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In the edge of a high-confinement mode (H-mode) plasma in present large tokamaks the
width of the transport barrier region (pedestal) with large density and temperature gradients
can be as small as a poloidal ion gyro radius [1]. The strong pressure gradient does not only
create a large bootstrap current, but would also cause a large toroidal plasma rotation if it
was not compensated to a high degree by a strong radial electric field. The surface averaged
parallel velocity is given by [2,3]
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where ) is the poloidal flux. The factor S is unity in the standard neoclassical theory and
was introduced to describe the effect of the orbit squeezing due to a strong gradient of the
radial electric field on the plasma flow [3]. S is defined as S = 1 + d*®/dy*(RB,)?*/(2B)
= 1 —dE,/dr/(Q,B,), where B, is the poloidal magnetic field and €, is the cyclotron
frequency for this field. Introducing the poloidal gyro radius, we can write S ~ 1 +
(ppi/LE) (|E:|/Bpvri), where Lg is the gradient length of E,. In the pedestal we have
Lg < Ppi and E, / B, N vr;, hence S can be considerably larger than unity.

With an inverse aspect ratio of € ~ 0.3 the scale length of the radial variations of density,
temperature and electric field is of the order of the thermal ion banana orbit width, and a
basic scaling assumption of the standard neoclassical theory is not valid. Furthermore, the
strong electric field is highly localised, such that S also varys on the same radial length
scale. Hence, the validity for this part of the plasma of the neoclassical theory and of more
recent theories of the effect of orbit squeezing has to be examined. Therefore we studied
the neoclassical physics in the plasma edge with guiding-centre particle simulations, which
are well suited for capturing the effects due to deviation of the particle orbits from the flux
surfaces. The delta-f code HAGIS [4] with a Monte Carlo model of Coulomb collisions [5]
is employed. The distribution function is split into a local Maxwellian f;, and the deviation
from this Maxwellian, 0f. The latter is represented by marker particles. The equations of
motion of the particles are integrated along the particle orbits, which are the characteristic

equations of the drift-kinetic equation,
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Here, v = v)b + vy is the guiding-centre velocity with parallel component v, b = B/B,
and drift velocity vy = v, + vp +vp = B x (mvj(b- V)b + uVB + eV®)/eB?,
p = mo? /2B is the magnetic moment, ®(r) is the potential, and C(f) is the collision
operator. Pitch-angle scattering with the velocity dependent Coulomb collision frequency is
applied and a correction term is added to the particle weights to ensure momentum con-
servation. For given radial profiles of the initial flux surface averages of density, tem-
perature and electric potential, the distribution functions of ions and electrons are deter-
mined in two steps [5]. In the first step for obtaining the ion distribution function the
ion-electron collisions can be neglected since the momentum loss caused by them is very
small. Ton density and temperature (normally they deviate from those assumed for f, since
this is not a solution to the drift-kinetic equation), and the parallel ion velocity are com-
puted. In a second step including the friction between electrons and ions by electron-ion
collisions the solution for the electrons is obtained and the bootstrap current is obtained.
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Profiles of density, temperature and electric field obtained from an ASDEX Upgrade dis-
charge (#23227) are shown in Fig. 1 versus p = \/Wedge. At the position of the steep
gradient the electric field exceeds Vp/en. These data were taken for a simulation (density
and temperature profiles for defining f,). The profiles evolve away from the initial values
(Fig. 2) since the simulation only contains neoclassical physics and since there are no sources
included (duration about 10 collision times, the radial range covered is larger than shown in
the figures, the temperature decreases at smaller radii). The flux surface averaged parallel
ion velocity deviates from the result of neoclassical theory, Eq. (1), as shown in Fig. 3, even
if the effect of orbit squeezing is accounted for (factor .S in Eq. (1)). This could be related to
the big size of the trapped ion orbit, which is indicated in the figure. The poloidal velocity
(the guiding-centre part is obtained from the simulation and then the diamagnetic velocity is
added) is considerably larger than according to the standard neoclassical theory, and closer
to the predicted value with orbit squeezing taken into account [3],
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Figs. 2a,b (left): Evolution of the ion density and temperature (dashed line: initial values).
Figs. 3a,b (right): Parallel velocity (red) and poloidal velocity (yellow) compared with (blue)
the corresponding neoclassical values, Egs. (1,3), with (dashed) and without (solid) orbit squeez-
ing effect. The orbit width is indicated by vertical lines.
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Figs. 4a,b (left): Parallel velocity of trapped ions at their (poloidal) turning point normalised to
the ion thermal velocity, £,/ Byvy, (blue) and fraction of trapped ions (red, flux surface average)
with (solid) and without (dashed) el. field. Figs. Sa,b (right): Bootstrap current (red) compared
with the neoclassical theory (blue), and variation of parallel current on the flux surface (in bins of
width 0.27) at four poloidal angles, 0 (red), 0.4 (green), 0.677 (yellow), 7 (blue).

In presence of an electric field, the parallel velocity of trapped particles at their (poloidal)
turning point is E,/B,. Here, at the position of the strong pressure gradient, this velocity
is close to the ion thermal velocity (cf. Fig. 4a). Hence, the trapping region in phase space
moves away from the bulk of the distribution function, and the fraction of trapped ions is
strongly decreased as shown in Fig. 4b (the surface averaged fraction of trapped ions is
shown; the parameter f; of neoclassical theory, which gives the fraction of trapped particle
orbits at the outer midplane, is about 0.7).

In Fig. 5a the result for the bootstrap current are shown. The current is different from
the neoclassical value, but the deviation is not what is expected from the orbit squeezing
effect, which is supposed to lead to a reduction of the current. Where the ion flow (Fig. 3a)
is smaller (larger) than expected from Eq. (1), the bootstrap current is also smaller (larger)
than in theory. However, a consistent picture is still missing, since these results were ob-
tained with the standard version of HAGIS, where the marker particles are lost at p = 1. Due

to the large pressure gradient, the poloidal variation of the parallel current (Pfirsch-Schliiter
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Figs. 7a,b (left): Parallel velocity (red) compared with neoclassical theory (blue) with (dashed)
and without (solid) orbit squeezing effect. The orbit width is indicated by vertical lines. Poloidal
velocity (yellow) compared with neoclassical theory (blue) without (solid) and with (dashed) orbit
squeezing effect. Figs. 8a,b (right): Bootstrap current (red) compared with the neoclassical theory

(blue), and variation of the parallel current on the flux surface (same colors as in Fig. 7b).

current) is large: the current ranges from close to zero at the inner midplane to twice the
average at the outer midplane.

For comparison, we also made simulations with steep gradients further inwards in the
plasma, such that orbit losses do not play a role. The results of such a simulation with (de-
liberately assumed) similar profiles, gradients and electric field are shown in figures 6-8. In
this case there are no orbit losses. The plasma flow is closer to the neoclassical value than in
the first case, but there is again a deviation and the expected effect of orbit squeezing is not
present. However, this effect would be very localised as shown by the green line in Fig 7a.
The parallel velocity has a local minimum similar to what is seen in the experiment. The
poloidal velocity is again increased, the peak is shifted towards a larger radius compared to
the neoclassical theory with orbit squeezing. The bootstrap current is close to the neoclassi-
cal result, in contrast to the result for the edge barrier case. This hints on a possible effect of
the (too high) orbit losses on the result presented above.
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