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I. In t roduct ion 

The purpose of this letter is to point out the general form of a certain class of Hamil tonians 
on the unit sphere. We consider Hamil tonians as functions of the cartesian coordinates 
( :r  y, z) in terms of which the unit  sphere is given by the equation x 2 + y2 4- z 2 = 1 The 
('lass of Hamiltonians t reated is then defined as those functions which are at most  quadrat ic  
in these coordinates. Such Hamiltonians occur natural ly  in various problems of mechanics 
[1 3], optics [4] and others. In section 2. we introduce the necessary machinery  and apply 
ir in section 3. to obtain the classification of quadrat ic  Hamil tonians on the unit sphere 
This extends the work in [5] where a classification of b iparametr ic  quadrat ic  Hamiltoma~ls 
has been given. 

II. Preliminaries 

Let S 2 be given as the set of unit  vectors in If{ 3, S 2 = {x ~ : xaxb~]~b = 1}, where 7]~b = 

diag(1, 1, 1) is the s tandard  metric in IR 3 and :c a = (x,y,  z)o Define the flmction S(:r" I = 

~]~bxOx b - 1, then 5 '2 is the zero-set of S. Since it is a two-dimensional manifokt all 

symplectic s tructures on the sphere are proport ional  to the area form of 5 '2 which we take 

as the sympleetic form f / o n  S 2. So f / =  x d y A d z + y d z A d x + z d x A d y  = }%bcx~dx b Adz ° . 
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Here eabc is the a l t e rna t ing  Levi-Civi t£  symbol .  The  Poisson a lgebra  of funct ions on the 

sphere with respect  to this symplec t ic  form is genera ted  by the Poisson brackets  between 

the coord ina te  funct ions 

{ ~ , ~ }  = ~, { ~ , ~ }  = ~, { ~ , ~ }  = y. ( z l /  

We now define the  class Q of funct ions  on S 2 which are at  most  quadra t i c  in the  coordina tes  

( x , y , z ) .  Hence H E Q if and  only if H = 1~  = b ~=abX x + Bax  a + D with A~b a constant  

quadra t i c  form, Ba a cons tan t  (co)vector  and  D an a r b i t r a r y  cons tant .  Our  a im is to find 

a s t a n d a r d  form for Hami l ton ians  in ~ .  To this end we regard  Hami l ton ians  as equivalent 

if they  induce the  stone phase  d iagram,  i.e., if the t r a jec to r ies  of thei r  hami l t on i an  vector 

fields can be m a p p e d  onto each o ther  by symplect ic  t r ans fo rmat ions ,  where we do not 

care abou t  the  p a r a m e t r i z a t i o n .  Hence, two Hami l ton ians  are equivalent  if there  exists 

a symplec t ic  t r ans fo rma t ion  which maps  one hami l t on i an  vector  field onto a mul t ip le  of 

the o ther  Thus,  the  first quest ion to be answered is, how big is the  group of symplect ic  

t r ans fo rmat ions  which leave Q invariant .  We first consider  inf ini tes imal  t ransformat ions .  

Let X = X~0~ be a vector  field in IR :~, where X~(:r ~) are three  funct ions on R :~ and 

0 . This  vector  field will be tangent  to the unit  sphere  iff L x S  ~x S, L x  being the (~c : - -  O x  ~ 

Lie der ivat ive  along the vector  field X.  This  implies  ~]~bxaX b = o~S for some funct ion c~. 

F rom this we get t ha t  X can be represented  on S 2 in the  form 

X = e~b~:r,,BbOc (2.'2) 

for three  a r b i t r a r y  funct ions  B ~  Here, the symbol  e "5~ denotes  the  "dual"  Levi-Civi t5  

symbol  which is defined by the equat ion eabce "b~ = 6. Note~ tha t  X vanishes oi1 S 2 if 

Be = Bx~; so there  are only essential ly two free funct ions conta ined  in X as it should be 

for vector  fields oi1 a two-d imens iona l  manifold.  Next,  we ask which of these vector  fields 

leave Q invariant .  This  entai ls  the condi t ion  L x Q  C c2. Let H E Q then  

L x H  = AabxaX  b + B a X  a. (2.3) 

This  will be in O iff X a is at most  l inear  z a which, in view of (2.2) implies  tha t  Ba 

has to be cons tant .  Hence, there  exists  a th ree -d imens iona l  space of vector  fields on S ~ 

which leaves Q invar iant .  It is easy to see tha t  this space is genera ted  by the three 
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infinitesimal rigid rotat ions a round three or thogonal  axes in N 3. Hence, the group which 

leaves Q invariant is locally isomorphic to the group SO(3)  of proper  rotations.  The group 

O(3) (also locally isomorphic to SO(3))  addit ionally includes reflections and also leaves Q 

invariant. However, while all proper rotat ions are also sympleetic t ransformat ions  ( they 

leave ft invariant), this is not so for reflections, because they map f~ to - f / .  Hence, the 

subgroup of symplectic t ransformat ions  leaving Q invariant is exactly the group SO(3)~ 

This has been pointed out already in [5]. 

III. The s tandard  form 

As we mentioned above we consider Hamiltonians as equivalent iff their hamil tonian vector 

fields can be mapped  onto multiples of each other by symplectic t ransformations.  This 

implies tha t  any H E Q is equivalent to 

H + aS,  bH, H + c, R ' H ,  (3.1) 

where a ,b ,c  C IR, b ~k 0 and R E SO(3). There are ten parameters  in H (six in A,~b, 

r, hree in Ba and one in C) and alltogether there are six parameters  in the equivalence 

t ransformations (3.1). So we expect tha t  we will be left with four essential parameters  in 

tile s tandard  form for H. 

Let us start  with the simplest case: A~b = 0 and Ba = 0. Then  H is constant  and thus 

equivalent to zero: H ~ 0. Now let Bo be non-vanishing. Then  we can use the rotat ional  

freedom to align B a with the z-axis and the scaling t ransformat ion to achieve H ~ :- 

Let .4~b ¢ 0. Then  H = 1 . . . .  b 7 ~ b a :  :c + B~:t ~ + C. Let A1, A2, ,k3 be the three eigenvalues 

of A°b. We first assume that  these are all equal. Then A,b is diagonal and by adding 

an appropr ia te  multiple of S we see that  Aabza:c b is equivalent to a constant  and hence 

to zero. So this brings us back to the cases already discussed. Now if X~ = ;k,~ ¢i Aa 

then we can use part  of the rotat ional  freedom to put  A,b into diagonal form. Thus  

Aabzaa b = AI(Z 2 -b !I 2) -b )~az 2. Since we can still perform rotat ions a round the z-axis 

we can use these to orient the z-axis so that  Ba is in the zz-plane.  Finally, using the 

remaining equivalence t ransformat ions  we find that  H ~ ½ z 2 + A z  + C z. 
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In the last case all the eigenvalues are different. Thus,  put t ing  Aab into diagonal form uses 

up all the rotat ional  freedom apart  from even permuta t ions  of the three axes. The effect 

of the equivalence t ransformations on the eigenvalues is 

Ai ~ Ai + a, Ai ~ bAi. (3.1) 

We can use the additive t ranformat ion  to put  one of the e igenvahes equal to zero. Which 

of these we choose depends on the relation between B~ and the eigenvectors of Aab. Let us 

first assume that  Ba is proport ional  to an eigenvector which we can choose (by way of an 

even permuta t ion)  as pointing along the z-axis, Then we use the shift to put  A3 = 0 and 

1 2 1A 2 -  t h e  scaling t ransformat ion  to put A1 = 1. Thus we have found that  H ~ ~x + ~ y ± Cz. 

Now, if B~, is in the subspace spanned by two eigenvectors then we can choose those as 

being the x- and the y-axis. Again, shifting A3 to zero and dividing by A1 (which i~ 

1 2 1 non-zero) we obtain the equivalence H ~ ~x ÷ ~Ay 2 + Ax + By. 

The final case is where B~ is generic, i.e., its components  along the eigenvectors are all 

non-zero. Then  we can again put  A.3 to zero and scale At to unity to obtain H ~ I 2 ~x + 

2 2Ay + Az + By + Cz, 

To summarize  then, we have found the following classification 

Aab Ba H 

(3) [0] 
(3) [31 

(21) [3] 
(111) [1] 
(111) [2] 
(111) [3] 

0 
2 

½x 2 + Ax + Cz 
1 2 1 2 gx + gay + C z  

1 2 1 2 fx  + flay + A x + B y  
] ,2 1 2 ffa + f A y  + Ax + B y + C z  

(3.3) 

Here we have indicated in the column below Aab the degeneracies of the spect rum of 

Aah: (111), (21) and (3) indicating that  Aab has three, two or one different eigenvalue(s). 

Similarly, [7~] m the colmnn below Be mdicate~ that  B~ lies m a subspace spanned by /z 

eigenvectors of A,b. 

IV. Conclusion 

In this article we have completed the work s tar ted in Ref, [5] on the classification of 
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quadratic Hamiltonians on the unit sphere. The basic tool for this was the geometry 

underlying the structure of the unit sphere as a symplectic manifold. It would be useful 

to have the phase portraits for the various classes and to discuss the bifurcations which 

might occur. This will be done in some further article. 
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