Physics Letters A 180 (1993) 197-202

PHYSICS LETTERS A

North-Holland

Successive Schwarzschild spheres and other rigidity frontiers
in spherically symmetric dust-plus-vacuum spacetimes

J. Ehlers
Max-Planck-Institut fiir Astrophysik, Karl-Schwarzschild-Strasse 1, W-8046 Garching, Germany

and

W. Rindler
Physics Department, The University of Texas at Dallas, Richardson, TX 75083-0688, USA

Received | June 1993; accepted for publication 16 July 1993
Communicated by J.P. Vigier

Just outside a Schwarzschild sphere concentric rigid test matter spheres can persist while just inside they cannot. We construct
spacetimes containing successive Schwarzschild spheres and show that there exist similar but moving rigidity frontiers between
them. Some of our solutions exemplify inextensible nonempty spacetimes with Kruskal-like topology having two asymptotically
flat ends of possibly different Schwarzschild (= ADM) mass.

1. A paradox: rigidity frontier defined

Consider a Schwarzschild black hole, surrounded
by vacuum and, at a sufficiently large distance, by a
concentric and spherically symmetric infalling shell
of dust of finite thickness. Outside the shell there
is vacuum again. If the shell spawns its own
“Schwarzschild sphere” (a sphere whose history is
a null hypersurface and which maintains a constant
area) off its outer surface, is there not then a para-
dox? For just inside the outer Schwarzschild sphere
a particle cannot remain at rest at constant areal ra-
dtus / (making the area of a sphere /= const equal to
4n/?), while just outside the inner one it can! The
paradox is resolved by the recognition of a spherical
locus travelling inwards within the shell from the
outer to the inner Schwarzschild sphere, and sepa-
rating the regions where particles can or cannot sat-
isfy [, 9, ¢=const. We call such a locus a rigidity fron-
tier: to one side of it a concentric “rigid sphere”
[=const can exist while to the other side it cannot.
(Rigid spheres may here be thought of as lattices
constructed of light rods of constant proper length,
the spheres thus having constant area.)

A trivial example of a rigidity frontier, as we have
noted, is the Schwarzschild sphere /=2m of a
Schwarzschild black hole of mass m. But neither its
nullity (i.e. being a potential light front) nor its being
of constant area are properties necessarily shared by
the general rigidity frontier. For example, in the case
of a collapsing Friedman universe, the rigidity fron-
tier is swept in towards the singularity by the infall-
ing matter at sub- or superluminal speed, as we show
in section 2.

Such loci have been recognized before under
somewhat different guises. In his classic paper on
spherically symmetric dust spacetimes [1], Bondi
discovered the possibility of a “barrier to [radially]
outward-moving rays of light” in a spherically col-
lapsing cloud of dust. Among others, Christodoulou
[2] again noted this barrier as “the locus of turning
points of the outgoing light rays”, and identified it
with the apparent horizon. The latter — in slight ex-
tension of Hawking’s original definition [3] - is
nowadays taken to be the entire boundary of the re-
gion of trapped surfaces. The equivalence of rigidity
frontier, light-turn-around locus and apparent hori-
zon in spherically symmetric spacetimes (in more
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general spacetimes only the apparent horizon is even
defined) stems from their common four-dimen-
sional characterization: They all are the locus = of
events at which the squared normal

L=glal, (D

of the hypercylinders of constant areal radius / van-
ishes, i.c. at which the light-cones touch these cyl-
inders. (See, for example, fig. 1.) On one side of X,
L is positive and the cylinders /=const have no in-
tersection with the light-cones with vertex on them,
while on the other side of Z, L is negative and the
light-cones intersect /=const. We note that for
Schwarzschild spheres the light-turn-around prop-
erty degenerates into light just staying in X.

2. Rigidity frontier in Friedman big-crunch
universes

By way of example, and for later use in this paper,
we shall examine the rigidity frontiers in collapsing
Friedman (homogeneous-isotropic-dust) universes.
Any such universe can be described by a metric of
the form (cf. ref. [4], eq. (9.26))

dr?

1 —kr?

ds2=dt2—R2(t)( +r2(dl92+sin219d¢2)),

(2)

with a time range i, <! <0 and an expansion fac-
tor R(t) that tends to zero with . The curvature in-
dex k can be *1 or 0 and the comoving radial co-
ordinate r has the range 0 <r<oo unless k=1, when
it has a maximum =1 on the cosmic equator (a co-
ordinate singularity). As is customary, we employ
units making c=G=1.
The areal radius / at time ¢ 1s here given by

[=R(t)r (3)
and so, by reference to (1) and (2),
L=r>(R*+k)-—1, (4)

where the overdot denotes d/dz. Consequently, ifthe
factor R?+k is positive, a rigidity frontier (L=0)
exists and is given by

r=(R2+k)~'/2, (5)

But a Friedman universe satisfies the Einstein field
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equations for dust, and these now read (see, for ex-
ample, ref. [4], egs. (9.75) and (9.76))

R2+k=C/R+14R?, (6)
with
C:%npRj”. (7)

Equation (6) shows that for a nonnegative cosmo-
logical constant A, R2+k will be positive and then
a rigidity frontier exists for the entire duration of a
model’s existence. When A is negative, we necessar-
ily have an “oscillating” universe (see ref. [4], fig.
9.9), in which R=0 characterizes the moment r={
of maximal extension. Near either end of such a uni-
verse R—0, the C-term dominates the r.h.s. of eq.
(6), and a rigidity frontier exists. But if k= — I, there
will be a whole period around / when no such fron-
tier exists, while if k=0, the rigidity frontier only
momentarily goes to infinity at /.

For a point riding radially with the locus (5) it is
easily verified that
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and the expression in large parentheses can be pos-
itive or zero or negative. Near a big crunch it is al-
ways ~ 2, as can be verified by noting from (6) that
R—0 implies R?2~ C/R and thus R~constXx >3 It
follows that the rigidity frontier comes into the big
crunch with subluminal speed (in fact with equation
I~3t|). But it can also move superluminally: for
example, near the moment of maximal extension
(R=0) of a flat (k=0) “oscillating” universe the
expression in large parentheses clearly becomes neg-
ative. Figure 1 shows a Friedman big-crunch model
with its rigidity frontier.

The rigidity frontier in its réle as light-turn-around
locus throws some light on the often asked question
to what extent an entire universe collapsing to a big
crunch resembles a star that has collapsed through its
Schwarzschild sphere to form a black hole. While the
actual light-turn-around locus lies inside the col-
lapsing star (we shall see this in the next section) its
surface takes over that réle for light emitted from the
surface, which immediately falls inwards, in terms of
.. In a collapsing universe, on the other hand, the light
emitted by any one of its fundamental particles (gal-
axies) is confined to ever smaller spheres /=const
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Fig. 1. A collapsing Friedman universe, showing radially incoming and outgoing rays of light. Note how the lines /, ¢ (and 8) =const
touch the light-cones originating on them along the rigidity frontier, but lie inside (outside) these cones inside (outside) the frontier.

around that particle, but within these spheres the light
rises first and then falls.

3. Kruskal-like and other dust-plus-vacuum
solutions with successive Schwarzschild spheres

We are now ready to construct spacetimes with
successive Schwarzschild spheres of the kind envis-
aged in the “paradoxical” example of our introduc-
tion. To begin with, let us remove all the matter be-
yond the comoving sphere r=r, of some collapsing
Friedman universe. It is well known [5] that such
removal does not affect the motion of the remaining
dust ball, and that the junction conditions between
the ball and the outside vacuum field can be satisfied
by taking for the latter a Schwarzschild metric with
suitable parameter m, say m=m,. Since the outside
metric then has its rigidity frontier at /=2m,, the
collapsing ball spawns its Schwarzschild sphere at a
cosmic time {, when its rigidity frontier coincides

with that of the outside vacuum, i.e. from (3) and
(5) when

R(1)[R* (1) +k]1~"2=2my . (9)

In conjunction with (6) and (7), where we now as-
sume A=0, this gives

mo=1(3mpo) 12, (10)

po being the density of the dust at time f,. This
Schwarzschild (= ADM) mass of the collapsing ball
agrees with the naive Euclidean value $rn/3p, with
[=2my,, even though in general the geometry inside
the ball is not Euclidean and its kinetic and potential
energies contribute to its total mass.

Our above calculations also make it evident that
the rigidity frontier of a collapsing Friedman uni-
verse is momentarily at the precise location where
the Schwarzschild horizon of the included matter
would be if the exterior matter were instantaneously
replaced with vacuum.

Our next step is to remove an inner ball bounded
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by a comoving sphere r=r,<r,, and to “fool” the
remaining shell into moving as if nothing had hap-
pened, by replacing the missing dust with a concen-
tric black hole of suitable mass m;. This could be
either an ““already collapsed” ball of dust (as in fig.
2) or, alternatively, a Kruskal vacuum black hole
complete with wormhole and a second Schwarz-
schild space of the “far side”. (Figure 3 shows this
situation for a shell that has been cut from an entire
oscillating Friedman universe.) The mass n1, we ex-
pect to be given by a formula analogous to (9),

my =3R(4) [R* (1) +k]'72, (1)

t, now being the time when the inner edge of the shell
meets the Schwarzschild sphere at /=2m,. Indeed,
using once more the methods of ref. [5] it can be
verified that with (11) the junction conditions be-
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tween the shell and the inner vacuum solution are
satisfied.

The rigidity frontier inside the shell comes into ex-
istence when the event horizon emerges from the
outer boundary of the shell. Thereupon it travels
within the shell from r, to r,. It reaches r; precisely
at the moment when the inner boundary of the shell
hits the inner Schwarzschild sphere, for at that mo-
ment it would pass into the now missing central dust
ball. From then into the future no internal rigidity
frontier exists and all rigid (particle or photon)
spheres become impossible inside the outer
Schwarzschild sphere. In particular, the inner
Schwarzschild sphere (a potential “outgoing” pho-
ton sphere ), which up to this instant had ““stood still”
at /=2m,, is now itself swept into the singularity.

As illustrated by fig. 3, the two Schwarzschild ends
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Fig. 2. A collapsing ball of dust surrounded by vacuum and a concentric collapsing shell of dust which is part of the universe of fig. 1.
The (stippled) region where no rigid spheres can persist is bounded by the Schwarzschild spheres /=2m,, /=2m, and by the rigidity

frontiers inside the dust.
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Fig. 3. A Penrose conformal diagram of a zone of an oscillating Friedman universe which is continued both inside and outside by suitable
portions of Kruskal vacuum spacetimes. All +45° lines are potential light paths. The lines / (and ¢, 8) =const have variable slope here;

only where they are steeper than *45° are rigid spheres possible.

of the Kruskal-like solutions we here constructed will
generally have different masses. Of course, these
masses cannot be ascribed directly to the shell, since
they are at least partly caused by the vacuum worm-
hole (Wheeler’s “mass without mass”) and would
simply equalize if the shell were to become infinitely
thin.

An interesting variation of the above shell solution
can be obtained by considering shells with two in-
teriors, into otk of which a Kruskal wormhole lead-
ing to a permanently undisturbed outer Schwarz-

=1
X I=const

r=const
I

schild space can be fitted. We need merely start with
a closed (k=1) oscillating Friedman universe and
cut from 1t a shell containing the equatorial sphere
r=1. Figure 4 is a conformal diagram for such a so-
lution in the symmetric case where both surfaces of
the shell have the same area. Figure 5 shows a typical
constant-time section of this solution, with one spa-
tial dimension suppressed (circles represent spheres ).
Note the swollen Kruskal neck containing the dust
shell between two Schwarzschild spheres, all within
another Kruskal neck that joins two permanently un-

Fig. 4. A variation of the situation of fig. 3: the zone now includes (and is symmetric about) the equatorial sphere r=1. Thus it has two
“insides”, both of which are here joined to Kruskal wormbholes leading to undisturbed outer Schwarzschild spacetimes.
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Rigidity Frontiers

\

Outer
Schwarzschild
Space I

Outer
Schwarzschild
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Fig. 5. A typical spatial (horizontal) section through fig. 4, with one dimension suppressed: circles represent spheres. The two outer
Schwarzschild spheres /=2m ultimately go to infinity, while the two inner ones ultimately get absorbed by the dust, whereupon the entire

wormbhoie shrinks to a line.

disturbed outer Schwarzschild spaces.

The results obtained here for simple Friedman
shells should be representative of what happens in
the case of more general collapsing spherically sym-
metric fluid shells, e.g. shells lacking homogeneity
and possibly having nonvanishing stresses. The sit-
uation can also be generalized by having further fluid
shells of sufficient density to create any number of
consecutive Schwarzschild spheres with - undoubt-
edly - rigidity frontiers travelling between them.

Kiinzle in 1967 [6] raised the question whether
the field equations of general relativity permit com-
plete singularity-free spherically symmetric space-
times containing an exterior Schwarzschild region
and a massive body but no center. He constructed
static configurations of this kind with nonnegative
density and anisotropic stresses and established that
somewhere inside the body the radial tension has to
exceed the density, thus violating the weak, strong
and dominant energy conditions. However, if we
drop Kiinzle’s staticity ansatz, and ask for inexten-
sible rather than complete spacetimes, then our above
solutions in which shells cut from oscillating Fried-
man universes are joined at both sides to suitable
portions of Kruskal spaces, provide examples of the
spacetimes in question. And since they contain only
dust and vacuum, they trivially satisfy all energy
conditions. A more general method for constructing
Kruskal-like dust-plus-vacuum solutions has been
given by Hellaby [7], and infinitely thin shells of
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massless matter (null dust) with Kruskal-like space-
times have been constructed by Dray and 't Hooft

[8].
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