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Abstract

In nonabelian gauge theory the three-gluon vertex function contains impor-
tant structural information, in particular on infrared divergences, and is also
an essential ingredient in the Schwinger-Dyson equations. Much effort has
gone into analyzing its general structure, and at the one-loop level also a
number of explicit computations have been done, using various approaches.
Here we use the string-inspired formalism to unify the calculations of the
scalar, spinor and gluon loop contributions to the one-loop vertex, leading
to an extremely compact representation in all cases. The vertex is computed
fully off-shell and in dimensionally continued form, so that it can be used as
a building block for higher-loop calculations. We find that the Bern-Kosower
loop replacement rules, originally derived for the on-shell case, hold off-shell
as well. We explain the relation of the structure of this representation to
the low-energy effective action, and establish the precise connection with the
standard Ball-Chiu decomposition of the vertex. This allows us also to pre-
dict that the vanishing of the completely antisymmetric coefficient function
S of this decomposition is not a one-loop accident, but persists at higher
loop orders. The sum rule found by Binger and Brodsky, which leads to
the vanishing of the one-loop vertex in N = 4 SYM theory, in the present
approach relates to worldline supersymmetry.
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1. Introduction

The one-particle-irreducible (‘1PI’) off-shell three-gluon Green’s function
(in the following simply called “three-vertex” or “vertex”) is a basic object of
interest in nonabelian gauge theory and quantum chromodynamics. It con-
tains important structural information, in particular on infrared divergences
(see, e.g., [1]) and refs. therein) and is a main ingredient of the Schwinger-
Dyson equations. In perturbation theory it can, computed explicitly to a
certain loop order, in principle be used as a convenient building block for
higher-loop calculations.

However, explicit calculations of the three-vertex have so far been es-
sentially restricted to the one-loop level [2, 3, 4, 5, 6, 7] (at two loops, the
three-gluon vertex has been obtained so far only for some very special mo-
mentum configurations [8, 9, 10]). In this paper we will recalculate, in a
simple and unifying way, the scalar, spinor and gluon loop contributions
to the one-loop three-vertex (with “gluon” we mean any nonabelian gauge
boson). In fig. 1 for definiteness we show the fermion loop contribution.

a1 �1p1 a2 �2p2
a3 �3p3

Figure 1: Three-gluon vertex.

Following the notation of [5, 6], we write

Γa1a2a3µ1µ2µ3(p1, p2, p3) = −igfa1a2a3Γµ1µ2µ3(p1, p2, p3) . (1.1)
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The gluon momenta are ingoing and p1 + p2 + p3 = 0. There are actually
two diagrams differing by the two inequivalent orderings of the three gluons
along the loops (or equivalently by a change of the fermion line orientation).
Those diagrams add to produce a factor of two.

By an analysis of the nonabelian gauge Ward identities, Ball and Chiu
[4] in 1980 found a form factor decomposition of this vertex which is valid
at any order in perturbation theory, and also independent of whether the
particle in the loop is a scalar, fermion or gluon, with the only restriction
that a covariant gauge be used. It can be written as

Γµ1µ2µ3(p1, p2, p3) = A(p21, p
2
2; p

2
3)gµ1µ2(p1 − p2)µ3 +B(p21, p

2
2; p

2
3)gµ1µ2(p1 + p2)µ3

+C(p21, p
2
2; p

2
3)
[
p1µ2p2µ1 − p1 · p2 gµ1µ2

]
(p1 − p2)µ3

+
1

3
S(p21, p

2
2, p

2
3)
[
p1µ3p2µ1p3µ2 + p1µ2p2µ3p3µ1

]
+F (p21, p

2
2; p

2
3)
[
p1µ2p2µ1 − p1 · p2 gµ1µ2

][
p1 · p3 p2µ3 − p2 · p3 p1µ3

]
+H(p21, p

2
2, p

2
3)
{
− gµ1µ2

[
p1µ3p2 · p3 − p2µ3p1 · p3

]
+

1

3

[
p1µ3p2µ1p3µ2 − p1µ2p2µ3p3µ1

]}
+
{

cyclic permutations of (p1, µ1), (p2, µ2), (p3, µ3)
}
.

(1.2)

Here the functions A, C and F are symmetric in the first two arguments,
the function B is antisymmetric in the first two arguments, H is totally
symmetric and S totally antisymmetric with respect to interchange of any
pair of arguments. A different decomposition of the three-gluon vertex was
proposed in [11].

Although we wish to study the off-shell vertex, with our calculation
method it will be convenient to contract it with polarization vectors ε1,2,3.
Those vectors are arbitrary and serve book-keeping purposes only. Thus we
will use (1.2) in the form

εµ11 ε
µ2
2 ε

µ3
3 Γµ1µ2µ3(p1, p2, p3) ≡

{
A(p21, p

2
2; p

2
3)TA +B(p21, p

2
2; p

2
3)TB + C(p21, p

2
2; p

2
3)TC

+F (p21, p
2
2; p

2
3)TF

}
+ {2 cyclic permutations}

+H(p21, p
2
2, p

2
3)TH + S(p21, p

2
2, p

2
3)TS .

(1.3)
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Note that the tensors TF and TH are totally transversal, i.e., they give zero
when any εi is replaced by pi.

For the gluon loop in Feynman gauge and at the one-loop level, Ball and
Chiu also calculated the coefficient functions A to H, up to their constant
terms in the ε-expansion; here it turned out that S actually vanishes. Later
Davydychev, Osland and Tarasov [5] computed this gluon loop contribution
vertex more generally for an arbitrary covariant gauge, and in arbitrary
spacetime dimension.

The quark loop contribution to the vertex was first calculated for mass-
less quarks and in the symmetric limit p21 = p22 = p23 by Celmaster and
Gonsalves [2] and Pascual and Tarrach [3]. For general off-shell momenta
the massless quark loop contribution was obtained in [5], and the massive
quark loop one in [6] (again in arbitrary spacetime dimension).

However, this is not yet the whole story, since for the gluon loop contri-
bution to the vertex there are subtle issues with gauge dependence. When
calculated in the standard formalism using any covariant gauge, it satisfies
rather complicated Slavnov-Taylor identities involving not only the gluon
propagator, but also the ghost propagator and the gluon-ghost-ghost vertex
(see, e.g., [12, 4, 7]). The scalar and fermion loop contributions, on the other
hand, satisfy the simple QED-like Ward identity

Γ(ε3 → p3) = −(p21ε1 · ε2 − p1 · ε1p1 · ε2)
(

1 + Π(p21)
)

+(p22ε1 · ε2 − p2 · ε1p2 · ε2)
(

1 + Π(p22)
)

(1.4)

where Π(p2) is the corresponding vacuum polarization function. Having the
same simple Ward identity also for the gluon loop case is possible, but re-
quires more sophisticated techniques. It can be achieved using either the
background field method (‘BFM’) [13, 14, 15] with Feynman gauge for the
quantum field, or the pinch technique [16, 17]. Although very different,
those two methods turn out to lead to precisely the same Green’s func-
tions [18, 19]. The corresponding three-gluon vertex, also called the “gauge-
invariant vertex”, was studied by Freedman et al. [20] with an emphasis on
its conformal properties. Binger and Brodsky [7] explicitly calculated it in
the transversality-based Ball-Chiu decomposition (1.2), as well as in a dif-
ferent basis related to current conservation. They also calculated the scalar
loop contribution, which enabled them to find certain sum rules between the
massless scalar, spinor and gluon loop contributions. In particular, with all
particles massless and in the adjoint representation they obtain the identity
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3Γscalar + 2Γspinor + Γgluon = 0 (1.5)

(here it is understood that the contribution of the gluon includes the one of
its ghost). This identity is related to supersymmetry, and implies that the
off-shell three-gluon amplitude in N = 4 Super-Yang-Mills theory vanishes
(a statement which, contrary to the vanishing of the gluon propagator in
that theory, does not follow from UV finiteness in an obvious way).

In the present work, we will recalculate the scalar, spinor and gluon
loop contributions to this “gauge-invariant” three-gluon vertex using the
“string-inspired” formalism along the lines of [21, 22, 23, 24, 25, 26, 27] (for
a review, see [28]). Our starting point is the “Bern-Kosower master formula”
[21, 22, 23]:

Γa1...aNscalar [p1, ε1; . . . ; pN , εN ]

= (−ig)N tr(T a1 . . . T aN )(2π)Diδ(
∑

pi)

∫ ∞
0

dT (4πT )−D/2e−m
2T

×
∫ T

0
dτ1

∫ τ1

0
dτ2 . . .

∫ τN−2

0
dτN−1

× exp

{
N∑

i,j=1

[
1

2
GBijpi · pj − iĠBijεi · pj +

1

2
G̈Bijεi · εj

]}∣∣∣∣∣
lin(ε1...εN)

.

(1.6)

As it stands, this formula represents the color-ordered contribution to the
1PI N - gluon amplitude due to a (complex) scalar loop of mass m, calcu-
lated in D spacetime dimensions.The ith gluon carries the momentum pi,
polarization εi and a gauge group generator T ai in some representation. T is
the total proper-time length of the loop, and τi is the position in proper-time
along the loop of gluon i. One integration is redundant and has been elim-
inated by setting τN = 0. The derivation of this formula involved a formal
exponentiation, which needs to be undone by expanding out the exponen-
tial factor and keeping only the terms linear in each of the N polarization
vectors. The color-ordering means that one still has to sum over all (N −1)!
inequivalent orderings of the gluons along the loop to get the full amplitude.
GBij ≡ GB(τi, τj) denotes the “bosonic” worldline Green’s function, defined
by

GB(τ1, τ2) =| τ1 − τ2 | −
(τ1 − τ2)2

T
, (1.7)
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and dots generally denote a derivative acting on the first variable. Explicitly,

ĠB(τ1, τ2) = sign(τ1 − τ2)− 2
(τ1 − τ2)

T
,

G̈B(τ1, τ2) = 2δ(τ1 − τ2)−
2

T
.

(1.8)

The master formula (1.6) was originally derived from string theory [21,
22, 23], starting from a representation of the N -gluon amplitude for the
heterotic string and analyzing its field theory limit. Here the object of
interest was, however, the full N -gluon amplitude on-shell, rather than the
1PI amplitude off-shell. Thus on one hand on-shell conditions were used from
the beginning, already at the string level; on the other hand the fact that
the distinction between reducible and irreducible diagrams emerges only in
the field theory limit made it possible to establish certain formal rules that
allow one to reconstruct, from the formula for the 1PI amplitude (1.6), also
all the missing reducible contributions to the full on-shell matrix element.
Bern and Kosower were moreover able to derive simple “loop replacement
rules”, based on worldsheet supersymmetry, that allow one to obtain from
(1.6) also integral representations for the spinor and gluon loop contributions
to the full on-shell N -gluon amplitudes [21, 22, 23]. We need not discuss
these “Bern-Kosower rules” here in full, but it is important to note that
they all involve integration-by-parts (‘IBP’) in an essential way. Namely,
performing the expansion of the exponential factor in (1.6) will yield an
integrand ∼ PN e(·), where we abbreviated

e(·) := exp

{
1

2

N∑
i,j=1

GBijpi · pj

}
, (1.9)

and PN is a polynomial in ĠBij , G̈Bij and the kinematic invariants. It is
possible to remove all second derivatives G̈Bij appearing in PN by suitable
integrations by parts, leading to a new integrand ∼ QN e(·) which is the real
starting point for the application of the Bern-Kosower rules. Relevant for
the following will be only the “loop replacement rules”. The rule for passing
from the scalar to the spinor loop is easy to state in general: look in QN
for “τ -cycles”, that is, products of ĠBij ’s whose indices form a closed chain.
A τ -cycle can thus be written as ĠBi1i2ĠBi2i3 · · · ĠBini1 (to put it into this
form may require the use of the antisymmetry of ĠB, e.g. ĠB12ĠB12 =
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−ĠB12ĠB21). Then, apart from a global factor of −2 correcting for degrees
of freedom and statistics, the integrand for the spinor loop case can be
obtained from the one for the scalar loop simply by simultaneously replacing
every τ -cycle appearing in QN by

ĠBi1i2ĠBi2i3 · · · ĠBini1 → ĠBi1i2ĠBi2i3 · · · ĠBini1 −GFi1i2GFi2i3 · · ·GFini1 ,
(1.10)

where GF12 ≡ sign(τ1 − τ2) denotes the ‘fermionic’ worldline Green’s func-
tion. The rule for passing from the scalar to the gluon loop is similar but
somewhat more complicated, and will be dealt with in chapter 4 below.

This formalism was used for the first calculation of the one-loop on-shell
QCD five gluon amplitudes [29], but not further employed for such on-shell
multi-gluon amplitude calculations due to the emergence of other extremely
powerful methods for the computation of one-loop on-shell amplitudes such
as generalized unitarity; see, e.g., [30].

In the present paper, we will instead start an effort to exploit the Bern-
Kosower formalism as a tool for the calculation of the one-loop N -gluon
vertex. Thus we will need an off-shell extension of this formalism, which is
provided by its worldline path integral formulation due to Strassler [24, 25].
Here the starting point is the following path integral representation of the
nonabelian one-loop effective action due to a scalar loop [24] (this generalizes
Feynman’s famous 1950 formula for scalar QED [31]),

Γscalar[A] =

∫ ∞
0

dT

T
e−m

2T tr

∫
Dx exp

[
−
∫ T

0
dτ
(1

4
ẋ2 + igẋ ·A

)]
, (1.11)

where the integral

∫
Dx is over the space of all closed trajectories in space-

time with periodicity T in proper-time, xµ(T ) = xµ(0).
Although this approach fell somewhat short of yielding a rederivation

of the full set of Bern-Kosower rules including the non-1PI contributions,
it provides a simple way to see that the master formula (1.6) as it stands
is valid off-shell as a formula for the 1PI part of the N -gluon Greeen’s
function (see [24, 28]). In [25], Strassler moreover started a systematic in-
vestigation of the IBP procedure, and discovered that it bears an interest-
ing connection to gauge invariance. Namely, it so turns out that, once all
G̈Bij ’s have been removed and all terms contributing to a given ‘τ – cycle’
ĠBi1i2ĠBi2i3 · · · ĠBini1 been combined, the sum of their Lorentz factors can
be written as a ‘Lorentz cycle’ Zn, defined by
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Z2(ij) ≡
1

2
tr
(
fifj

)
,

Zn(i1i2 . . . in) ≡ tr
( n∏
j=1

fij

)
(n ≥ 3) ,

(1.12)

where

fµνi ≡ pµi ε
ν
i − ε

µ
i p

ν
i (1.13)

is the momentum space form of the abelian field strength tensor. Zn gen-
eralizes the transversal projector which is familiar from the two-point case.
However, in [25] no systematic way was found to perform the partial inte-
grations at arbitrary N , nor how to preserve the permutation symmetry.
This issue was taken up again in [27], where a definite and computerizable
IBP algorithm was given which works for any N and preserves the full per-
mutation symmetry. This algorithm is still not satisfactory from the point
of view of gauge invariance, though. A given term in the integrand after the
IBP in general has not only cycle factors, but also a leftover, called “tail”,
and the algorithm arranges into field strength tensors only the polarization
vectors contained in the cycles, not the ones in the tails. Only very recently
an extension of the algorithm of [27] was found which, for any N and pre-
serving the permutation invariance, achieves this “covariantization” for all
the polarization vectors, including the ones in tails [32].

This in some sense completes the investigation started in [25]. It also
suggests that, with this optimized IBP at hand, the string-inspired formalism
might become a powerful tool for the computation of the N -vertex. This
is for three reasons: (i) The covariantization means that the bulk integrand
after the IBP is manifestly transversal, so that any nontransversality must
come from boundary terms. Thus the IBP procedure itself should generate
a transversality-based form factor decomposition similar to the Ball-Chiu
one (1.2). (ii) Like the Ball-Chiu one, this decomposition will respect the
cyclic invariance (which is the remnant of the permutation invariance after
the color ordering). (iii) The work of [24] also suggests that the “loop-
replacement” part of the Bern-Kosower rules may hold off-shell for the 1PI
amplitudes, which would reduce the calculational effort very significantly.

Here we will recalculate the three-gluon vertex along the above lines, and
find these expectations to be fully justified. The organization of the paper
is as follows:
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In chapter 2 we will start with the scalar loop contribution to the vertex.
We perform the IBP using the old algorithm of [27] as well as the improved
one of [32]. With both choices we obtain a very compact integral represen-
tation for the vertex, however the new algorithm has the advantage that all
non-transversality is pushed into the boundary (two-point) terms.

In chapters 3 and 4 we show that the “loop replacement rules” indeed
hold for the three-gluon vertex. As is well-known, the Dirac fermion pos-
sesses an N = 1 supersymmetric worldline path integral representation
[33, 34, 35, 36, 37, 38, 39], and the gluon an N = 2 supersymmetric one
[33, 35, 40, 24, 41]. Analogously to the original string-based derivation of
those rules [21, 22, 23], where worldsheet SUSY was identified as the under-
lying symmetry, in the worldline approach the same rules can be related to
this worldline SUSY [24, 28].

In chapter 5 we summarize and unify our results for the scalar, spinor
and gluon loop, and in chapter 6 we establish their exact relation to the
Ball-Chiu decomposition (1.2).

The 1PI vertices hold the same information as the effective action. Nev-
ertheless, contrary to the QED case where there is no essential difference
between the calculation of the effective action and of the off-shell N -photon
amplitudes, in the nonabelian case the effective action is mathematically an
intrinsically more natural object. This is because it can be written in terms
of full field strength tensors

Fµν ≡ F aµνT a = (∂µA
a
ν − ∂νAaµ)T a + ig[AbµT

b, AcνT
c] (1.14)

whereas upon Fourier transformation those inevitably get split up into their
“abelian parts” faµν := ∂µA

a
ν − ∂νAaµ and the commutator terms. This sug-

gests that the analysis of the structure of the 1PI vertices should benefit from
a comparison with the low energy expansion of the effective action, and in-
deed we will show in chapter 7 for the three-point case that in the present
formalism, due to the systematic generation of “abelian” field strength ten-
sors and commutator terms by the IBP, it is possible to keep the relation
between the effective action and the vertex very transparent.

Our conclusions are given in chapter 8. In particular, we give there a
general argument showing that the off-shell validity of the loop replacement
rules extends to the N -vertex. Appendix A lists our conventions.
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2. The scalar loop case

We proceed to the calculation of the (off-shell, 1PI) three-gluon ampli-
tude for a scalar loop. It will be instructive to consider the two-point case
first.

For N = 2 we get from the master formula (1.6), after expanding
out the exponential (in the following we generally omit the global factor
(2π)4iδ(

∑
pi) for energy-momentum conservation),

Γa1a2 [p1, ε1; p2, ε2] = (−ig)2tr(T a1T a2)

∫ ∞
0

dT (4πT )−D/2e−m
2T

×
∫ T

0
dτ1 (−i)2P2 e

GB12p1·p2

(2.1)

where

P2 = ĠB12ε1 · p2ĠB21ε2 · p1 − G̈B12ε1 · ε2 . (2.2)

By an IBP of the term involving G̈B12 we can remove the second derivative
and transform P2 into Q2,

Q2 = ĠB12ĠB21(ε1 · p2ε2 · p1 − ε1 · ε2p1 · p2)

=
1

2
ĠB12ĠB21tr (f1f2) = ĠB12ĠB21Z2(12) . (2.3)

Thus the IBP has allowed us to absorb the polarization vectors into the
“abelian” field strength tensors fi, defined in (1.13), thereby making the
transversality of the two-point function manifest.
At the three-point level, the expansion of (1.6) yields

Γa1a2a3 [p1, ε1; p2, ε2; p3, ε3] = (−ig)3tr(T a1T a2T a3)

∫ ∞
0

dT (4πT )−D/2e−m
2T

×
∫ T

0
dτ1

∫ τ1

0
dτ2 (−i)3P3 e

(·) (2.4)

where
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P3 = ĠB1iε1 · piĠB2jε2 · pjĠB3kε3 · pk − G̈B12ε1 · ε2ĠB3kε3 · pk
−G̈B13ε1 · ε3ĠB2jε2 · pj − G̈B23ε2 · ε3ĠB1iε1 · pi

(2.5)

and we have introduced the convention that repeated indices i, j, k, . . . are to
be summed from 1 to N = 3. To remove, e.g., the term involving G̈B12ĠB31

in the second term of P3, we add the total derivative

− ∂

∂τ2

(
ĠB12ε1 · ε2ĠB31ε3 · p1e(GB12p1·p2+GB13p1·p3+G23p2·p3)

)
. (2.6)

Adding five more similar total derivative terms removes all the G̈B’s. Decom-
posing the new integrand according to its “cycle content”, P3 gets replaced
by Q3 = Q3

3 +Q2
3, where

Q3
3 = ĠB12ĠB23ĠB31Z3(123) ,

Q2
3 = ĠB12ĠB21Z2(12)ĠB3kε3 · pk + ĠB13ĠB31Z2(13)ĠB2jε2 · pj

+ĠB23ĠB32Z2(23)ĠB1iε1 · pi .
(2.7)

Note that Q3
3 contains a τ -cycle of length three and Q2

3 of length two, as
indicated by the upper indices, and that each τ -cycle appears together with
the corresponding “Lorentz-cycle”, as advertised in the introduction. The
terms of Q2

3 have, apart from the cycle, also a “one-tail”, defined by

T1(a) := εa · piĠBai . (2.8)

Although the form of the integrand reached in (2.7) is already suitable for
the application of the Bern-Kosower rules, it is natural to ask whether the
polarization vectors appearing in the tails can also somehow be completed
to field strength tensors. Now in this three-point case there are already
various chains of integrations-by-part that can be used to remove all the
G̈B’s, but if one assumes that the corresponding total derivative terms are
added with constant coefficients (i.e., they involve no functions of momentum
or polarization other than the ones already present in the term which one
wishes to modify), then it is easy to convince oneself that they all lead to
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the same Q3 of (2.7). This applies, in particular, to the “old” IBP procedure
proposed in [27], where this Q3 is obtained by a chain of IBPs different from
the above. Thus a more general type of IBP’s is called for if one wishes to
achieve this “covariantization of the tails”, and in a companion paper [32]
it will be shown how, using total derivative terms with coefficients that do
depend on momenta and polarizations, this can indeed be done for arbitrary
N . Here we need not discuss this matter in more depth, since for N = 3 the
solution of this problem is still very simple. Consider the first term in Q2

3

above, eq. (2.7). Choose a momentum vector r3 such that r3 · p3 6= 0, and
add the total derivative

− r3 · ε3
r3 · p3

Z2(12)
∂

∂τ3

(
ĠB12ĠB21e

(·)
)
. (2.9)

The addition of this term to the first term in Q2
3, and of similar terms to

the second and third one, transforms Q2
3 into

R2
3 := ĠB12ĠB21Z2(12)ĠB3k

r3 · f3 · pk
r3 · p3

+ ĠB13ĠB31Z2(13)ĠB2j
r2 · f2 · pj
r2 · p2

ĠB23ĠB32Z2(23)ĠB1i
r1 · f1 · pi
r1 · p1

.

(2.10)

Thus now all polarization vectors have been absorbed into tensors fi, lead-
ing to manifest transversality. This IBP procedure can be systematized to
obtain closed-form integral representations of the Scalar and Spinor QED
N - photon amplitudes that are manifestly gauge invariant at the integrand
level [32].

Here, however, we are in the nonabelian case, where the color-induced
restriction of the parameter integrations to ordered sectors leads to the ap-
pearance of boundary terms in the IBP [24, 25]. Let us look again at our
total derivative term (2.6). In the abelian case it would be integrated over
the whole circle, and the result would be zero, since the worldline Green’s
function GB(τ1, τ2) has the appropriate periodicity properties to make the
two boundary terms cancel. Here instead we find a nonzero result:

− ĠB12ε1 · ε2ĠB31ε3 · p1e(·)
∣∣∣τ2=τ1
τ2=τ3

= 0 + ĠB13ε1 · ε2ĠB31ε3 · p1eGB13p1·(p2+p3) .

(2.11)
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Now, in the three-point case there are already two inequivalent orderings,
say, (123) and (132); thus the full amplitude will also have a part Γa1a3a2

with color trace tr (T a1T a3T a2), and the same total derivative term will
contribute to it a boundary term

− ĠB12ε1 · ε2ĠB31ε3 · p1e(·)
∣∣∣τ2=τ3
τ2=τ1

= −ĠB13ε1 · ε2ĠB31ε3 · p1eGB13p1·(p2+p3) − 0 .

(2.12)

These two boundary terms would cancel in the abelian case, but now instead
combine to produce a color commutator tr (T a1 [T a2 , T a3 ]). Moreover, among
the other five similar total derivative terms needed to convert P3 into Q3

there is one that differs from (2.6) only by the interchange 2 ↔ 3 . With
some relabeling of integration variables, we can combine the two boundary
terms generated by that term with the two above to the structure

tr (T a1 [T a2 , T a3 ])ε3 · f1 · ε2ĠB12ĠB21 e
GB12p1·(p2+p3) . (2.13)

Comparing with (2.1) and (2.3) we note that this term has a parameter
integral identical to the one of the two-gluon amplitude, except for the re-
placement of p2 by p2 + p3. In terms of the effective action, from (1.14) and
(2.13) its role is evidently to provide a piece needed to extend the “abelian”
Maxwell term tr (fµνf

µν) to the full nonabelian one tr (FµνF
µν). We will

discuss this in more detail in chapter 7 below.
To summarize so far, we can decompose the three-point amplitude for the
scalar loop as (here and in the following we will often suppress the super-
script “a1a2a3”)

Γscalar =
g3

(4π)
D
2

(Γ3
scalar + Γ2

scalar + Γbt
scalar) (2.14)

where (note the global factor of (−i)6 = −1)

Γ3
scalar = −tr(T a1T a2T a3)

∫ ∞
0

dT

T
D
2

e−m
2T

∫ T

0
dτ1

∫ τ1

0
dτ2Q

3
3 e

(·)

−tr(T a1T a3T a2)

∫ ∞
0

dT

T
D
2

e−m
2T

∫ T

0
dτ1

∫ τ1

0
dτ3Q

3
3 e

(·) ,

Γ2
scalar = Γ3

scalar(Q
3
3 → Q2

3) ,

13



Γbt
scalar = −tr(T a1 [T a2 , T a3 ])

∫ ∞
0

dT

T
D
2

e−m
2T

∫ T

0
dτ1ĠB12ĠB21

×
[
ε3 · f1 · ε2 eGB12p1·(p2+p3) + ε1 · f2 · ε3 eGB12p2·(p1+p3)

+ε2 · f3 · ε1 eGB12p3·(p1+p2)
]

(2.15)

(here and in the following it is understood that always the last integration
is eliminated by setting its integration variable equal to zero; e.g., for the
ordering τ1 > τ3 > τ2 we set τ2 = 0).

Alternatively, we can replace Q2
3 by R2

3 in the Γ2
scalar part, but then we

have to also add to Γbt
scalar a term Γ̃bt

scalar containing the further boundary
contributions coming from the total derivative terms of the type (2.9). Col-
lecting those, one finds

Γ̃bt
scalar =

1

2
tr(T a1 [T a2 , T a3 ])

∫ ∞
0

dT

T
D
2

e−m
2T

∫ T

0
dτ1ĠB12ĠB21

×
{[

tr(f1f2)ρ3 − tr(f3f1)ρ2

]
eGB12p1·(p2+p3) +

[
tr(f2f3)ρ1 − tr(f1f2)ρ3

]
eGB12p2·(p1+p3)

+
[
tr(f3f1)ρ2 − tr(f2f3)ρ1

]
eGB12p3·(p1+p2)

}
(2.16)

where we have now abbreviated ρi := ri · εi/ri · pi.

3. The spinor loop case

For the spinor loop case, it will be convenient to use the worldline super
formalism [36, 37, 38, 42, 43, 44, 45]. In this formalism, one defines for each
gluon leg a Grassmann variable θi, θ

2
i = 0, and also considers the polarization

vectors εi as being Grassmann. Thus all ενj , θk, and dθl anticommute with
each other. One further introduces the superderivative

D =
∂

∂θ
− θ ∂

∂τ
(3.1)

and the super proper-time distance

τ̂ij := τi − τj + θiθj . (3.2)

14



Then the Bern-Kosower master formula can be generalized to the case of a
Dirac fermion loop case as follows [42, 28]:

Γa1...aNspinor [p1, ε1; . . . ; pN , εN ] = −2(−ig)N tr(T a1 . . . T aN )

∫ ∞
0

dT

T
(4πT )−

D
2 e−m

2T

×
N∏
k=1

∫ T

0
dτk

∫
dθkδ

(τN
T

)
ϑ(τ̂1N )

N−1∏
l=1

ϑ(τ̂l(l+1))

× exp

{
N∑

i,j=1

[
1

2
Ĝijpi · pj + iDiĜijεi · pj +

1

2
DiDjĜijεi · εj

]}∣∣∣∣∣
lin(ε1...εN)

.

(3.3)

Here ϑ is the Heaviside step function and the Green’s functions GB and GF
appear now combined into the super Green’s function

Ĝ(τi, θi; τj , θj) ≡ GB(τi, τj) + θiθjGF (τi, τj) . (3.4)

The overall sign of (3.3) refers to the standard ordering of the polarization
vectors ε1ε2 . . . εN . Next, note that

ϑ(τ̂ij) = ϑ(τi − τj) + θiθjδ(τi − τj) . (3.5)

The terms arising in the expansion of the spinor loop master formula (3.3)
can thus be divided into three types: (i) terms that were there already
for the scalar loop, (ii) new terms not involving any of the delta functions
appearing in (3.5) and (iii) terms that do involve one such delta function
(not more than one is possible in the three-point case).

Concerning the type (ii) terms, those are known already from the abelian
case, and it was shown in [28] by a direct combinatorial argument, starting
from the abelian version of (3.3), that they can be taken into account cor-
rectly by the “loop replacement rule” eq. (1.10). Thus in our three-point
case their effect is to change each of the “bulk terms” Γ2,3

scalar of (2.15) to

a corresponding Γ2,3
spinor differing from its scalar loop counterpart only by a

change of Q2,3
3 to Q̂2,3

3 , where

Q̂3
3 = (ĠB12ĠB23ĠB31 −GF12GF23GF31)Z3(123) ,

Q̂2
3 = (ĠB12ĠB21 −GF12GF21)Z2(12)ĠB3kε3 · pk + two permutations .

(3.6)
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Terms of type (iii) are specific to the nonabelian case. They would cancel
between adjacent ordered sectors in the abelian case, but now produce color
commutators; thus it is natural to think of them as a fermionic counterpart
to the boundary terms encountered in the scalar loop calculation. Moreover,
it is straightforward to check that they still conform to the same replacement
rule. Taking also the global factor of −2 into account, our final result for
the spinor case becomes

Γspinor = −2
g3

(4π)
D
2

(Γ3
spinor + Γ2

spinor + Γbt
spinor) (3.7)

where

Γ3
spinor = −tr(T a1T a2T a3)

∫ ∞
0

dT

T
D
2

e−m
2T

∫ T

0
dτ1

∫ τ1

0
dτ2 Q̂

3
3|τ3=0 e

(·)

−tr(T a1T a3T a2)

∫ ∞
0

dT

T
D
2

e−m
2T

∫ T

0
dτ1

∫ τ1

0
dτ3 Q̂

3
3|τ2=0 e

(·) ,

Γ2
spinor = Γ3

spinor(Q̂
3
3 → Q̂2

3) ,

Γbt
spinor = −tr(T a1 [T a2 , T a3 ])

∫ ∞
0

dT

T
D
2

e−m
2T

∫ T

0
dτ1(ĠB12ĠB21 −GF12GF21)

×
[
ε3 · f1 · ε2 eGB12p1·(p2+p3) + ε1 · f2 · ε3 eGB12p2·(p1+p3) + ε2 · f3 · ε1 eGB12p3·(p1+p2)

]
.

(3.8)

The alternative form of the scalar loop result, involving R2
3 instead of Q2

3

and the additional boundary contribution Γ̃bt
scalar, can also be generalized to

the spinor loop case simply by an application of the replacement rule (1.10).

4. The gluon loop case

As was already mentioned, the case of the gluon loop is intrinsically more
subtle, because here one has the issue of gauge (in) dependence not only for
the background field but also for the loop particle. The preferred way of
fixing the corresponding ambiguity for the three-vertex leads to the “gauge
invariant vertex”, which obeys the simple Ward identity (1.4). This version
of the vertex is generated by the BFM with Feynman gauge for the quantum
part, and it so happens that the only generalization of the worldline path
integral representation (1.11) of the effective action to the gluon-loop case
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presently known is just based on the BMF with quantum Feynman gauge,
and thus the right starting point for a calculation of the “gauge invariant
vertex”.

This representation was developed in [24, 45] in component fields, and
reformulated in terms of worldline superfields in [44]. Again we will take a
user’s approach here and proceed directly to the relevant master formula;
the interested reader may consult [28] for more details. This master formula
for the (color-ordered) contribution to the off-shell 1PI N -gluon amplitude
due to a gluon loop reads

Γa1...aNgluon [p1, ε1; . . . ; pN , εN ] = −(−ig)N

4
tr(T a1 . . . T aN ) lim

C→∞

∫ ∞
0

dT

T
(4πT )−

D
2 e−CT

×
N∏
k=1

∫ T

0
dτk

∫
dθk δ

(τN
T

)
ϑ(τ̂1N )

N−1∏
l=1

ϑ(τ̂l(l+1))
∑
p=P,A

σpZp

× exp

{
N∑

i,j=1

[
1

2
ĜCp,ijpi · pj + iDiĜ

C
p,ijεi · pj +

1

2
DiDjĜ

C
p,ijεi · εj

]}∣∣∣∣∣
lin(ε1...εN)

.

(4.1)

Here the generators T a are now fixed to be in the adjoint representation.
We have defined σP = 1, σA = −1 (corresponding to periodic (p = P ) and
antiperiodic (p = A) boundary conditions in the original path integral), and

ZA = (2 cosh[CT/2])4 ,

ZP = (2 sinh[CT/2])4 ,

(4.2)

ĜCP,A(τ1, θ1; τ2, θ2) = GB(τ1, τ2) + θ1θ2G
C
P,A(τ1, τ2) , (4.3)

where

GCP (τ1, τ2) = 2sign(τ1 − τ2)
sinh[C(T2 − |τ1 − τ2|)]

sinh[CT/2]
,

GCA(τ1, τ2) = 2sign(τ1 − τ2)
cosh[C(T2 − |τ1 − τ2|)]

cosh[CT/2]
.

(4.4)
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The limit C →∞ and sum
∑

p=P,A serve the purpose to remove unwanted
degrees of freedom circulating in the loop. Now, note that at fixed C, p the
gluon loop master formula (4.1) is isomorphic to the spinor loop one (3.3).
For our three-point case, this formal analogy implies that we can generalize
(3.7) to

Γgluon = −1

4

g3

(4π)D/2
lim
C→∞

∑
p=P,A

σp

(
Γ3
gluon(C, p) + Γ2

gluon(C, p) + Γbt
gluon(C, p)

)
(4.5)

where Γ
(·)
gluon(C, p) differs from the corresponding Γ

(·)
spinor in (3.8) only by a

replacement of m2 by C, GFij by GCp,ij , and the insertion of Zp under the T
integral.

It remains to analyze the limit C → ∞ and the sum over boundary
conditions; however, this has already been done in complete generality in
[24, 45, 28]. For the three different types of terms appearing in (4.5), the
general rules found there give

lim
C→∞

e−CT
∑
p=P,A

σpZp = −8 ,

lim
C→∞

e−CT
∑
p=P,A

σpZpG
C
p,ijG

C
p,ji = 16 ,

lim
C→∞

e−CT
∑
p=P,A

σpZpG
C
p,12G

C
p,23G

C
p,31 = 16 .

(4.6)

From (3.8), (4.5) and (4.6) we now get our final result for the gluon loop,

Γgluon = 2
g3

(4π)D/2
(Γ3

gluon + Γ2
gluon + Γbt

gluon) (4.7)

where, in terms of the spinor loop results of (3.8),

Γ3
gluon = Γ3

spinor(GF12GF23GF31 → −2) ,

Γ2
gluon = Γ2

spinor(GF12GF21 → −2) ,

Γbt
gluon = Γbt

spinor(GF12GF21 → −2) .

(4.8)
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However, we must not forget the ghost loop contribution, which is necessary
for the subtraction of the unphysical degrees of freedom of the gluon in the
loop, and not contained in (4.1). It is equal to the scalar loop vertex (2.14),
but has to be taken with the opposite sign:

Γghost = −Γscalar . (4.9)

Finally, in the gluon loop case, too, we have the option of using R2
3 instead

of Q2
3 with an additional boundary contribution Γ̃bt

gluon, and it is easy to
check that this form of the result still relates to the corresponding one for
the spinor loop result by (4.8).

5. Summary

We will now summarize our results for the scalar, spinor, and gluon
loop cases. We will combine the three cases using a subscript s = 0, 12 , 1,
where Γ0 = Γscalar, Γ 1

2
= Γspinor, Γ1 = Γgluon + Γghost. It will also be

useful to rewrite the multiple τi - integrals in terms of the more standard
Feynman/Schwinger parameter integrals. First, as usual we rescale τi =
Tui, i = 1, 2, 3, after which the T integral can be done trivially. Then we
change from u1, u2, u3 = 0 to α1, α2, α3 via

u1 = α2 + α3 ,

u2 = α3 ,

(5.1)

with α1 + α2 + α3 = 1. Introducing the six parameter integrals

ID3,B(p21, p
2
2, p

2
3) =

∫ 1

0
dα1dα2dα3δ(1− α1 − α2 − α3)

(1− 2α1)(1− 2α2)(1− 2α3)(
m2 + α1α2p21 + α2α3p22 + α1α3p23

)3−D
2

,

ID3,F (p21, p
2
2, p

2
3) = −

∫ 1

0
dα1dα2dα3δ(1− α1 − α2 − α3)

1(
m2 + α1α2p21 + α2α3p22 + α1α3p23

)3−D
2

,

ID2,B(p21, p
2
2, p

2
3) =

∫ 1

0
dα1dα2dα3δ(1− α1 − α2 − α3)

(1− 2α2)
2(1− 2α1)(

m2 + α1α2p21 + α2α3p22 + α1α3p23

)3−D
2

,
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ID2,F (p21, p
2
2, p

2
3) =

∫ 1

0
dα1dα2dα3δ(1− α1 − α2 − α3)

1− 2α1(
m2 + α1α2p21 + α2α3p22 + α1α3p23

)3−D
2

,

IDbt,B(p2) =

∫ 1

0
dα

(1− 2α)2

(m2 + α(1− α)p2)2−
D
2

,

IDbt,F (p2) =

∫ 1

0
dα

1

(m2 + α(1− α)p2)2−
D
2

(5.2)

we can then write:

Γs = ds
g3

(4π)
D
2

(Γ3
s + Γ2

s + Γbt
s ) . (5.3)

Here d0 = d1 = 1, d 1
2

= −2 and

Γ3
0 = −Γ

(
3− D

2

)
tr(T a1T a2T a3)tr (f1f2f3)I

D
3,B(p21, p

2
2, p

2
3) + (a2 ↔ a3, f2 ↔ f3, p2 ↔ p3) ,

Γ2
0 =

1

2
Γ

(
3− D

2

)
tr(T a1T a2T a3)

[
tr (f1f2)(ε3 · p1ID2,B(p21, p

2
2, p

2
3)− ε3 · p2ID2,B(p22, p

2
1, p

2
3))

+tr (f2f3)(ε1 · p2ID2,B(p22, p
2
3, p

2
1)− ε1 · p3ID2,B(p23, p

2
2, p

2
1))

+tr (f3f1)(ε2 · p3ID2,B(p23, p
2
1, p

2
2)− ε2 · p1ID2,B(p21, p

2
3, p

2
2))
]

+(a2 ↔ a3, f2 ↔ f3, ε2 ↔ ε3, p2 ↔ p3) ,

Γbt
0 = Γ

(
2− D

2

)
tr(T a1 [T a2 , T a3 ])

[
ε3 · f1 · ε2IDbt,B(p21) + ε1 · f2 · ε3IDbt,B(p22)

+ε2 · f3 · ε1IDbt,B(p23)
]
,

(5.4)

Γ3
1
2

= −Γ

(
3− D

2

)
tr(T a1T a2T a3)tr (f1f2f3)(I

D
3,B(p21, p

2
2, p

2
3)− ID3,F (p21, p

2
2, p

2
3)) + (2↔ 3) ,

Γ2
1
2

=
1

2
Γ

(
3− D

2

)
tr(T a1T a2T a3)

[
tr (f1f2)

(
ε3 · p1(ID2,B(p21, p

2
2, p

2
3)− ID2,F (p21, p

2
2, p

2
3))

−ε3 · p2(ID2,B(p22, p
2
1, p

2
3)− ID2,F (p22, p

2
1, p

2
3))
)

+ 2 perm.
]
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+(2↔ 3) ,

Γbt
1
2

= Γ

(
2− D

2

)
tr(T a1 [T a2 , T a3 ])

[
ε3 · f1 · ε2(IDbt,B(p21)− IDbt,F (p21)) + 2 perm.

]
,

(5.5)

Γ3
1 = −Γ

(
3− D

2

)
tr(T a1T a2T a3)tr (f1f2f3)(I

D
3,B(p21, p

2
2, p

2
3)− 4ID3,F (p21, p

2
2, p

2
3)) + (2↔ 3) ,

Γ2
1 =

1

2
Γ

(
3− D

2

)
tr(T a1T a2T a3)

[
tr (f1f2)

(
ε3 · p1(ID2,B(p21, p

2
2, p

2
3)− 4ID2,F (p21, p

2
2, p

2
3))

−ε3 · p2(ID2,B(p22, p
2
1, p

2
3)− 4ID2,F (p22, p

2
1, p

2
3))
)

+ 2 perm.
]

+(2↔ 3) ,

Γbt
1 = Γ

(
2− D

2

)
tr(T a1 [T a2 , T a3 ])

[
ε3 · f1 · ε2(IDbt,B(p21)− 4IDbt,F (p21)) + 2 perm.

]
.

(5.6)

Note that the “loop replacement rules” now have assumed the following
form:

Γ
(·)
1
2

= Γ
(·)
0

(
ID(·),B → ID(·),B − I

D
(·),F

)
, (5.7)

Γ
(·)
1 = Γ

(·)
0

(
ID(·),B → ID(·),B − 4ID(·),F

)
. (5.8)

Further, it can be easily checked that, for the bulk terms Γ3,2
(·) , the terms with

the interchange (2 ↔ 3) just provide the other half of a color commutator
[T a2 , T a3 ], so that for them, as for the boundary terms, the color structure
factors out in a tr(T a1 [T a2 , T a3 ]). Therefore we can now use

tr(T a1 [T a2 , T a3 ]) = iC(r)fa1a2a3 (5.9)

to get the expected proportionality to fa1a2a3 . Thus we can write

Γa1a2a3s = ds
g3

(4π)
D
2

tr(T a1 [T a2 , T a3 ])(γ3s + γ2s + γbts )

= ifa1a2a3C(r)ds
g3

(4π)
D
2

(γ3s + γ2s + γbts )

(5.10)
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with

γ30 = −Γ

(
3− D

2

)
tr (f1f2f3)I

D
3,B(p21, p

2
2, p

2
3) ,

γ20 =
1

2
Γ

(
3− D

2

)[
tr (f1f2)

(
ε3 · p1ID2,B(p21, p

2
2, p

2
3)− ε3 · p2ID2,B(p22, p

2
1, p

2
3)
)

+tr (f2f3)
(
ε1 · p2ID2,B(p22, p

2
3, p

2
1)− ε1 · p3ID2,B(p23, p

2
2, p

2
1)
)

+tr (f3f1)
(
ε2 · p3ID2,B(p23, p

2
1, p

2
2)− ε2 · p1ID2,B(p21, p

2
3, p

2
2)
)]
,

γbt0 = Γ

(
2− D

2

)[
ε3 · f1 · ε2IDbt,B(p21) + ε1 · f2 · ε3IDbt,B(p22) + ε2 · f3 · ε1IDbt,B(p23)

]
(5.11)

and the γ
(·)
1
2
,1

’s obtained from the γ
(·)
0 ’s by the rule (5.7) resp. (5.8).

In the version where Q2
3 is traded for R2

3, γ20 gets replaced by

γ̃20 =
1

2
Γ

(
3− D

2

){
tr (f1f2)

[r3 · f3 · p1
r3 · p3

ID2,B(p21, p
2
2, p

2
3)−

r3 · f3 · p2
r3 · p3

ID2,B(p22, p
2
1, p

2
3)
]

+ 2 perm.
}

(5.12)

and one has the additional boundary contribution

γ̃bt0 = −1

2
Γ

(
2− D

2

){[
tr(f1f2)ρ3 − tr(f3f1)ρ2

]
IDbt,B(p21) + 2 perm.

}
.

(5.13)

The rules (5.7) and (5.8) continue to hold.

6. Comparison with previous results

We now study the connection between our results for the three-gluon
vertex and previous work. Since our treatment of the gluon loop case is
equivalent to the use of the BFM with quantum Feynman gauge, we expect
the Binger-Brodsky relation (1.5) to hold; and indeed this relation here
follows immediately from the replacement rules (5.7) and (5.8).

For the same reason, the QED-like Ward identity (1.4) should be ful-
filled not only for the scalar and spinor, but also for the gluon loop case.
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Here it is advantageous to use the version where R2
3 is used instead of Q2

3.
Since R2

3 is transversal, the Ward identity then involves only the boundary
terms γbt0 , γ̃

bt
0 , and can be easily verified using (5.11),(5.13) together with

integral formulas given in [28] that express the three vacuum polarization
tensors Π0, 1

2
,1 in terms of the integrals ID2,B(p2) and ID2,F (p2), with the same

replacement rules (5.7),(5.8) holding:

Π0(p
2) = −C(r)

g2

(4π)D/2
Γ

(
2− D

2

)
IDbt,B(p2) ,

Π 1
2
(p2) = −2Π0(p

2)
(
IDbt,B → IDbt,B − IDbt,F

)
,

Π1(p
2) = Π0(p

2)
(
IDbt,B → IDbt,B − 4IDbt,F

)
.

(6.1)

Next, we proceed to the less straightforward task of relating our repre-
sentation to the Ball-Chiu decomposition. As usual we start with the scalar
case. Comparing our final result (5.10),(5.11) with (1.2), (1.3) we first note
that TH = tr(f1f2f3). Thus we must identify

H(p21, p
2
2, p

2
3) = C(r)

d0g
2

(4π)D/2
Γ

(
3− D

2

)
ID3,B(p21, p

2
2, p

2
3) (6.2)

which is indeed totally symmetric in its arguments.
Further, it is also easy to recognize the functions A and B functions as

symmetric and antisymmetric combinations of the functions contained in
γbt0 :

A(p21, p
2
2; p

2
3) = −C(r)

d0g
2

2(4π)D/2
Γ

(
2− D

2

)[
IDbt,B(p21) + IDbt,B(p22)

]
,

TA = ε1 · ε2(p1 · ε3 − p2 · ε3)
(6.3)

and

B(p21, p
2
2; p

2
3) = −C(r)

d0g
2

2(4π)D/2
Γ

(
2− D

2

)[
IDbt,B(p21)− IDbt,B(p22)

]
,

TB = ε1 · ε2(p1 · ε3 + p2 · ε3) .
(6.4)
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Coming to the structure F , the fact that TF is transversal suggests that we
should again use the transversal structure γ̃20 rather than γ20 ; the question
is, how to choose the still undetermined vectors ri? By inspection one finds
that, with the cyclic choice r1 = p2−p3, r2 = p3−p1, r3 = p1−p2, and using
the antisymmetry of fi, e.g. the first term in braces in (5.12) turns into

tr(f1f2)
p1 · f3 · p2

(p1 − p2) · p3

[
ID2,B(p21, p

2
2, p

2
3)− ID2,B(p22, p

2
1, p

2
3)
]
. (6.5)

Noting that

TF =
1

2
tr(f1f2)p1 · f3 · p2 (6.6)

we are led to set

F (p21, p
2
2; p

2
3) = C(r)

d0g
2

(4π)D/2
Γ

(
3− D

2

)
ID2,B(p21, p

2
2, p

2
3)− ID2,B(p22, p

2
1, p

2
3)

p21 − p22
(6.7)

where we have also used momentum conservation to rewrite

(p1 − p2) · p3 = p22 − p21 . (6.8)

Thus the remaining structure C must match γ̃bt0 , and indeed one has

TC =
1

2
tr(f1f2)(p1 − p2) · ε3 = −1

2
tr(f1f2)ρ3(p

2
1 − p22) (6.9)

leading to the identification

C(p21, p
2
2; p

2
3) = −C(r)

d0g
2

(4π)D/2
Γ

(
2− D

2

)
IDbt,B(p21)− IDbt,B(p22)

p21 − p22
.

(6.10)

Note that F and C are indeed symmetric functions in the first two argu-
ments, and that C is actually independent of p23. Also, A is the only one of
the functions having an UV divergence (since in B the expression in square
brackets is O(ε)), and B and C are simply related by [6]
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2B = (p21 − p22)C . (6.11)

Passing from the scalar to the spinor and gluon loop cases using (5.7) and
(5.8) will obviously not change anything essential in this analysis.

For the (massive) spinor loop case we have also verified the above cor-
respondences explicitly, using the formulas for the functions A to H given
in [6] (to be precise, we have done this check for A,B,C with arbitrary mo-
mentum, for F specializing to p23 = 0 and for H specializing to p21 = p22 = 0.
This provides also a check on the much more involved calculations of [6]).

7. Comparison with the effective action

It will be instructive to compare our results for the three-point amplitude
with the low energy expansion of the one-loop QCD effective action induced
by a loop particle of mass m. The general form of this expansion is

Γscalar[F ] =

∫ ∞
0

dT

T

e−m
2T

(4πT )D/2
tr

∫
dx0

∞∑
n=2

(−T )n

n!
On[F ] , (7.1)

where On(F ) is a Lorentz and gauge invariant expression of mass dimension
2n. For the scalar loop, in [46, 47] this expansion was obtained to order
O(T 6). To see the relation with our form factor decomposition, it will be
sufficient to consider the n = 2 and n = 3 terms:

O2 = −1

6
g2FµνFµν ,

O3 = − 2

15
ig3 FκλFλµFµκ −

1

20
g2DλFµνD

λFµν .

(7.2)

Here changing from the scalar to the spinor or gluon loop will change only
the coefficients in the expansion (7.1), not its structure. Comparing with,
e.g., (5.11) we easily recognize the correspondences

γ3(·) ↔ F λ
κ F µ

λ F κ
µ = fλκ f

µ
λ f

κ
µ + higher point terms ,

γ2(·) ↔ (∂ + ig A)F (∂︸ ︷︷ ︸+igA)F ,

γbt(·) ↔ (f + ig [A,A])(f︸ ︷︷ ︸+ig[A,A]) .

(7.3)
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Thus all the pieces of our form factor decomposition have a simple meaning
in terms of the effective action. Note that commutator terms are always
generated by boundary terms in the IBP, and that our three-point results
allow us to predict certain terms in the higher-point gluon amplitudes using
the knowledge that any “abelian” field strength tensor in the nonabelian
effective action must appear as part of the full nonabelian field strength
tensor including the commutator term. Note also that the tensor structure
multiplying the function S in the Ball-Chiu decomposition does not corre-
spond to anything in the expansion (7.1), which is one way of understanding
why S turned out to be zero in the calculations of [4, 6]. Since the structure
of the effective action is loop-independent, this observation allows us also to
predict that the vanishing of S is not a one-loop accident, and will be found
to persist at higher loop orders.

8. Conclusions

We have recalculated here the one-loop QCD three-gluon vertex for the
scalar, fermion and gluon loop cases in a unifying way, achieving a compact
result involving only six different parameter integrals. We have established
the precise relation of this result to the standard Ball-Chiu decomposition,
and also verified this relation for the massive spinor loop case using the
explicit results of [6].

As was mentioned already in the introduction, even in a four-dimensional
calculation the use of the vertex as a building block for higher loop calcu-
lations will in most cases make it necessary to know its D - dimensional
continuation. For that reason we have have kept the full D - dependence as
much as possible. In fact, our result for the scalar loop is complete in this
sense and holds for arbitrary D. And also in the spinor loop case the only
place where we have used D = 4 is in the normalization of the path integral,
which however correponds to the usual fixing of trγ1l = 4 in dimensional
regularization. It is only in the gluon loop case where D = 4 has been used
in a nontrivial way, namely already in the derivation of (4.1). Here a true
extension to other space-time dimensions would require some more work.
For the purpose of dimensional regularization it is, however, sufficient to
note that our result for the gluon loop case corresponds to the dimensional
reduction variant of dimensional regularization proposed in [23].

In this calculation, three main advantages of our approach have emerged.
First, the IBP procedure generates the standard transversality-based

Ball-Chiu decomposition of the vertex almost automatically, bypassing the
usual tedious analysis of the nonabelian Ward identities. Let us recapitulate
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how this happens: for the bulk terms, in the IBP all polarization vectors
get absorbed into “abelian” field strength tensors fµνi , and thus become
transversal. In the abelian case, there would be no boundary contributions,
and one would have achieved manifest transversality at the integrand level.
In the nonabelian case there are boundary terms, and those combine into
commutator terms that carry all non-transversality, and generally contribute
to the covariantization of some lower-point bulk term.

Second, this emergence of field strength tensors in the IBP allows one to
maintain a close relation between the momentum space amplitudes and the
low energy effective action, and thus to profit from the superior organization
of the latter with respect to gauge invariance. This has led us to predict that
the vanishing of the coefficient function S of the Ball-Chiu decomposition
will be found to persist beyond one-loop.

Third, the spinor and gluon loop contributions can be obtained from the
scalar loop one trivially using the off-shell extended Bern-Kosower “loop
replacement rules” (5.7),(5.8) and. The gluon loop result corresponds to
a field theory calculation in the BFM with quantum Feynman gauge, and
thus to the preferred “gauge-invariant vertex” which fulfills the simple Ward
identity (1.4) and the SUSY-related identity (1.5). The latter here appears
as a simple consequence of the replacement rules and thus relates to worldline
SUSY.

Concerning the last point, in the calculation presented here we have ver-
ified, rather than assumed, the validity of this off-shell extension. Had we
taken the validity of the replacement rules off-shell for granted from the be-
ginning, our method of calculating the three-point vertex would have been
even much more efficient; in fact, incomparably more efficient than the com-
bined effort of [4, 6, 7] that was necessary to arrive at an explicit result for
the scalar, spinor and gluon loop contributions to the three-gluon vertex
with standard field theory methods. Before applying it to higher-point ver-
tices, it will thus be important to show the validity of this off-shell extension
in general. With hindsight, this can be done as follows: it is sufficient to
show the validity of the replacement rules for the effective action. Let us
consider the spinor loop case first. Here it was shown in [28] that the replace-
ment rule in the abelian case holds for the off-shell N - photon amplitudes.
Thus it holds also for the abelian effective action. The nonabelian effective
action in the low energy expansion can be decomposed into terms that are
Lorentz scalars built from covariant derivatives and field strength tensors.
Each such term in general will, after Fourier transformation, contribute to
momentum space functions with various different numbers of legs; e.g., the
term tr (DµFαβD

µFαβ) will contribute to the N - point functions with N
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between two and six. Generally, each such term in the nonabelian effective
Lagrangian has a “core” term, which has a counterpart already in the abelian
case (in the example this would be ∂µfαβ∂

µfαβ) and a number of “covari-
antizing” terms that all involve commutators, and belong to amplitudes with
more legs than the core term. For the core term the IBP leads from bulk
term to bulk term and is formally identical to the abelian case, so that the
replacement rule holds. But a core term in the effective action appears com-
bined with all its covariantizing terms, all sharing the same coefficient. The
replacement rule induces a change of this coefficient defined through a cycle
ĠBi1i2ĠBi2i3 · · · ĠBini1 which is multiplied by a tr (fi1fi2 · · · fin) that in the
effective action corresponds to a tr (fn). Consistency is therefore possible
only if the same change of coefficient applies also to all the terms where one
or several of the factors fµν are replaced by a [A,A] term, or where a ∂
acting on some F is replaced by a [A,F ]. This settles the spinor loop case.
For the gluon loop case, it is sufficient to remember that the correspond-
ing master formula before taking the limit C → ∞ and the projector sum∑

p=P,A, eq. (4.1), is still isomorphic to the spinor loop one (3.3).
Based on this general validity of the off-shell replacement rules and the

general IBP algorithm developed in [32] we anticipate that with the method
presented here a first explicit calculation of the four-point vertex should be
well in reach.

Less straightforward but very interesting would be the extension of the
formalism presented here to the gravitational case. The one-loop three-
graviton vertices have already been extensively studied for their conformal
properties (see [52] and refs. therein). As far as external gravitons are
concerned, suitable string-inspired representations exist already for the (off-
shell) one-loop N - graviton amplitudes with a scalar or spinor loop [48, 49]
as well as for a photon loop [50, 51]. However, a suitable IBP procedure still
remains to be developed.
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Appendix A. Summary of Conventions

We work with the (−+++) metric. The non-abelian covariant derivative
is Dµ ≡ ∂µ+ igAaµT

a, with [T a, T b] = ifabcT c. The adjoint representation is

given by (T a)bc = −ifabc. The normalization of the generators is tr(T aT b) =
C(r)δab, where for SU(N) one has C(N) = 1

2 for the fundamental and
C(G) = N for the adjoint representation.
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