\) by the integral
transformations

l(uy) = / d\ K% (ug |\ (2.18)
R

The transformation between in- and the out-field becomes particularly simple,

U (u,) = \/% /R du_ e (y ). (2.19)

It is useful to translate this into the energy representation. The observation that the
transformation (R.14)) maps the single-particle hamiltonian h into the generator for scale
transformations of the coordinates u4 makes it easy to find the expansion into energy
eigenfunctions:

Ul (uy) = /R \;% Jus [F73 (O(—us)d i (@) + O (ug)diF (w)) (2.20)

where ©(u) is the usual step function. The operators d\”(w) and di*(w) create fermions
which are asymptotically located either on the right or left of the potential V = —i)\Q,
respectively. It will be convenient to regard dLL(w) and le(w) as the two components of
a vector dl (w). The relation between the oscillators dl(w) and cf(w) takes the form

dlw)=Mlw) '), diw) =Riw) d (W), (2.21)

where the matrices My represent the unitary operators My defined in (B.14) in the energy
representation, and

Re) = (M @) = (50 1)), (2.22)

0(w) p(w)
with matrix elements p(w), 6(w) having the following explicit expressions:
1 x
p(w) = e 2D (3 — iw), O(w) = —ie™ p(w). (2.23)

Ver

Note that R is the matrix which represents the reflection of a single fermion in the potential
V= _%)\2‘ The definition of in- and out-fields leads straightforwardly to the definition of
the unitary S-operator, which may be represented as

S=exp(— [ dwd (W) -logR(w)-d_(w)]. (2.24)
-/ )



Remark: the formalism presented above is clearly closely related to the light cone
formalism of [lf]. What seems to be new is our proof (appendix A) of the equivalence
between this formalism and the conventional definition of in- and out fields in terms of
time-asymptotics. This explains the observation in [l that the Fourier transformation
([2.19) correctly describes the scattering of free fermions in the inverted harmonic oscillator
potential.

2.4 Scattering of the bosonic excitations

However, we are also interested in the bosonic fields S (x) which are defined by bosonizing
the in- and out fields \I/It as

dw ,
U045 (us) = Nor Jus [ (B(—us)al (W) + O(uz)alf () ,
RVET (2.25)
al(w) = /Rdw' diT(w') df (w+ '), se{+,—-}={R,L}
where J4 = %. The operators a’ (w) satisfy the following commutation relations,
[a%(w) , 8% (W)] = wd d(w + ). (2.26)

With the help of the oscillators af(w), ¢ € {4+, —} we may construct the states

a[fu] @ [fi]atlgnl o) ] ), allh] = /dw h(w)a; (w) (2.27)

which generate subspaces Hgfo of H. It is important to note, however, that the vectors

(2.27) do not even exhaust the subspace H, C H of fermion number zero. The operator

Ko = [ do (@) - 5 @) @)+
—H
» (2.28)
4 [ (@@ ) - die)s ).

oo
measures the difference between the numbers of fermions which asymptotically end up to
the right and left sides of the potential respectively. This means in particular that H,
decomposes into “k-sectors” [[[7] H,. 1 as follows:

Ho = @ HE,. (2.29)
keZ

In order to generate all of H, from | u)) we also need to consider operators like
Bi(w) = /dw' (K" (wlw) AT (W) d (w + ')+
R (2.30)
+ K (wlw') di (W) d (w + ') .

The S-operator does not map the sector 'Hionk to Hgf. In order to see this, let us notice

that inserting (R.21)) into (R.25) yields a relation of the form

850t (@) = (8304 () Jojn + (8501 (@) Join (2.31)



where [a3

The term [agut (w)]o in
transmission dominate the fermionic scattering of particle-hole pairs.

(w)]oin Preserves the sectors Hoka whereas [ad(w) ]éin is of the form (R.3(]).

is dominant for |w| < i, in which case either pure reflection or pure

The perturbative (in u~1) part of the bosonic S-matrix is encoded in

R(mHn)(gl’ e >£n|£/1’ e ,Q;n) =

/ ’

= (ulad (). al(wn) anl (~wi) ..l (—wp) [ 1) (2.32)

where we have abbreviated w = (w, s). These matrix elements are unambiguously defined
by (£:33), (P-26) together with a$, (w)| ) = 0 for w > 0. A diagrammatic formalism for
the explicit evaluation of the S-matrix elements has been developed in [[[J]. It will be useful
for us to observe that the diagonal' part of the scattering of the bosonic excitations can
alternatively be encoded in the following operator relations:

[agut(w)]oin =
dwl dwg dwy,
=) oo = (2.33)
Wn
s’=L,R n=1_" W 1
X R(fl/)(w |wi,. . wn) afr/l(wl) e afr/l(wn) .

The proof of formula (2.33) together with the explicit expressions for the coefficient func-
tions Rsfll are given in appendix [A.4. The amplitude R"™! that one can read off directly
from (@) is very similar to the corresponding result of [2(] for type OA two-dimensional
string theory.

It is also shown in appendix [A4 that the leading asymptotics of this relation for
W — 00, w <K W is given by

(o) logn = Son 1 [ don [dwge [ donx
e - wa-1 (2.34)
I'(1 4 iw)
T S-S w, S ().
['(2—n+iw) (= 2y )y (wn) ey (n)

This is a trivial generalization of the formula derived in [[[§, [[J].

2.5 Duality conjecture

From now on let us restrict attention to the excitations supported on the right of the
maximum of the inverted harmonic oscillator potential. Ignoring the other side will be a
good approximation as long as all energies are well below the top of the potential. The
conjectured duality between ¢ = 1 string theory and free fermionic field theory can be
formulated most simply in terms of rescaled bosonic oscillators

bi(w) = eWak (W), (2.35)

lw.r.t. the decomposition into k-sectors (R.29)



provided the phase ¢ is chosen as

piotw) — L(Hiw) (2.36)
One manifestation of the conjectured duality between the ¢ = 1 string theory and the free
fermionic field theory may then be formulated as the validity of

({1t [ Dows (1) -+ bowe(wn) b (=) - i (=) [ 1) =g, (2.37)
<o { Tous(w1) .. T (wy) T (w)) - .. Tiu(wry) >C:1 ,

where =, means equality of asymptotic expansions in g5 = p~!. Note that the matrix
elements on the left of (.37) by themselves do not define a unitary S-matrix, but the

1
deviation from unitarity is nonperturbative (o< e 9 ), as follows from (P.23).

3. DO-branes versus fermions - leading order

Given the duality between the ¢ = 1 noncritical string theory and the free fermionic
field theory it is natural to ask how to interpret the fermionic fields within the ¢ = 1
noncritical string theory. A proposal for how to answer this question emerged from [}, P
The excitations created by the fermionic fields can be interpreted as the unstable DO-branes
of the ¢ = 1 noncritical string theory. In the following section we will review the existing
evidence for this identification.

3.1 DO-branes in type 0B ¢ =1 string theory

The ¢ = 1 noncritical string theory contains unstable DO-branes [P]]. These DO-branes are
localized in the strong coupling region ¢ = oco. In order to describe their decay one may
consider the boundary interaction

Sint = K/ dt cosh X . (3.1)
(o)

A construction for the corresponding boundary states was first proposed in [PJ]. These
boundary states have to be tensored with the boundary states for Liouville theory which
describe the DO-branes [R1]. In this way one arrives at the following result for the leading
order closed string emission amplitudes:

@

<Tout(w) | B, >HH — eié(w)e—iw logsinﬂnlu—i 7, (32)

The notation | By )y reminds of the fact [ that the definition of the boundary state
associated to the boundary interaction (B.1]) depends on a choice of integration contour,
| Bx )un being the boundary state associated to the so-called Hartle-Hawking contour [R3].



3.2 Evidence for the correspondence between D0O-branes and fermions

The authors of [[f] propose that the state |\, )) which describes a fermion with a well-
defined initial localization at A\, may - at least to leading order in the semiclassical limit -
be represented in the following bosonized form:

[Xo)) =:exp (iSou(Ao)) [1) - (3-3)
We will later discuss the applicability of the approximation
[ Ao ) =~ \Pim(}‘o) | 1)) (3.4)

underlying the proposal (B.J). Adopting (B.J) as a working hypothesis for the moment,
one seems to find straightforwardly that

(1] Do (@) [ Ao ) = P)emiwlonrs, (3.5)

This matches the result of the worldsheet-computation provided that the initial location
Ao of the fermion is related to the parameter k of the unstable ZZ-brane via

Ao = /usinTk. (3.6)

The precise match of (B.f) with the worldsheet-computation for the closed string emission
from a decaying ZZ-brane represents evidence for the identification of the single fermion
state with the ZZ-brane.

3.2.1 The UV problem

So far we have been considering the state | A, )) which corresponds to a definite DO brane
parameter x via (B.6). However, this state is clearly not normalizable. It was pointed
out in [ that the resulting divergence of energy expecation values accounts for the corre-
sponding singular behavior in the expectation values of the energy emitted from a decaying
D-brane as discussed in PJ]. The natural way to resolve this problem is to average over
the initial localization with a given wave-function (),

o) = / o 9(30) | X)) (3.7)

Indeed, the norm of the resulting state will be bounded by the norm of the wave-function

p, making it obvious that the ultraviolet problem is resolved.

3.2.2 The IR problem

On the other hand one must observe that the overlaps on the left hand sides of (B.5) are
identically zero since fermion number is conserved in the free fermionic field theory. To be
more explicit, let us note that W), (Ao)|u) € H,, whereas ag,(w)| 1) € Ho. This implies
that the overlaps in (B.5) are indeed identically zero. There is no contradiction with (B.9)
since the bosonization formula (B=]) has serious infrared problems?.

The aim of the next section is to discuss how to resolve this puzzle and how to reconcile
the essence of the proposal of [ with the fermion number conservation in the free fermionic
field theory. More precisely, we will propose answers to the following two questions:

2In Mandelstam’s work one was dealing with a massive theory!

,10,



> What are reasonable nonvanishing analogs of the amplitudes (B.5)?

> What is the proper string-theoretic interpretation of these amplitudes? Can they be
interpreted in terms of ZZ-brane decay?

4. Fermions vs. solitons

We are now going to explain how to resolve the IR problem that was pointed out at the
end of previous section.

4.1 Solitonic sectors

To begin with, let us interpret the sectors H, from the bosonic perspective. To simplify
the notation let us temporarily restrict attention to the in-fields ¥(x) = e%\I’,(ex) and
S(z) = S_(e").

An important point to observe is the fact that the different sectors can only be dis-
tinguished with the help of global observables. States |¢)), in H; can be created from |u))
via

o)y = U] ), Tle] = /Rdxw(w)‘lﬁ(ﬁv)- (4.1)

We shall analyze the physical content of the states |¢)), from the bosonic perspective - the
observables used to measure properties of the states |¢)), will, as usual, be constructed out
of the bosonic oscillators a(w). It is not terribly difficult to show that

(025(2) ) = ([ 0:5(x) [¢)), > 0 VzeR. (4.2)

This means that the states |p)), are solitonic in the classical sense: They describe kinks
of the bosonic field S. The states |p)); differ in their global properties from any state
|o)o € Ho. The latter satisfy

+A
lim dz o(¢]0:S(x) [¢))o = 0. (4.3)

A—oo J_p

This should be compared to the expectation value taken in the state |p,)),

+A
lim dx 1«90 ’ axs(x) ’ 90»1 =1L (4'4)

A—oo J_ A
The difference between the asymptotic values of S measures the number of solitons =
fermions.

Nevertheless, as long as one uses only local observables to measure properties of the
states |¢)n, n = 0,1 one will not be able to determine which sector H,, a given state |p))
belongs to. It is impossible to measure the soliton charge by using local observables like
OS[f] = [z dx f(2)0,S(x) for f(x) nonzero only in a compact subset of R. This point can
be understood quite clearly by looking back at ([.J). Imagine we are measuring

(0S[f1)e = 1(@|OS[f]1¥ )

— 11 —



for f > 0 having support in small intervals. If |p)) € H, we will find a positive result
for whatever interval we have chosen. After having performed such measurements for a
large number of different intervals one may feel inclined to say that the probability that
the state under consideration is solitonic is rather high. Nevertheless one can never be sure
that one will always find a positive result if one was able to continue the measurements ad
infinitum.

One may therefore regard the sectors Hp and H; as physically equivalent as long
as only measurements of local observables are concerned. However, mathematically the
sectors are not equivalent at all. This is illustrated most clearly by the fact that the
sector Hi, as opposed to Hp, does not contain a normalizable ground state (state of energy
—pu), as proven in appendix B. This implies that the sectors H, and Hy are not unitarily
equivalent as representations of the algebra generated by the 9S[f]. The mathematical non-
equivalence between the sectors becomes physically relevant as soon as a physical meaning
is assigned to global observables like the difference between the asymptotic values of the
scalar field.

4.1.1 Approximate vacua

The discussion of the previous subsection may be reformulated in terms of energies as the
the statement that we are unable to distinguish states in Hg and H; as long as our detectors
are insensitive to states below a certain minimal energy wmin-

If however, as is usually the case, one is interested in measuring local observables only,
it is perfectly sufficient to have states within H; which resemble the ground state | u)) € Hy

to any given accuracy. A simple example for such states are the vectors

[y ), = (29)2 e U (—iy) | )

o0 > 0, 4.5
= @t [T awemae e, )
—p
for large positive values of y. It is easy to show that
O LylHly), = @y~
2y (4.6)

(i) {y|0:S(z) [y N, = m

For given sensitivity of our detectors we only need to make gy large enough to get states
which resemble the bosonic vacuum | u)) as much as we want. We will call such states
approximate vacua. Equation ({.§), (ii) offers an intuitive picture of these states: The
profile of the expectation value of 9,S(z) becomes arbitrarily flat.

One may then consider states like a(—w)|y )),. By generalizing the previous discussion
slightly one may convince oneself that such a state resembles a single boson state. Overlaps
like

ylalw) | e),

will be nonvanishing and can be interpreted as the amplitude for transition of a single
fermion state into a state which resembles a state with a single boson created from the

- 12 —



vacuum. For large y one finds

Ay alw) UH@) [ 1), =, (2y)"2e 07, (4.7)

where the notation ~, means equality up to an error controlled by T

4.1.2 Partial bosonization

As a convenient formal device to deal with the infrared problem of the usual bosonization
formula we propose to replace it by the following “partial bosonization” formula

Ul(z) = T<@W) gt (y) 7> ) (4.8)
where % g
w .
To(aly) = [ 752 = eMae), (49)

and similarly for T (z]y). The states
V()| ) oc eT<EW]y ),

are then naturally interpreted as coherent states of bosons created from an approximate
vacuum within H,.

It is quite clear that y plays the role of an IR cutoff in formula (.§). It may be
puzzling that one can not remove the cut-off y from transition amplitudes such as ([£.7).
The small prefactor (2y)7% on the right hand side of ([l.7) implies that the probability for
finding only a single boson in the state ¥'(z)|x)) would vanish if we would try to remove
the IR cutoff y. This is physically perfectly appropriate: The state |y)) represents the
unobservable ”cloud” of radiation with energy too small to be detected. An increase of y
means our detector was replaced by a better one which can detect quanta of lower energy.
The probability to observe only one closed string will be lowered.

4.2 String-theoretical interpretation

Let us now apply the discussion in the previous subsections to the case of the 2d string
theory. It is natural to consider the following transition amplitude as the proper represen-
tative of the amplitude for emission of a single tachyon from a decaying ZZ brane within
the fermionic field theory:

(Y| bowe() [ Xo )y = e@emlo8Re (4 2 ), (4.10)
where
gihlog Ao —1 iulogA
(Wldo) = VAo Sy () E e, (411)
(o)

When trying to interpret this result as the amplitude for emission of a closed string from a
decaying D-brane one may be bothered by the additional factor {(y |\, ) in ({.10). How-
ever, we shall imagine performing a gedankenexperiment in which the radiation from a
decaying ZZ-brane is measured with the help of a tachyon detector installed in the weak
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coupling region ¢ — —oo of our two-dimensional space time. More generally one may con-
sider amplitudes like ((y|O|A,)) for an arbitrary local bosonic observable O. Any such
amplitude will be proportional to ((y| A, )), leading us to the conclusion that this overall
factor is not physically relevant for the gedankenexperiment we are considering.

To exhibit the content of the formulae above from the perspective of 2d string theory
let us assume that our tachyon detector measures the expectation value of the tachyon field
as a function of the time ¢,

(0rToue(t) ) = 1 {0ouel O Toue (£) [Xous)) - (4.12)

The expectation value is evaluated in a state |x,,.)),, which is defined as

uw»lzcédm&mmﬁ@mwﬂu». (4.13)

Let us assume for simplicity that the wave-function x_ , has gaussian decay away from a

narrow interval. The expectation value ( 9;T...(t) ), can be calculated from the expectation
value of 9;S®

out

(t) and by taking into account the so-called leg-pole transformation,

e}

<M@mm=/MMFM@W@ﬂmmm» (4.14)

—00

where K (z) is defined by
K(x) = / dw €% ¢P(@) = —%Jl(z), z=2e 2.
R

The expectation value on the right hand side of ({.14) is sharply peaked. Following the
discussion in [24] one may then conclude that the resulting profile for (8;T,..(t)), will
first exhibit an exponential growth, reach a maximum, and then decay to zero faster than
exponentially.

On the basis of these observations it seems natural to propose the following physical
interpretation in terms of 2d string theory. The closed string observer in the weak coupling
region will conclude that he/she has observed the radiation from the decay of a ZZ-brane.
After some time, there will be no detectable radiation any more. Most of the energy of
the ZZ-brane went into radiation, the missing bit not being detectable. Although fermion
number conservation implies that there is a low energy “remnant” hidden behind the
Liouville wall, there will always be a time after which the existence of a ZZ-brane becomes
unobservable. In this sense the remnant is unphysical, not being distinguishable from the
true vacuum by any local measurement.

There is yet another point of view that one may adopt. Given that the D-branes are
sources for closed strings one may interpret the presence of D-branes as a deformation of
the original ¢ = 1 closed string background. The fact that the fermion number distinguishes
superselection sectors then translates into the statement that backgrounds containing D-
branes are not small deformations of the original ¢ = 1-background but rather distinguished
from it by boundary conditions related to the asymptotic values of certain fields. It seems

— 14 —



interesting to note that - in contrast to previous appearances of topological charges in
string theory - here we find that the topological charges are given by asymptotic boundary
conditions in time rather than space.

5. Manifestation of open-closed duality

5.1 General features of the worldsheet description

We now want to propose a hopefully suggestive formal line of arguments leading to a
proposal which was made in many discussions (see e.g. the discussion in [[j] and references
therein) of possible world-sheet explanations for open-closed dualities: The insertion of
discs into string-worldsheets is equivalent to the insertion of a particular on-shell closed
string vertex operator. Summing over disc insertions amounts to exponentiating the vertex
operator, which describes a shift of the closed string background. In particular we shall
try to identify some issues connected to this line of thought on which we shall gain some
insight by the subsequent comparison with the results from the free fermionic field theory.

What sort of amplitudes are we looking for? We want to analyze the particle production
by the time-dependent background that is furnished by the “decaying” DO0-brane(s). So
very schematically we are interested in

<Tout (w1) -+ - Tou(wn) >DO7H . (5.1)

The notation (---),, . is supposed to indicate that the expectation value is not taken in
the usual ¢ = 1 closed string background, but rather in the modified background obtained
by the insertion of a DO-brane with parameter x. The standard world-sheet definition of

amplitudes like (5.1]) takes the following schematic form:

<Tout ((A)l) o 'Tout (wn) >DO,H ng

(o, ¢] (o]
xgs Z Z ggh_2+d <Tout ((A)l) Tt Tout (wn) >(cii)

h=0 d=1

(5.2)

The notation =, means equality of asymptotic expansions in powers of g;. The terms

=g,
(Toue(w1) T (wn))na in the expansion (5.2) are associated to Riemann surfaces 4

with genus h, n punctures and d discs. In general one might try to represent these terms

as integrals over the moduli space My, ;, ¢ of Riemann surfaces Xy, ,, 4,
h,d
<Tout(w1) T Tout(wn) >C:1 -
— / Qhna <vout(u)1) ® -+ @ Vgye (W) >;1;Tn L), (5.3)
Mpnd
where we have put the ghost contributions into the definition of the top form €, 4 and
(- >g:n’d( My 182 correlation function in the conformal field theory
CFT = (Super — Liouville) ® (Xo—CFT).

The correlation functions (--- )& /) are viewed as machines which for each point M €

M, n,q transform vectors v € HE into numbers.
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We do not expect unusual problems in the construction of arbitrary correlation func-
tions (--- >(E]P;L,Tn,d(M) as long as d = 0. The potentially troublesome X(-CFT is free in the
bulk, which allows us to define the contribution from the Xo-CFT by means of analytic
continuation w.r.t. the energies wg, £ = 1,...,n. In order to construct the amplitudes
with disc insertions a standard approach would be to start from correlation functions
(- >%i,Tn+d,o (v)» from which one may try to construct (- >%P;L,Tn,d( ) by sewing punctured
discs to d of the n + d punctures. In the case d = 1 this would lead to a representation of

the following type

CFT

(Vo (W)@ ++ @ Vour(wn) )y, gy = (5.4)

= (Ue@1) @+ @ Uefwn) @ (¢TI D oy NI
where | B,) is the boundary state associated to the boundary interaction (B.]). The gluing
parameter 7 € Ry represents the deformations of X, ,, 1 which change the radius of the
disc. In the general case d > 0 one will have d such gluing parameters 7, ...,74, and an
obvious generalization of formula (f.4).

In formula (f.4) we observe an unusual source of trouble: The spectrum of Lo + Ly
is unbounded from below since the Xo-CFT contains eigenstates with arbitrarily negative
eigenvalues. It is therefore not clear to me how to make sense out of the right hand side of
(F-4) in the present context.

If, however, a good definition for the right hand side of (5.4) is ultimately found, we
could proceed with the integration over moduli space as follows: By using coordinates for
the moduli space My, , 4 such as those used in [@] one may realize that

Mpnd ~ Mpniao x RL, (5.5)

where we may think of My, 440 as parametrizing the complex structures on the surface
that is obtained from 3, , 4 by gluing punctured discs into the d boundaries of X, ,, 4.
The moduli corresponding to the factor R% in (B.5) can be identified with the radii of the
discs, and therfore with the parameters 71,...,7; that were introduced after (p.4). This
means that we can factor off the integration over ]Ri in (5.J) and represent it explicitly by
integrating over 7q,...,7q. As a symbolic notation for the result of this procedure we shall
propose

<vout(w1) @ @ v )+ yBK>)®d>CFT (5.6)

Lo+ Lo —2 Zh,ntd,0(M).

The physical interpretation of the insertions of (Lo 4+ Lo — 2)~!|B,) should be clear: They
represent the propagation of closed strings from the brane into the region where interactions
with other closed strings take place. This leads us to formulate a physically motivated
requirement on possible definitions of (5.4),(F.6): They should be such that only on-shell
physical states contribute in (f.g). We are thereby lead to the expectation that (f.) can
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be replaced by an expression of the following form
<Tout(w1) e Tout(wn) >h,d -
d
= [ Pnsao (anlen) © - @ v () © () )
Mp,ntd,0
d
— [ty T] (Tl | B) (5.7
r=1
X < Tout ((A)l) Tt Tout(wn) 7—Wm((*‘)ll) T Zn(w:n) >(h’0)

c=1.

CFT

Yh,nd,0(M)

where we have assumed (with some hindsight) that the state w;,(x) may be represented in
the form

Wiy (k) = /dw (Tin(w) | By ) vin(w) . (5.8)

Equation (f.7) is the sought-for representation of disc insertions in terms of certain closed
string operators.

We believe that the following point deserves some emphasis: Despite the fact that we
do not know the precise definition for the right hand side of (b.4), we are rather confident
that the representation (B.7]) for perturbative closed string emission amplitudes in terms of
a sum over disc insertions should be valid.

We will soon see that these expectations are nicely supported by results from the
fermionic field theory. This will allow us to demonstrate that the above ideas about the
world-sheet mechanism behind open-closed duality are realized in the present context in a
rather concrete and well-defined manner.

5.2 Fermionic definition of amplitudes

Our aim is to calculate the amplitudes for emission of closed strings from a decaying ZZ-
brane. Identifying the ZZ-branes with the fermions in the free fermionic field theory leads
one to consider overlaps of the form

([ bou(w1) - bouc(wn) [ ) (5.9)
where | ) represents a single fermion created from the vacuum | ),
le) = /d>\ ZOVIPY I PYNER LCVITT 2 (5.10)

To be fully specific let us agree that the pseudo-vacuum |y ) in (5.9) is defined as in ([£3)
by using d¥(w) instead of dl(w).?’

31t may seem unnatural that we define | ) in terms of the in-fermionic creation operators d'™(w) rather
than dJﬂrR(w). The difference is in many respects inessential, though. Thanks to the fact that the energy
distribution in @) is peaked around w = —p we may approximate the reflection matrix R(w) in () by
R(—z). This means that replacing d'™(w) by df‘(w) results in an overall factor that depends on u only,
and will therefore be irrelevant for most questions. However, this factor will have to be taken into account
when calculating the asymptotic expansions in p~!. This will be done in the following subsections E and
, where our present choice will turn out to be the most convenient one.
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We are trying to establish a relation of the form

(v [Doue(w1) - - - bows(wn) [ ) =gs <Tout(wl) o Toue(wn) >D0’,€ . (5.11)

This clearly requires choosing a particular wave-function ¢ = .. We know that | ¢ )) has
the following equivalent descriptions:

o) = /R B X ()W (14) | 1)
= [ v ) ) (5.12)
— / du_ ()W, (u_) | ).
R

Let us furthermore recall that given any one of the wave-functions (x,,.,®, X;,), We can
calculate the two others via the integral transformations (R.I4). These relations describe
the dispersion that a wave-packet suffers in the time-evolution between any finite time
and and the asymptotics { — Foo. It seems natural to suspect that the correct choice
of ¢, must correspond to point-like initial localization, with parameter x being related to
the initial position. Still we have two options to consider: Point-like initial localization at
finite time or point-like initial localization for time ¢ — —oo. These two possibilities are
of course inequivalent as the effects of dispersion will be substantial in general. We are
going to show that only point-like initial localization for time ¢ — —oo has the chance to
yield amplitudes that can be identified with the world-sheet description. Let us therefore
consider the choice

Xin(u_) = 6(u_ —u?) (5.13)

which corresponds to choosing

o) = lu2 ), |u) = Whu)|p). (5.14)

Our next aim will be to show that this choice indeed leads to a relation of the desired form
EID).
5.3 Closed string picture

One possible way to expand the amplitude in powers of g; = p~! proceeds by using the
expansion (.33) in order to express the bosonic operators b, (w) in terms of the by, (w).
This leads to an expression of the following form:

<< Y ‘ bout(wl) T bout(wn) ’ ul >> =gs (5'15)

— 1
=g, Z:lw /dw& .../dw;n R ™ (wy, .. wp|wl, - why)
m= R R
" " X ((y | bin(wi) - - bin(wi,) [u )

1 since we have been

We are only claiming equality of asymptotic expansions in g5 = u~
ignoring the non-perturbative correction associated to the second term in the decomposition

(2.31). In the case that we have u — oo, % < 1, where w = Y "_| wy, we may approximate
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R(™=™ by its asymptotic expansion in powers of g, = u~!. It is important to note that up
to terms of order y~!, the S-matrix elements R™™ in the one-fermion sector are equal to
the their counterparts in the zero fermion sector. The asymptotic expansion of the latter
was identified with the correlation functions of the ¢ = 1 string theory in (R.37). This
allows us to write

R ™ (wy,y . wp|wl, o wr,) =g,

’ (5.16)
=g, Z g T (@1) -+ Toue (@) Toa@]) - T (wy) ) )

Let us also note the following simple relation

d
(b)) - bulwn,) [w ) = (ylu) T(T Bi). (5.17)

r=1
We thereby arrive at an expansion of the following form
(y1u )™ (Y [ow(wr) -+ boue(wn) [u ) =g,
d
=g, Z o Zg% 2 / dw) ---/dwg [T (T(wr) | Be)
d=1 R4 R4 r=1
X (Tous(w1) - . Tou(wn) Tin(w]) ... Toa(wiy) Y7

This is just what we are expecting on the basis of the discussion in subsection p.1], cf. in

particular with equation (B.7).
Remarks

1. The leading asymptotics p — oo, % < 1 of the one-point function is in found to be

(Y] Do (W) | FY) 2= (2) 77 ) gilommlogus =i (5.18)

Up to inessential factors (cf. our discussion in subsection f.9) we find a result that matches

the world-sheet computation provided that we identify the parameters as

sinmtk = /pul. (5.19)

It should be noted that the initial localization u° has nothing to do with the turning
point of the corresponding classical motion. The latter may be estimated from the average
value of the energy when we form wave-packets rather than considering point-like localized
“states”. This point will be further elaborated upon at the end of the following subsection.

2. One may /should worry about the convergence of the various summations/integrations in
(5.19). Let us first note that the integrations do not pose any problem. The UV convergence
is ensured by the delta-function in the integrand together with ((y|bi,(w) ~ e¥“((y] for
w < 0. The absence of IR problems can be inferred from formula (A.19), noting that (n)
vanishes for w, — 0. The summation over h will not be convergent but only asymptotic,
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but it is interesting to note that the sum over the number of discs d is probably convergent
even after exchanging the summations over A and d. We have checked this claim explicitly
in the case n = 1 using the tree approximation (2.34) to the closed string S-matrix.

3. There is another way of writing the expansion (p.1f) which appears to be instructive.

Introducing the notation
Bur) = [ dv (Tuw) | B) Tu(w)
Ry

allows us to write (5.15) in the following form:

(ylu2 ) (Y | Do (@1) - - Dowe (wn) [ ) =, (5.20)
o d
=g Y % (To(@1) -+ Tou () B () _,
d=1

=go (Toue(w1) -+ Tos(wn) exp[Bua(k)] ).,

It seems natural to call the representation (p.2() the closed string representation. This
representation suggests the following interpretation in terms of 2d string theory. The
initial state of the D-brane is represented as a coherent state of incoming closed strings®*.
The resulting out-state is obtained by applying the closed string S-matrix to the closed
string oscillators which generate the initial state.

5.4 Open string picture

There is an alternative way to calculate the amplitude (5.9). Let us first note the simple
relation
(4 [boue(wr) - bow(wn) [ F) =

o - i (w —iwr logu (521)
:/0 iy Xowe(uy) [T ) e7ortosms (y ).

r=1
When calculating the matrix element ((y|u, )) one should not forget that we had adopted
the convention to create the state |y)) with the help of the fermionic in-field, cf. the
footnote in subsection f.2. It follows that

(ylwy ) =y (2p)7F #IB% p* (<) ul?, (5.22)

where p(w) is the diagonal element of the single particle reflection matrix defined in (2.23).

=

We thereby arrive at the expression

n

(| Pout(@1) - bou(wn) | F) =y (2y) 20" (—p0) ¥, (w — ) T ) (5.23)
r=1

where w = )" wy, and X%, (w) is the Fourier-transformation of x% (u4),

o0
T w) = / du u = ().
0

“on top of an unobservable DO-remnant, if you wish.
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It remains to calculate X, for the choice of x;, which corresponds to the state |u® )), cf.

E13), namely
XiLn(w) _ _—iwlogu® 0
= e .
Xin (W) 1

The relation (R.21)) simplifies to X%, (w) = p(w)xX (w). We finally arrive at the simple result

in

Y| boue(W1) - - - boue(wn) | F)) =~y

_1 n 0 (w. * —i(w— og u° (524)
~, (2y) 2 H65( T)p(—,u),o(w—,u)e (w—p) logu®.
r=1

Remarks

1. Viewing the fermionic field theory as a representation for the open string theory on a
gas of DO-branes [, f]] motivates us to call the resulting representation the “open string
picture”. Quantum corrections to the D-brane dynamics are calculated in the dual open
string theory before we analyze the final state in terms of closed string observables.

In the gedankenexperiment proposed in subsection .3 we are of course not tracking
the evolution of the D-brane state at finite times, we only observe outgoing radiation at
late times. It is therefore completely arbitrary® if we prefer to interpret the state at finite
times as a D-brane or as a coherent state of closed strings. We may in particular imagine
that the D-brane is ”created” by an incoming coherent state of closed strings, and that
it subsequently decays back into an outgoing coherent state of closed string radiation, as
suggested by the ”full-brane” picture.

2. It is possible to calculate the expansion in powers of g5 by noting that

e_% (W—M)

eif(w—u) = eif(w—ﬂ)’ 5(1-) = argr(% — 21‘)’ (525)

plw—p) = 2 cosh m(w — p) pr—00

for y — oo and % < 1, and using

ellw—p) & gilplnpu— u) “ exp <2 Z —1)"Bay, (1- 2_(2"_1))(w _ M)—(Qn—l))

o n2n—1

Note that we reproduce our previous result (5.1§) for the leading asymptotics u — oo,
f < 1 of the one-point function.

The individual terms in the resulting expansion are naturally interpreted as pertur-
bative contributions to the amplitude for emission of closed strings in the time-dependent
background that is furnished by the decaying ZZ-brane, corresponding to the following
reorganization of the perturbative expansion (b.9):

(Towe(@r) -+ Toue(@n) ) g (Toue(w1) - Tous(wn) >id:q1) (5.26)
0,
QZ-IC—ldEr

5to the extend that we can identify the different solitonic superselection sectors as physically equivalent
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One should bear in mind that the perturbative expansion in powers of g5 will give a useful
approximation only if 4 — oo, and if only low energy tachyons with % < 1 are “measured”.

3. It may seem puzzling that in (5.19) we are identifying the D-brane parameter with the
initial localization for time ¢ — —oo, whereas in [}, [f] it is associated with the turning
point of the classical motion in the inverted harmonic oscillator potential. By forming
wave-packets it is of course possible to get states which are in the classical limit p — oo
well-localized in the sense that the uncertainties i(éui)z and i(&)\)Q are small. For those
wave-packets one recovers (4.10)) as the leading approximation to the tachyon emission
amplitude.

5.5 More general ¢ = 1-backgrounds

More generally we may consider string scattering amplitudes of the form

(F4 D) b (wn) b () b (=) | £ ), (5.27)
where .
/-) = exp ( [ a f—(w)b—(w)> )

(el =Qul o ([ do futo-te)). (5.25)

This may be interpreted as a string scattering amplitude in a time-dependent background
that is explicitly represented in terms of coherent states | f, )), | f_)) of closed strings. Of
course it is sufficient to study

(-2 (5.29)
from which (5.27) can be recovered by taking functional derivatives.

We now want to describe the scattering amplitudes in a background that contains a
decaying ZZ-brane on top of the closed string background described by | f, )) and | f_)).
Our previous discussions suggest that

1o o) 12 (5.30)

represents the generating functional for the amplitudes in question. The state ,{( f, | is
defined by replacing the vacuum (x| in (f.2§) by an approximate vacuum in the one
fermion sector. By using our partial bosonization formula (.§) it becomes easy to show
that

@y fo) =

= exp (z /R+ dw (u‘i)i“f_(—w)> (FIS1f e ), , (5.31)

where e; is explicitly given as

(ug)iw — Wy

er(w) =i -
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Equation (f.31) shows that the insertion of a decaying ZZ-brane generates a shift in the
closed string background that is linear in the variables f,. The open-closed duality ex-
pressed by equation (B.31]) is not perfect, though. The infrared region near w = 0 is
effectively removed by our cut-off y. We therefore do not generate a shift of the cosmologi-
cal constant p, corresponding to the zero energy tachyon. The fact that we can not remove
the infrared cut-off y limits the extend to which strict open-closed duality is realized in our
context. On the other hand, our previous discussion of this issue shows that what we are
missing to strict open-closed duality is associated with low-energy quanta that we are not
able to observe anyway. In this sense one may well regard the failure of strict open-closed
duality as unphysical.

6. Comparison with the euclidean case

It seems worth pointing out a close analogy between the results of the previous subsection
and discussions of the integrable structure of two-dimensional string theory in [26],[1L6]
and [R7 respectively. In the following we shall review those features of the formalisms
developed in [26, [Ld, 7] which we need to see the analogy with the results in the previous
section. Our discussion will not be self-contained, the reader not sufficiently familiar with
the results of [R§, [[6, P7] may need to consult these references while reading the following
section.

6.1 Euclidean generating function

We will now consider the case of euclidean target space for the two-dimensional string
theory which is obtained by Xg — —iXy = X. Compactification of euclidean time via
X = X 4 27 R will be introduced to describe finite temperature. One is then in particular
interested in deformations of the background induced by changing the world-sheet action
as

Sws = Sws + Y _ tk Tu(pr), (6.1)
k20

where py, = k/R and Ty(p) is the on-shell vertex operator
Tu(p) ~ /d2z X 2(1=Ipl)¢

The central object to study is the deformed partition function

Eucl
Z({ts};, R) = <eXp ( -t TE(pk))> (6.2)

k#£0 c=1.

Turning to the free fermionic field theory, it is in fact straightforward to introduce a
natural euclidean counterpart to (5.29) as follows [[g]: Let uy = ¢/ and continue ¢ = 6.
Periodicity w.r.t. § — 6 4+ 27 R then leads to quantization of the euclidean energies as
w = ik/R. The euclidean counterparts of in- and out bosonic fields,

_1
auiszl:(u:t) = Zal(gi)uiR(kJrl)a == (63)
keZ
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will be single-valued. It is then natural to consider

Z({te}; i R) = (T4 [T-)), (6.4)

where |T_)), (T';| are coherent states of bosonic excitations defined as

) = e (Snag )l (] = (ulow (Toa).  ©3)

k<0 k>0

The generating function (6.4) can be evaluated by first expressing the bosonic oscillators

()

a, in terms of fermions as

_k_ 1
¢i(ui) f Z d](i.i)uj:R 2R’

kez+1
= Y aPa)®) o e (6.6)
lez+1 Wl (ug) Z d, uy PR,

kez+l

() gy

and then using the algebra {d = 1 as well as the following relation between

in- and out oscillators:
4 = p(pr) dj- (6.7)
Equation (B.4) is therefore good enough to define Z as a formal series in the variables ty.

The conjectured duality between the euclidean versions of ¢ = 1 string theory and free
fermionic field theory is coincidence of the objects defined in (.4) and (f.9), respectively.

6.2 Deformations of the Fermi level curve

The starting point of the formalism developed in [[1] is the reformulation of the free
fermionic field theory in terms of light-cone variables ui for the phase space of the single
particle problem,

1
Us = 5)\ +p. (6.8)

The classical single particle hamiltonian is then simply h = —uju_, so that the vacuum
of the classical limit of free fermionic field theory, the filled Fermi sea, gets represented by
the equation

UpU— = L. (6.9)

Complexifying uy one may regard (6.9) as the definition for a noncompact Riemann surface
which may be covered by two patches Uy with coordinates uy respectively. Eqn. (p.9)
defines the transition between the patches U and U_.

In the quantized theory u4 get represented by the operators

1
uL = 5)\ F ia)\.

One may introduce representations for the single particle Hilbert space in which either u or
u_ are diagonal. The representation of eigenfunctions of the hamiltonian h = —uju_—u_uy
becomes very simple,

L (wlug) = \/%G(sui)\ui]iw%. (6.10)
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Thanks to the fact that [u;,u_] = —i one may realize the unitary operator between these
two representations simply as Fourier transformation,

1 — UL U_ ”
s) = <= [ du e o), (6.11)

The relation between the formalism introduced in this paper and the light-cone for-
malism of [[L[f] follows from the fact that the unitary transformation from wave-functions
¥(A) to their time asymptotics ¢4 (uy) diagonalizes the operators uy. This is proven in
appendix [A.3.

It is not hard to set up a formalism for the second quantized theory in terms of
the variables u4. Key ingredients of this formalism will be the fermionic field operators
U (uy). It is useful to associate the two field operators with the corresponding patches Uy .
It follows from (B.11]) that the operators ¥, (u;) and W_(u_) are also related by Fourier
transformation,

U (uy) = \/% / du_ e Ig (), (6.12)

In order to treat deformed backgrounds of the euclidean along the lines of [[[] one may
start from the following key idea: The deformations can be described by a change of the
vacuum in which to calculate expectation values only. The deformation should therefore not
change any of the relations which characterize the operator algebra of the theory including
the relation between in- and out fields (6.12).

The deformation will induce, however, a deformation of the energy eigenfunctions
(6.10) which appear in the expansion of the Fermi-fields into creation- and annihilation
operator with a specific energy. The authors of [[[§] propose that the deformation of the
energy eigenfunctions will take the form®

1 +iw—1

Ewlug) = T gl )y 2 (6.13)
with phases 01 (w|uy) that are of the form
1 k 1 _k
O (wlug) = 500(w) + > topul =) puEk(W)us ™. (6.14)

k>1 k>1

A basic idea behind this proposal is that the “field” 64 (w|ug) should essentially coin-
cide with the expectation value of the bosonic fields Sy (ut) obtained by bosonizing the
fermionic fields Wy (uy). More precisely, the relation with the deformed partition function
Z = Z({tx}; 1, R) is expected to be

1 5109
Or(wlut) = §<—— +> topul - ZuiRE(gt—i])Z' (6.15)

k>1 k>1

In order for (f.13) to remain valid in the deformed theory one then needs that the deformed
energy eigenfunctions are related by

¢ (wluy) = %/du_ e urt= Y (wlu_) (6.16)

SFor the ease of notation we restrict ourselves to u+ > 0 in the following.
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This defines an intricate problem. Regarding the coefficients ¢; as given input data one
finds from (p.16) a non-trivial set of relations between the parameters t;, and the coefficients
vk (w). One may expect that these relations can generically be solved to uniquely to define
vk (w) as a function of the t;. The deformed partition function Z is then defined via (6.17),
where the integrability of these equations follows from the observation that a solution to
this problem defines a particular solution of the Toda integrable hierarchy [[L].

All this can be understood much more concretely in the classical limit ¢ — oco. In this

]

case one may evaluate (B.16) via the saddle point method [[Ld], leading to the conditions

& _k
up0ySy(uy) =p+ Z ktipuf + Z Vg ug
Uupu_ = k=t . k=t . (6.17)
u_0_S_(u_)=p+ Z kt_puf + Z vopu_ .
k>1 k>1

The coefficients vy are now defined as functions of the t; by the mutual consistency of
the two equations in (f.17), see [Lf] for details. Having chosen the vy in such a way that
the equations (f.17) are consistent one may view either of these equations as the defining
equation for a Riemann surface that is obtained as a deformation of the surface (B.9).

It seems worth remarking that the corresponding classical free energy F, defined by

5,
v = —a—tkfd, (6.18)

defines a natural Kéhler potential, whose associated symplectic form identifies the coef-
ficients v as the dual momenta to the coordinates t; for the space of deformations of
the surface (@) This line of thought naturally leads to the proposal that the partition
function Z of the quantized theory can be interpreted as the wave-function of a particular
state in the quantization of the symplectic space with Kéahler potential F.. The Fourier
transformation (p.19) may then be regarded as the natural quantum counterpart of the
transition between the patches U, and U_. This point of view is strongly supported by
the observation from [[[] that the Fourier transformation (f.13) reduces to (p.17) in the
classical limit.

A very similar framework was shown in [ to follow from a general formalism for
solving the topological B-model on certain classes of noncompact Calabi-Yau manifolds.
The case of the ¢ = 1 string corresponds to the hypersurface

1
ZZU—H(p,)\):O, H(p,A):p2_Z)‘2_1UJ

In this context one interprets the fermionic fields ¥4 (u4 ) as representatives for topological
D-branes that may be present in the relevant Calabi-Yau geometry. These branes are
parameterized by points of the surface H(p, \) = 0, or alternatively by the corresponding
values of the coordinates u.

6.3 Comparison

Although this has not been shown non-perturbatively yet, it seems very likely that the
formalisms outlined in the previous two subsections are ultimately all equivalent. One way
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to establish this is to observe that all these formalisms produce solutions of the equations of
the Toda hierarchy with initial conditions given by the partition function of the undeformed
two-dimensional string theory background.

In any of these formalisms an important role is played by the one-point functions of
the fermionic fields, which will be denoted as

(Wt (ut) >{tk}§ﬂ7R~ (6.19)

By using standard bosonization formulae it is then straightforward to show that e.g.

(V_(u-) >{tk}§M7R = exp (Z % tr u%>2< { tr + %u%@(—k) } ; ,u,R). (6.20)

Following [27] one may read this as follows: Insertion of a topological B-brane at position
u_ generates the shift

of the closed string background.

The analogy between (.2() and (p.31]) should be clear. But our discussion also shows
that the relation between (b.20) and (p.31) is more than just an analogy: Bear in mind that
the coordinates w4+ with which we describe the in- and out states are identical with the

light cone coordinates which play a central role in the euclidean formalisms. It follows that
the fermionic fields W4 (uy ) of these formalisms are nothing but the euclidean counterparts
of the fermionic in- and out fields in the minkowskian formalism used in this paper. One
of our main results is to show that the insertion of fermionic in-fields describes decaying
ZZ-branes. This finally leads us to propose that the topological B-branes of [2]] are the
euclidean counterparts of the rolling ZZ-branes.
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A. Free fermionic field theory revisited

A.1 Single particle quantum mechanics

As emphasized in [[If], it is convenient to start by representing the single particle hamilto-
nian h in terms of the “light-cone variables” uy = %)\ + 10y,

h=—uju_ —u_uy.

There exist representations for the Hilbert space KC of the single particle problem in which ei-
ther uy or u_ are represented as multiplication operators. Observing that h is the generator

of dilatations of the coordinates u4 it becomes easy to find a complete set of eigenfunctions

for h,
1

& (wlus) = \/%_WG(Suiﬂuﬂii“_z, se{+ -}, weR (A1)

These representations are related to the usual Schrédinger representation by means of
integral transformations of the form

bulu) = [ DMLsl) O, (A2
with kernels My (ug|A) = (ug|A) given by the explicit formulae
M (ug|X) = 7B Nt i M (u |A) = (M (u|))” (A.3)

This claim is easily verified using the fact that the kernels My (uy|\) satisfy the differential

equations
. 1
<:|:Z(3>\ + 5)\) Mi(uip\) = uiMi(uiP\).
When working in the Schrédinger representation one may construct a convenient set

of eigenfunctions for the single particle hamiltonian h by applying the inverse of the trans-
formation (A.9) to the eigenfunctions (A.1)). In this way one may construct in particular

i co+-i€e
—owoiy 2 ‘ L
GwlA) = £ 0 ‘4 et do o~ 2 ¢Pot30”, (A.4)
I'(3—iw)
0

G(w|A) is an eigenfunction of h with eigenvalue w which has particularly simple asymptotics
for A — +00, namely

iA2 it L
G(w|A) N AT, (A.5)
The functions G(w|\) are related to the standard parabolic cylinder functions U(a, z) [2g
via
G(w|\) = e~ 5975 U( - iw, )\e_i%). (A.6)
Three further solutions with simple asymptotic behavior can be obtained as G(w| — \),
G*(w|N), G*(w] — A), where the asterisk denotes complex conjugation. A normalized set of

real parity eigenfunctions is finally constructed as

Fp(wlh) = —=(mp(@)G(w]A) + mj(@)G*(@]))) (A7)

1
V2T
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where the coefficients m,(w) are defined as

< €T M) —ip (TG -w))’
o) = V2 /i2(w) + 1 <F(%+iw)> ’ (A-8)

with k(w) = V14 e 2™ — e~™. The label p = =+ is identified with the parity eigenvalue
of Fy(w|A). The functions Fy(w|A\) have asymptotics

1 iy2 N2 g -
Fpwd) ~ —— (eZA AN (W) + 673N e AT (0 > A9
P( ‘ ) I\|— o0 27T|)\|) p( ) p( ) ( )

where M) (w) = s9(P)m, (w) with ©(—p) being the usual step function. It is known [[[{]
that the functions F,(w|\) fulfil the following orthogonality and completeness relations :

/ dA Fpl (wl‘)\)sz (C()Z‘)\) = 5pzp1 5(wl - w2)7
R

(A.10)
/ dw (FF (@A)FH@h) + F (WA)E- @A) = 600 — Au).
R
A.2 Asymptotics of wave-packets
Claim: The asymptotics of a wave-packet (A, t) for t — +oo is of the form
SN o (@) 2edY e g (us), (A.11)

where ux = \eTt. The asymptotic wave-functions ¢+ (u+) can be calculated from the wave
function Y(X) = (X, 0) by means of the integral transformations (A-3).

Proof: We may represent ¥ (A, t) as

P(\t) = /dw TR (W) - Y(w), Pw)= /R dAF(w|A)p(N), (A.12)

Standard stationary phase arguments show that (A, ¢) will vanish rapidly at any fixed A
when [t| — co. We should therefore regard the asymptotics where |\| tends to co as well.
In this case we may replace the wave-functions F(w|\) by their leading asymptotics for
|A| — oo as given in equation (A.9).

Only the term containing the factor e~ FnIA) will contribute in the limit ¢ — +oo.
This is enough to establish the first half of our claim, equation (A.11)), with the two-

component vector ¢ (uy) formed out of the functions ¢35 (uy), s = + given by

A ~ M, (w) = M(w),
bi(uy) = /]R dw uE My (w) - D (w), M+Ew; Mgw; (A.13)

where M(w) is the matrix with matrix elements M7 (w), or explicitly

me) =5 (1) (" ) (A1)
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It remains to calculate the asymptotic wave-functions ¢3 (¢) more explicitly. To this aim
let us consider M(w) - F(w|\). By using ([A.7), the expression that follows from (A.7) by
Fy(w| = A) = (—)PCPIE,(w]\) as well as [my,(w)]? = % one arrives at

M(w) - Fw]\) = 2\/1%(m3(w) —m’ () (ggﬂ ;i;)

The factor m? (w) — m? (w) equals 2(271')7%6%11(% — iw), leading us to
oco+-i€

1 7i£+£)\2 iw— i52 eii)\a
M(w) - F(w|\) = gne AT do o 2027 i |-
0

This should then be inserted into (A.13). After exchanging the integrations one can easily
do the integration over w, thereby producing a delta-function. This straightforwardly yields
our claim that ¢4 are given by the integral transformation ([A.3). O

A.3 In- and Out-fields

Our next aim is to study the asymptotics for ¢ — +oo of the fermionic operators
Uiy |t) = /dA P(N) U\ ). (A.15)
Introducing the operators dl(w) by dl (w) = Ml (w) - cf(w) allows us to write

wwu>=4mwﬂmewwm

| (A.16)
— /Rdw e~ Al (w) - du (),

where the definition of ¢ (w) can be read off from (13). Using (B20) it is then straight-
forward to rewrite the result in the following form:

d
Wiw|t) = [ 55 oxtue™) Wi(w). (A7)
This clearly identifies the fermionic fields ¥ (u) as the in- and out-fields.

A.4 Relation between bosonic in- and out-oscillators

We want to demonstrate the validity of the expansion

dw1 de 7 dw,,
[aout o1n - Z Z/ e / w—X (A.18)
s'=L,R n=1_ Wn1 n
X R(n Ww]wis. . wn)al (i) ---al (wn) .
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This formula is a nonperturbative generalization of Polchinski’s result [[[§] for the classi-
cal limit 4~' — 0. The coefficients R‘(%) are of the form R‘ES (Wwiy . ywy) = 210 (w —

Yory wS)Q‘E’Z; (w1,...,wn), where

dr
S . n — 7ZIU,TKSS 2 wq«’r .
Q(n)(wh ,Wn ) / pe (wlT) IIl isin (A.19)

The kernels K*%' (w|t) are given by the following integrals:

, by L o J_in(+2ieh) if s=¢,
Kss(w‘t) :/ dw/ ezthss (w2—w)Rss (w;-w) — ( t) (A.20)
J_iw(=2ie") if s#s".
Proof of ([A.18): We start from the expression
() o = 2 [ Y B (g R ()l (). ()
oo s’=L,R

By inserting

s’ dz lwz s s’ dx iWTs 8
d @ = [ Gl @), diw) = [ 5 T,

where VS (z) = e%\I’fn(ex), exchanging the order of integrations and changing variables to

Ty =+ 3, T, =T+ 5, we arrive at the expression

[0t (@) Join =

= [Eew [ES ki @rpune-p @

s'’=L,R

where the kernel K**'(w | 1) is the one defined in (A-19). For the product of fermionic field
operators which appears in ([A.29) we may use the bosonization formula
UNCESNACEEIE

_ L i T @+ ) -T2 (0-5)) i(TS (24 5)~TE (2—3))
1T

(A.23)

Note that this formula is free from the infrared problems of the corresponding bosoniza-
tion formula for a single fermionic field operator. It may be proven by using the partial
bosonization formulae from §[L.1.9, noting that the cut-off y may be removed in expressions
that are bilinear in fermionic fields.

By using series expansions for the exponentials in (A.23) we then get

Ul (@ + D)W, (o — 5) =

ook

dw dw k

1 k oz o WeT

E E l' —wl ---—wk e Ilsm—2 X (A.24)
k=0 I= r=1

—00

fz;n—

x an (wi) - al (wag (wisn) - aff (wi),
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st (w) = O(+w)ad (w). Passing
to integration over ordered sets of integration variables finally yields the formula

where we have used the notation w = Zk,1 wy as well as a

V(2 +5) (e - §) =

e~ T 2 d d d _
22 / C()l (4)2 . ﬂ elwr H sin MET X (A25)

Inserting this into ([A.29) and noting that the integration over z produces a delta-function
completes our derivation of formula ({A.1§).
Finally we would like to show how to calculate the leading asymptotics for y — oo,

% < 1 from the general formula (A.1§). First, it is not hard to see that in this limit

the integral which represents fobl), cf. equation ([A.19), is dominated by the contributions

wrT ~ 1

from small 7. Approximating sin 5 ~ sw,7 and inserting the explicit expression for the

. / .
matrix elements R%% we arrive at

( wp ) ~ (A.26)
n
H zwr / —zTuTn/ dw'e’ 3 T’ zw TP(% %(wl_w))r(% . %(w’—l—w)),
r=1 R i R
where 0 = — if s = s/, 0 = + otherwise. The integral over 7 can be represented in terms

of §(u — '), allowing us to do the integral over w’ as well. This yields
Q?f@/)(wla e 7w7L) =

n n—1 . ) . A.27
= M (i2) oG- o)+ b))

By inserting this relation into ([A.27) it becomes easy to verify (R.34).

B. Solitonic sectors - Non-existence of normalizable ground-states

Our aim is to prove that the sectors with nonzero fermion number do not have normalizable
ground states. The basic idea is very simple: We should be able to decompose any state
into energy eigenstates. A state |2)),, could only be a ground state in the sector with
fermion number n # 0 if it would get contributions from states with energy —u only. Due
to the fact that the single particle spectrum is purely continuous, one may suspect that
the problem to construct normalizable states with energy —pu is similar to the problem to
construct point-like localized states in a theory with purely continuous spectrum. There
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do not exist normalizable states of this type. However, one may be confused by the fact
that we are certainly able to construct sequences of normalized vectors which have energy
expectation values that converge to the vacuum expecation value —u. It may therefore be
worth demonstrating in some detail that no such sequence of vectors can be convergent.

For simplicity let us restrict attention to the case in which one has only a single set of
fermionic creation- and annihilation operators c(w), ¢/ (w). As a preliminary remark let us
observe that the sector H; with fermion number f may be represented as

52
Hy :/R dw Hf(w), (B.1)

where Hr(w) is generated by expressions of the form

—u 0o —

/dwl...dwm/dwi...dw;n+f 5<w— Zw;—i— w5>>< (B.2)
r=1 s=1
s “
xwah.n,wmng.”,w%+ﬂc@q)~-c@%ﬁcuwﬂ--%iw%+fﬂu».

In the representation (B.J]) one represents vectors | ¥ )) s € Hy by vector-valued functions
VU;(w) € Hy(w). Upon choosing suitable normalizations one may assume that the scalar
product takes the form

[e.9]

Curlep) = [ do (¥50), 24)

—p

where (.,.)s is the scalar product in H¢(w).

We will consider sequences (¥, )nen of vectors in Hy such that

(i) nlgrolo« \Iln ‘ H ’ \Iln >> = —M- (B'?))
(ii) << \Ijn ’ \Iln >> =1 (B'4)

Our aim is to show that no such sequence converges, which means that there exists an
e > 0 such that for any n € N one can find m > n for which ||¥,, — ¥,,|| > €. Keeping
in mind that |¥,, — ¥,,,|| = 2 — 2Re (V,,|¥,,)) it suffices to show that for any fixed n, the
sequence (|{(¥y|¥)|)men does not converge to 1.

So let us pick any n € N. Define § > —p by

0 1
| el =3 (B.5)

—u

We claim that for all € > 0 there exists M € N such that for all m > M we have

Am@mmm@m§<a (B.6)
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Indeed, if this was not the case we could find an € > 0 such that for all M € N there exists
m > M with [°dw ||¥,,]* > ¢, which implies that also

0

(W 110 > (10

> (~) (1— [ a1 @IR) + 8 [ de e

> _p+ (5+u)/6 o 0 () 2

> —p+ 0+ pe

do [V ()2 + 6 /5 o |0 () 2

Since § + 1 > 0 we would have a contradiction to the convergence of the energy expecation
values, condition ([B.3).

So let us now present an estimate for [((V,,|V,,))| that holds for any m which satisfies

B9

) 00
()] < | [ s (000) 0 @), + | [ o (ale0), 0),
7ﬂ6 % 1) ' %
g( [ H%(w)l!?) ( [ a uwm<w>u§> n
" ( [ e uwnw)n}) ( [ e ||wm<w>||§>
d é
1 1

To go from the first to the second line we have used the Cauchy-Schwartz inequality, to
arrive at the last inequality we have used (B.§) and ([B.f). This estimate will hold for any
m > M with M € N being such that the validity of (B.6) is guaranteed for m > M. Since
€ is at our disposal we are sure that |(¥,,|¥,,)| will stay below 2/3 < 1, say. This clearly
shows that the sequence (|(¥,,|¥,,)|)men can not converge to 1.
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