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I. Introduction

The purpose of this letter is to point out the general form of a certain class of Hamiltonians
on the unit sphere. We consider Hamiltonians as functions of the cartesian coordinates
(2.y,z) in terms of which the unit sphere is given by the equation z? + y? + z? =1 The
class of Hamiltonians treated is then defined as those functions which are at most quadratic
in these coordinates. Such Hamiltonians occur naturally in various problems of mechanics
[1-3], optics [4] and others. In section 2. we introduce the necessary machinery and apply
1t in section 3. to obtain the classification of quadratic Hamiltonians on the unit sphere
This extends the work in [5] where a classification of biparametric quadratic Hamiltomans
has been given.

II. Preliminaries

Let S? be given as the set of unit vectors in R®, S? = {22 : 2%2%n,, = 1}, where 1,5 =
diag(1,1,1) is the standard metric in R® and «* = (z,y.z). Define the function S{x¢) =
napz®z® — 1, then $? is the zero-set of S. Since it is a two-dimensional manifold all
symplectic structures on the sphere are proportional to the area form of $? which we take

as the symplectic form Q on §%. So Q = zdyAdz+ydzAdz+ zdr Ady = %eabcl"‘dmb Adx©.
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Here €4 is the alternating Levi-Civita symbol. The Poisson algebra of functions on the
sphere with respect to this symplectic form is generated by the Poisson brackets between

the coordinate functions

{z.yt =2 Ayzl==2,  {sz}=y (2.1)

We now define the class Q of functions on 5% which are at most quadratic in the coordinates
(z,y,2z). Hence H € Q if and only if H = %Aabx“xb + B.z* + D with A,; a constant
quadratic form, B, a constant {co)vector and D an arbitrary constant. Our aim is to find
a standard form for Hamiltonians in @. To this end we regard Hamiltonians as equivalent
if they induce the same phase diagram, i.e., if the trajectories of their hamiltonian vector
fields can be mapped onto each other by symplectic transformations, where we do not
care about the parametrization. Hence, two Hamiltonians are equivalent if there exists
a symplectic transformation which maps one hamiltonian vector field onto a multiple of
the other Thus, the first question to be answered is, how big is the group of symplectic
transformations which leave Q invariant. We first consider infinitesimal transformations.

Let X = X°O. be a vector field in R®, where X¢(2%) are three functions on R* and

0, 1= 826. This vector field will be tangent to the unit sphere iff LxS « S, Lx being the

Lie derivative along the vector field X. This implies 7432¢ X" = S for some function a.

From this we get that X can be represented on S? in the form

X = ¥, By0. (2.

o
S

for three arbitrary functions B.. Here, the symbol ¢2%¢ denotes the “dual” Levi-Civita
symbol which is defined by the equation €4p.€*¢ = 6. Note, that X vanishes on S?af
B. = Bx,, so there are only essentially two free functions contained m X as it should be
for vector fields on a two-dimensional manifold. Next, we ask which of these vector fields

leave Q invariant. This entails the condition Ly @ C Q. Let H € Q then
LyH = A2 X + B, X" (2.3)

This will be in Q iff X is at most linear 2 which, in view of (2.2) implies that B,

has to be constant. Hence, there exists a three-dimensional space of vector fields on S?

which leaves Q invariant. It is easy to see that this space is generated by the three
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infinitesimal rigid rotations around three orthogonal axes in R®. Hence, the group which
leaves Q invariant is locally isomorphic to the group SO(3) of proper rotations. The group
0O(3) (also locally isomorphic to SO(3)) additionally includes reflections and also leaves Q
invariant. However, while all proper rotations are also symplectic transformations (they
leave € invariant), this is not so for reflections, because they map @ to —Q. Hence, the
subgroup of symplectic transformations leaving Q invariant is exactly the group SO(3).

This has been pointed out already in [5].

1II. The standard form

As we mentioned above we consider Hamiltonians as equivalent iff their hamiltonian vector
fields can be mapped onto multiples of each other by symplectic transformations. This

implies that any H € @ is equivalent to
H + a8, bH. H+c, R*H, (3.1)

where a,b.c € R, b # 0 and R € SO(3). There are ten parameters in H (six in 4,,
three in B, and one in C) and alltogether there are six parameters in the equivalence
rransformations (3.1). So we expect that we will be left with four essential parameters in
the standard form for H.

Let us start with the simplest case: Aq = 0 and B, = 0. Then H is constant and thus
equivalent to zero: H ~ 0. Now let B, be non-vanishing. Then we can use the rotational
freedomn to align B® with the z-axis and the scaling transformation to achieve H ~ :

Let Agp # 0. Then H = %Aabm“wb + Byz® + C. Let Ay, A2, A3 be the three eigenvalues
of A%. We first assume that these are all equal. Then A4, is diagonal and by adding

an appropriate multiple of § we see that Agz%z®

1s equivalent to a constant and hence
to zero. So this brings us back to the cases already discussed. Now if Ay = Ay # Ay
then we can use part of the rotational freedom to put A, into diagonal form. Thus
Agpztz® = (2% + %) + A3z2. Since we can still perform rotations around the z-axis
we can use these to orient the z-axis so that B, is in the zz-plane. Finally, using the

remaining equivalence transformations we find that H ~ 12% + Az + C=.
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In the last case all the eigenvalues are different. Thus, putting A, into diagonal form uses
up all the rotational freedom apart from even permutations of the three axes. The effect

of the equivalence transformations on the eigenvalues is
As A+ a, Ai > bA;. (3.1)

We can use the additive tranformation to put one of the eigenvalues equal to zero. Which
of these we choose depends on the relation between B, and the eigenvectors of A,;. Let us
first assume that B, is proportional to an eigenvector which we can choose (by way of an
even permutation) as pointing along the z-axis. Then we use the shift to put A3 = 0 and
the scaling transformation to put A; = 1. Thus we have found that H ~ %1’2 + 22+ C.
Now, if B, is in the subspace spanned by two eigenvectors then we can choose those as
being the 2- and the y-axis. Again. shifting A3 to zero and dividing by A, (which is
non-zero) we obtain the equivalence H ~ ;2% + 1Ay? + Az + By.

The final case is where B, is generic, i.e., its components along the eigenvectors are all
non-zero. Then we can again put As to zero and scale Ay to unity to obtain H ~ %rz +
%)\yQ + Az + By + Cz.

To summarize then, we have found the following classification

As Ba H

(3) [0] 0

(3) [3] o F

(21) [3] La? 4 Az + Cz (3.3)
(111) [1] 1224+ 102 +C2

(111) [2] 128+ 1Ay’ + Az + By

(111) [3] | 22® + JAy® + Az + By + C2

Here we have indicated in the column below Agp the degeneracies of the spectrum of
Agp: (111). (21) and (3) indicating that A, has three, two or one different eigenvalue(s).
Similarly, [n] in the column below B, mndicates that B, lies in a subspace spanned by n

eigenvectors of Agy.

IV. Conclusion

In this article we have completed the work started in Ref. [5] on the classification of
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quadratic Hamiltonians on the unit sphere. The basic tool for this was the geometry
underlying the structure of the unit sphere as a symplectic manifold. It would be useful
to have the phase portraits for the various classes and to discuss the bifurcations which

might occur. This will be done in some further article.
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