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Introduction

A future fusion power plant must reach a sufficiently high β = 2µ0〈p〉/〈B
2〉 in order to be

efficient and economically attractive. In advanced tokamak scenarios, however, external kink

instabilities impose a hard limit on the achievable β . While a superconducting wall sufficiently

close to the plasma would stabilize these kink modes and thus substantially increase the β -

limit, the modes become unstable again if the wall has non-zero resistivity. These instabilities

are called resistive wall modes (RWMs) and grow sufficiently slowly so that their active stabi-

lization using magnetic field sensors, additional control coils, and suitable feedback controller

logics becomes technologically feasible. Here, a novel methodology for the computational de-

sign of robust RWM controllers is introduced and applied to an ITER-relevant scenario. The

control system is represented by a parametrized matrix, whose robust stability properties are

optimized under variations of the parameters. The robust stability concept is based upon matrix

pseudospectra and thereby accounts for the sensitivity of eigenvalues. Futhermore, the possible

transient growth of perturbations is diagnosed. Four different feedback coil systems proposed

for ITER are analyzed for their capability of stabilizing RWMs robustly while preventing too

large transient amplifications.

Method

The basic computational tool is the 3D ideal magnetohydrodynamics (MHD) stability code

STARWALL, which is specialized to resistive wall modes [1, 3]. The plasma dynamics is lin-

earized about a prescribed ideal MHD equilibrium. The dynamics of the entire system composed

of the plasma, the conducting wall, and the feedback coils is governed by

ẋ = Ax, (1)

where x ∈
 N is the state vector of the system; the components of x describe the coil currents

and the current potential values at the nodes of the wall mesh. The system matrix is given by

A = ( ! + τF)−1(A0 + F), i. e., it is composed of an “open-loop” part A0 and a feedback part

F while accounting for a small, technically caused time delay τ between sensors and actuators.
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Substituting a time dependence x∼ eγt , one obtains the eigenvalue problem

Axi = γixi, i = 1, . . . ,N. (2)

The system is stable if and only if all eigenvalues of A have negative real parts. Without feed-

back (F = 0), all eigenvalues are real, and positive ones belong to unstable RWMs. The control

problem consists in choosing proper feedback logics (F 6= 0) so that A becomes stable.

The feedback logics is implemeted in terms of a gain matrix which maps the sensor signal

vector onto a vector of voltages to be applied to the coils. To construct the gain matrix, all

coils and sensors, respectively, are subdivided into one or more toroidal arrays. Each coil array

k (k = 1, . . . ,K) is linked to each sensor array l (l = 1, . . . ,L) via a gain submatrix Gkl . As a

means to increase the coil’s time constants, the current flowing in each coil in the k-th array

is fed back onto that coil’s voltage by an additional gain factor −R̃k which is equal for each

member of the array. Summarizing, for k = 1, . . . ,K, the voltage vector

uk =
L

∑
l=1

Gklsl− R̃kik, (3)

is applied to the coils in the k-th toroidal array, where ik is the vector of currents already flowing

in these coils, and sl is the signal vector measured by the l-th sensor array.

The gain submatrices Gkl , k = 1, . . . ,K, l = 1, . . . ,L are constructed in such a way that each

coil array produces a field with toroidal Fourier index n in response to measured perturbations

with the same n:

Gkl = ∑
n

(

αkl
n Gkl

n,α +β kl
n Gkl

n,β

)

, (4)

where the sum runs over all n’s to be controlled. The elements of Gkl
n,α and Gkl

n,β are given by

(Gkl
n,α)i j = cos(nϕkl

i j ), (Gkl
n,β )i j = sin(nϕkl

i j ), (5)

where ϕkl
i j is the toroidal angle between coil i of coil array k and sensor j of sensor array l. The

values of the free parameters αkl
n , β kl

n , R̃k uniquely determine the feedback matrix F and need

to be optimized to achieve robust stabilization of A.

Using a reduced state-space model of A, a robustly stabilizing parameter set is determined in

two steps using the eigenvalue optimization code OPTIM [2]. First, A is stabilized by minimiz-

ing the spectral abscissa

σ(A) = max
i=1,...,N

Re γi, (6)

under parameter variations. As soon as A becomes stable, the optimization of σ(A) is stopped,

and the stability is made robust by maximizing the complex stability radius

ρ(A) = sup{ε : A+E is stable ∀ E ∈  N×N with ||E||2 < ε}. (7)
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Finally, after an optimal A has been found, the possible transient amplification of initial pertur-

bations is diagnosed by computing ||etA||2 curves over an appropriate time interval 0≤ t ≤ T .

Furthermore, ε-pseudospectra

γε(A) = {z ∈  : z is an eigenvalue of A+E for some E ∈  N×N with ||E||2 < ε} (8)

are plotted. By means of γε(A), the sensitivity of the spectrum of A with respect to

(a) (b)

(c) (d)

Figure 1: ITER conducting wall model and the side correction coil set

(a), the alternative RWM coil set (b), the port plug coil set (c), and the

in-vessel coil set (d).

system perturbations (model

uncertainties, imperfections,

etc.) of “strength” ε can

be inferred. Both ρ(A) and

||etA||2 are closely related to

γε(A) [4].

Coil systems comparison

The methodology is ap-

plied to an ITER steady

state scenario 4 equilibrium

with βN=2.67. In absence of

a conducting wall, the equi-

librium is unstable with re-

spect to an n = 1 external

kink, but stable to higher n’s. A realistic conducting wall geometry and four different sets of

feedback coils, denoted (a) through (d) hereafter, are used (see Fig. 1). In all cases, a single

toroidal array of 18 equidistant sensors, positioned between the equatorial ports and inside, but

very close to the interior wall and measuring the vertical component of the magnetic field per-

turbation, is used. For each coil set, the optimization of the objective functions (6) and (7) is

carried out subject to constraints limiting the voltage gains, the “saturation current gains”, and

the coil time constant reciprocals. The current gain limit is set approximately equal to twice the
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Figure 2: ||etA||2 curves for the four coil sets (a) - (d).
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current gain necessary for stabilization, respectively. A time delay τ = 0.1 ms is used.
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Figure 3: Boundaries of γε(A) for the cases (a) - (d), with ε values as

given by the contour labels; black dots correspond to eigenvalues.

The optimal ρ(A) values

are 0.40 s−1 (a), 0.57 s−1

(b), 1.29 s−1 (c), and 2.95

s−1 (d). It follows that the

in-vessel coils provide by

far the most robust stabi-

lization. As visible from the

||etA||2 plots (Fig. 2), they

also produce the most favor-

able transient behavior, al-

though there is still an ampli-

fication by a factor of about

28. There are, however, pos-

sibilities to reduce the tran-

sient peak, in general [2]. For

all four coil systems, respectively, the γε(A) plots (Fig. 3) provide insight into the sensitivity

of individual eigenvalues as well as into the sensitivity of the system’s stability as a whole.

Namely, γε(A) overlaps the right complex halfplane for ε > ρ(A).
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