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Local and Global Light Bending in Einstein’s and
other Gravitational Theories
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To remedy a certain confusion in the literature, we stress the distinction
between local and global light bending. Local bending is a purely kine-
matic effect between mutually accelerating reference frames tracking the
same signal, and applies via Einstein’s equivalence principle exactly and
equally in Newton’s, Einstein’s, Nordstrom’s and other gravitational the-
ories, independently of all field equations. Global bending, on the other
hand, arises as an integral of local bending and depends critically on the
conformal spacetime structure and thus on the specific field equations of
a given theory.
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1. INTRODUCTION

The present paper is written in reaction to a false rumor that has a certain
currency in the literature. This asserts that, since Einstein’s equivalence
principle is somewhat vague and heuristic, none of its conclusions can be
fully trusted. In particular, its conclusion about light bending is held to be
contradicted by Nordstrom’s second theory [1] (for a modern account see
Ref. 2) which contains the equivalence principle and is in effect based on
conformally flat spacetime: it is alleged that because of the latter there can
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be no light bending in that theory.® Even Wolfgang Pauli, in his celebrated
1921 encyclopedia article on Relativity [4] makes statements that could be
construed in the above sense.*

To clarify the situation, it is essential to make the distinction between
two types of light bending, local and global. However obvious, this distinc-
tion has rarely been sufficiently stressed,” and this omission may lead to
confusion.

2. LOCAL AND GLOBAL BENDING DISTINGUISHED

To specify local bending, we suppose a freely moving particle (which
could be a photon) to be tracked from two relatively accelerated, nearly
rigid, non-rotating frames of reference, F and F, instantaneously at rest
with respect to each other. Then, if the particle moves uniformly and on
a straight line in F, its spatial path in F is curved, the curvature being
determined by the acceleration of F with respect to F and by the velocity
of the particle with respect to . This effect, first pointed out by Einstein
in his famous review article on special relativity in 1907 [7], is local; it refers
to an arbitrarily small neighbourhood of an event. It holds in Newtonian as
well as in (special and general) relativistic kinematics and is independent
of spacetime curvature. The connection of this kinematical effect with
gravity and light is through Einstein’s equivalence principle as applied to
light: at all events in spacetime there exist local inertial frames (freely
falling nonrotating “Einstein elevators™) in which light travels uniformly
at velocity c¢. In any theory accepting this principle there is local light
bending in all reference frames that accelerate relative to the elevators, in
particular in frames that are fixed in a stationary gravitational field. And
this bending is in principle measurable.

For example, one can hardly interpret N. Straumann’s remarks in Ref. 3, Section
1.2.3, p. 86, otherwise.

Actually, Pauli got it right. In his comments on Nordstrom’s theory, Pauli writes
(loc. cit., p. 179) that in that theory “eine Strahlenablenkung im Schwerefeld findet
nicht statt” — no deflection of light rays in a gravitational field takes place. Later, he
writes (p. 180) that the theory contradicts experience since it gives no “Krimmung
der Lichtstrahlen” — curvature of light rays. The last expression lends itself to
misinterpretation, though from the context (“experience”) it seems clear that Pauli
all along refers to global bending, and then there is no problem.

One of the few writers who have stressed this point is C. M. Will [5]. He writes
(p. 111): “The first [local] contribution to the deflection is universal: it is the same in
any theory compatible with the equivalence principle...” Another is one of us, W.R.
Cf. penultimate paragraph on p. 21 of Ref. 6.
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Figure 1(i).

Figure 1(ii).

Figure 1. The geometry of local path bending in (i) Newtonian and (ii) relativistic
kinematics.
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A four-dimensional view of local bending — in Newton’s theory and in
general relativity, respectively — is shown in Figure 1. A particle or photon
has a (geodesically) straight worldline p, while an accelerated observer has
a curved worldline /. The hyper-“planes” Ilo, IT;, 12 are orthogonal to /
and represent closely successive instants relative to /. They are parallel in
Newton’s theory, but not in relativity. The intersection point P of p with
IT (now regarded as a single plane moving in time) traces out a curve ¢ in IT
whose curvature relative to IT is the measure of what we call local bending.
In relativity the situation is apparently complicated by the non-parallelism
of the IT’s, which Einstein allowed for in a “tortured, yet sophisticated”
(Ref. 8, p. 180) approximate argument without the benefit of 4-geometry
in his 1907 paper [7]. But this turns out to be a “third order” correction
having no effect on the result.

oy w

Figure 2. Global light bending in Schwarzschild spacetime

The second type of bending occurs when a light ray from a distant
source traverses the gravitational field of a massive body and proceeds to
a distant observer. Then, in general, the direction of the outgoing ray
will differ from that of the incoming ray by some angle A Y. In order to
define this deflection angle invariantly in curved spacetime, we consider
first Schwarzschild spacetime. In that case, the spatial path of a light ray
is well defined and has asymptotic “in” and “out” directions, defined in
terms of the limiting positions of radial geodesics ending at points on the
light path as the points are pushed towards infinity; see Figure 2. The
deflection angle depends on the mass of the gravitating object and the
distance of the light path from that object.

The definition of A  can be generalized to those (not necessarily sta-
tionary or symmetrical) weakly asymptotically flat spacetimes as defined
in Ref. 9, sec. 9.6, which admit a unique, continuous null cone at spatial
infinity.
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This bending is clearly global and depends critically on gravity, namely
on the conformal curvature of spacetime implied by the field equation of
a given gravitational theory. Nonvanishing conformal curvature is also
necessary for null cones to develop caustics and thus for the occurence of
gravitational lensing, which is another important manifestation of global
bending.

While in static fields global bending can be regarded as resulting from
a “patching together” (integration) of all local bendings along the path of
a light signal, the patching itself depends on the field equations, i.e. on
how the local frames fit together (space curvature!).

In Nordstrom’s or any other conformally-flat-spacetime theory global
bending is absent. It is for this reason that Nordstrom’s theory has been
recognized (perhaps first by Roman Sexl) as a counterexample to the old
and by now well discredited claim that the equivalence principle by itself
(without field equations) implies the general-relativistic and empirically
confirmed global bending of light.

3. LOCAL BENDING FROM THE ELEVATOR ARGUMENT

To discuss the local bending quantitatively, we introduce some stan-
dard geometric machinery. The center O of the freely falling elevator F is
represented in spacetime by a geodesic worldline / (not shown in Figure 1),
while the origin O of the accelerated frame of reference F is represented
by an arbitrary worldline / that is tangent to / at the event E in question.
At that event, O shall have proper acceleration g, which can be inter-
preted in F as a gravitational field —g. Both frames are coordinatized by
Fermi-transported (Ref. 10, Ch. II, sec. 10) (spatially normal) coordinates,
say x,y,z ¢t and X, 7, %, 7, centered on / and [ respectively. We choose the
spatial coordinates so as to coincide in the hyperplane 7 = ¢ = 0 through
E, with the y-axes in the direction of g there. Then x, y, z, ¢ are as close
to inertial coordinates as one can get in a curved spacetime while X, 7, %, 1
are nonrotating and nearly rigid; it is for this reason that we shall find
it possible to use essentially Newtonian kinematics with small correction
terms.

Suppose now that some particle, e.g. a photon, passing through E,
has zero acceleration relative to the elevator at E, and a velocity, say of
magnitude ¢, in the plane of x and y. Then we can specify its worldline p
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near E by the equations

ctcos D+ O(r),
ctsind+ 0(rY), (D
o),

=
1

<
1

S being the inclination of the path to the “horizontal” in F.
Now from the standard theory of Fermi coordinates (see, for example,
Ref. 10) we have, on /

B = MNap rg, =0, (2)
and, on 7,
G = o Iy =
i _ - .
r;=g .= 0 otherwise. (3)

The transformation law of the I'’s then shows that at E, where
0x%/0xP = 82,‘, we have

Uhr =~ axPoxt )
whence R R
o~ x* ap
s <0 R g8 ®

And this, in turn, implies the validity of the quasi-Newtonian coordinate
transformation at E:

=
I}

X
y— %gz + terms of third and higher order in x, y,z, t. (6)
z

[STEAT]
Il

The transformation of 7 will not be needed. Observe that the relativistic ¢
does then not enter the argument. From (1) and (6) we find for the path
of the particle in F

j=xtand— Te 2gi?sec’ O+ O(3?) (7N
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and thus for its curvature x at £E (X =y =2 = 0)

- d*y/dx?
(1+ (dy/dx)*)*?

1
-2 gcosd, (8)

exactly. So if the proper acceleration of O is interpreted in F as the
negative of a gravitational field (as it would be, for example, for a point
“at rest” in a stationary field) then eq. (8) tells us that the curvature
vector kn (n = unit principal normal) of the spatial path of a free particle
or a photon as observed in F equals ¢ ? times the component of the field
normal to the path.

This is what Einstein showed (almost rigorously) in 1907, except that
we have had the benefit of 4-geometry and Fermi-coordinate theory to
estimate the correction terms.

Note, incidentally, that one characterisation of a local inertial frame
is now seen to be that light paths in all directions have zero curvature.
Conversely the curvature of a curved light signal in a frame F serves as a
measure of the proper acceleration of F.

The formula (8) and its derivation also hold rigorously for local light
bending in Newtonian static gravitational fields, if the kinematic assump-
tion is made that in the one elevator that is momentarily at rest in absolute
space “light corpuscles” always travel with speed ¢. Dynamically, this con-
stancy of ¢ would violate Newtonian energy conservation unless we enrich
the model with Av = m¢* and allow m to vary.

But, as we already said, eq. (8) holds independently of gravity and
of light. It applies to the motion of all free “particles” as observed in
accelerating reference frames, whether it be Newton’s theory, Special Rel-
ativity, General Relativity, or indeed any metric theory of gravity such as
Nordstrom’s.

4. GLOBAL LIGHT BENDING REVISITED

To see intuitively how local bending is related to global bending in
what are perhaps the three most interesting cases — the Newtonian, the
Einsteinian, and the Nordstromian — we can proceed as follows.

First we note that even in Newton’s theory, with “light corpuscles”
moving only approximately at speed ¢, formula (8) will be of sufficient
accuracy in “weak” fields like that of the sun. For example, for a corpuscle

to get to infinity with speed ¢ from near the sun it must start with velocity
¢'=¢ '\’; + vf;;/cz, where vo) = GMu/ Ry is the escape velocity from

the sun. But this makes ¢’ ~ ¢ to rather high accuracy.
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Now imagine the following drawing: In the middle there is a circle
representing the sun, somewhat as in Figure 2. At the top of this circle we
draw a small piece of a tangent line — it will represent a light path grazing
the sun. Then we continue this line in both directions by computation:
using formula (8) for x and the fact that x, by definition, is the arc rate

of turning of the tangent, kx = dy/dl, we can compute Y (/) = I(fxdl
for the angle the curve makes with the horizontal at distance / from the
center. The resulting path turns out to be essentially made up of two
straight-line segments joined near the sun by an arc, somewhat like one
branch of a hyperbola. The angle between the asymptotes, when we use
the data for the sun, is 0”.87 (see Appendix for the calculation). This is
the “Newtonian” global bending of light: it is simply the integral of the
local curvature.

In the case of a static spacetime in general relativity, the curvature of a
light path as given by (8) equals the geodesic curvature of that path with
respect to the spatial Riemannian metric of a + = const. hypersurface,
since in such a spacetime one can choose coordinates (7, ¥*) such that
at an arbitrary fixed point ¥ = 0 and g; = 1, and such that X are
normal coordinates with respect to the spatial metric. Then (7, X*) define
an accelerated frame of reference for that fixed point. Thus, one again
obtains the “Newtonian” contribution to the global deflection angle due
to the integrated curvature. There is, however, a second contribution:® We
consider the bent Newtonian light path to be the central line of a narrow
strip which we imagine to be cut out of the plane. This strip we now
glue onto what is known as Flamm’s Paraboloid (see, for example, Ref. 6).
This is essentially an infinite plane with a circular funnel-shaped hole in
the middle, somewhat like the wide end of a trumpet, and it represents
the real geometry of the central plane of the sun’s field in which the ray
lies. A little experimenting with such a curved strip will quickly convince
the reader that the depression in the middle will impart an extra amount
to the total deflection of the path “from infinity to infinity”. In fact, the
Newtonian deflection is exactly doubled to 1”.74.

In Nordstrom’s theory, the real geometry of such a central plane can-

® When Einstein in 1911 first recognized the possibility of observing global light bending
by the solar gravitational field [11], he was well aware that this effect does not follow
from his equivalence principle alone, which originally referred to static, homogenous
fields only. To obtain the observable deflection angle he used and explicitly stated
the additional assumption that the local bending formula applies pointwise also in an
inhomogenous field, and he assumed implicitly that the spatial metric is euclidian.
This last assumption he “corrected” without comment, almost in passing, in 1915,
using his field equation [12].
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not be represented by a surface of revolution. (Instead of having too much
space near the center, which can funnel out, we now have too little.) Of
course, we know the result in advance from conformal flatness: the global
bending is now zero. More experimenting with the paper strip (holding
its ends to one straight line on a table) will make it plausible that the
Nordstrom 2-geometry of a central “plane” indeed correspons to (part of)
an infinite plane far from the sun, but that near the sun there is a deficit
rather than an excess of area.

To look at Nordstrom’s theory a little more closely, we recall [2] that
its spacetime has a metric of the form

2 2
ds® = *¥/¢ (czaft2 — dx? - dy2 - dzz) =: ¥ 4%, (9)
where @ is essentially the Newtonian potential. (In fact, in the case of
@/ c?

spherical symmetry, e = 1— Gm/rc¢*.) By a well-known theorem,
the null geodesics of conformally equivalent spaces coincide. And since
they are straight lines in d3°, there is no global bending in ds”, ie. in
Nordstrom’s theory. But local bending there is! Suppose (9) refers to a
static field, with @ independent of 7. Since light travels straight in ds’, its
spatial tracks are the straight lines in the metric dI* = dx* + dy* + dz?,
and thus satisfy three equations like

x=al+b. (10)
But these tracks are not geodesics in the spatial lattice of (9) which has

2
metric dI’ = ¥ ¢ (dx*+ dy® + dz*). Geodesics in this lattice must satisfy
three Euler—Lagrange equations like

oL\ oL
— |- —=0, 11
( 6)'6) Ox an
where £ = ezd’/"2 ()'c2+y'2+ z'z) and “” = d/dl = e d)/"261/617; and it is easily

seen that this will not be the case for (10) unless @ =constant, i.e. unless
there is no gravity. Hence in general the tracks have nonvanishing geodesic
curvature; its exact value is given by our eq. (8).

Finally, a few numerical values may be of interest. As is well known,
the value of gon earth in units of years and light-years is = 1. By (8),
therefore, the radius of curvature of a horizontal light path at the earth’s
surface is k” ' ~ 1 light year; for a ray grazing the sun the value is smaller
by a factor of = 1/30. Measuring such a minute curvature locally is,
of course, out of the question. That the integrated effect nevertheless
leads to the observable Einstein angle Ay = 1”7.74 ~ 10" ° is due to the
considerable length d, of a few solar diameters, of that part of the path
which contributes effectively to | kdl. For d ~ 10"km we get Ay ~ xd ~
10012 x 107 = 10" °, the right order of magnitude.
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5. CONCLUSION

In conclusion we note that the local bending of light — though it can
probably never be observed directly because of its smallness — is never-
theless one of only two in principle measurable non-classical gravitational
effects that spring directly and rigorously from the equivalence principle,
without use of field equations. The other is, of course, the by now well-
validated local gravitational frequency-shift (Pound-Rebka—Snider Har-
vard Tower experiment.) Both effects are free of the frequently discussed
difficulties one faces when trying to formulate the equivalence principle
generally and rigorously, as should be clear from our use of the elevator
argument which refers only to a restricted form of the principle. It is the
field equation that determines the spatial geometry of the spatial lattice
in static spacetimes and thus, in conjunction with asymptotic flatness and
local bending, the global deflection of light.
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APPENDIX

To calculate the global “Newtonian” deflection of light, we first ap-
proximate the light path with a straight tangent line to the circle repre-
senting the sun. If O is the angle between that line and the direction of
the field gat any of its points, then g= M sin’ O/R%, in units making
c= G = 1. Also, from (8), kK = gsin and the distance along the line from
the point of tangency is / = R cot S, whence dl = R cosec’Sdd (omitting
signs all along). Thus the Newtonian global bending angle is given by

+m /2
2M 2M
Ay = f Kd]:_\'/_J‘ sinOdd = ——. (4.1)
Re Rs
S 0

This is just half of the general-relativistic value.
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