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In the context of Bayesian Probability Theory, we discuss a model for estimating the plasma ion effective
charge Z.g, integrating data from both bremsstrahlung spectroscopy and individual impurity concentrations
obtained via Charge Exchange Spectroscopy (CXS). The validity of the model, taking into account statistical
as well as systematic uncertainties, is shown via the Deviance Information Criterion. The consistency of
the continuum and CXS data regarding Z.g is improved, as measured by the symmetrized Kullback-Leibler
divergence and the geodesic distance between the respective Z.g marginal posterior densities.

I. INTRODUCTION

In this paper we apply the framework of Integrated
Data Analysis (IDA), using Bayesian Probability The-
ory (BPT)!, to calculate probabilities associated to the
plasma ion effective charge Z.g. There is a long-standing
issue of inconsistency due to systematic uncertainties be-
tween the Z.g value assessed from bremsstrahlung mea-
surements (‘continuum Z.g') and the Zqg calculated from
impurity density measurements obtained via Charge Ex-
change Spectroscopy (CXS) (‘CX Z.g’). This is a general
problem observed at various machines?. A step towards
an initial reconciliation of the two Z.g estimates through
the combined analysis of local continuum and CX data,
was described in'. In the present paper, we build on the
work in! by addressing the issues of model selection and
consistency measurement. These issues are of fundamen-
tal interest in probabilistic data analysis. The purpose
of this paper is to demonstrate their relevance to fusion
data analysis through the case study of Z.g estimation.

II. INTEGRATED Z.4 ESTIMATION

We discussed the general problem of discrepancy of the
continuum and CX Z.g in detail in'. A simple forward
model and an associated probabilistic model were pro-
posed to estimate Z.g from both the continuum and CX
data. Two artificially constructed local plasma quanti-
ties € and § were considered as measurements. Apart
from Z.g, also the electron density n. was treated as a
quantity of interest due to its strong correlation with Z.g.
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The following model was proposed:

€= SeneQZeﬁ + Ve
0= S(Sne(Zeff — 1) + s . (1)

Ne, L = Ne + Vn,

Here, ne 1 refers to the density measurements, while
v = [ve,vs,v,,|T is an error term, assumed to be Gaus-
sian with zero correlation. s. and ss are two scale fac-
tors that, to a first approximation, summarize the sys-
tematic uncertainties. Sufficient information on the scale
factors could be obtained by the requirement of consis-
tency between two measurement time slices (levels), each
characterized by stationary plasma conditions. The joint
and marginal posterior densities were simulated using a
Markov Chain Monte Carlo (MCMC) algorithm. Good
results regarding the estimation of a consistent Z.g¢ were
obtained in', with an accuracy approaching ITER. re-
quirements.

In this work, for demonstration purposes we performed
the estimation of Z.g from a synthetic data set (assumed
measurement error of 15% on ¢, 10% on § and 5% on
Ne,1,). The original and estimated parameter values (for
each time slice) are shown in Table I.

III. MODEL COMPARISON AND
CONSISTENCY ANALYSIS

A. Model comparison

We next compare the proposed model in (1) that treats
the systematic uncertainties with a simpler model that
does not involve the scale factors s, and ss (set equal to
1). To evaluate the performance of a model, one needs to
weigh the model fit against the model complexity. This
has to be done on the basis of the MCMC output and in
such a case the Deviance Information Criterion (DIC) is
well suited as a model selection tool. The DIC is based
on the concept of Bayesian deviance D(8), defined by?:

D(6) = ~2In[p(x|6)] + K,



TABLE I. A priori chosen and MCMC estimated values for
the parameters of interest in the model (1), including 68.3%
credible intervals.

Parameter Original Estimated Absolute Relative
value value error error
Ne,1
(><1013cm*3) 3.24 3.25 +0.05 +2%
Ne,2
(Xlolgcm_g) 4.52 4.53 +0.06 +1%
+0.25/ +11%/
Zeoft 1 2.19 2.21 Z0.39 _18%
+0.20/ +8%/
Lot 2 2.36 2.39 —0.38 _16%
e 135 138 +Ofg/u +21i%84%
+0.44/ +70%/
Ss 0.63 0.65 015 Z94%

where & and 0 represent the data and the model pa-
rameters, respectively, and K depends only on the data.
Clearly, the better the data variability is explained by the
model with parameters € (i.e. the higher the likelihood)
the lower the corresponding deviance. Taking the pos-
terior sample mean 6 as an estimator for the parameter
vector 8, we have that

2D(0) — D(0)

= D(O) +pp,

DIC

Pp = W* D().

Here, pp can be seen as a degree of model complexity,
measuring the effective number of model parameters?.
Models with a smaller DIC should be preferred over oth-
ers. Using the synthetic data, we obtained a DIC of 225
and a pp of 3.98 for the simpler model that deals only
with the statistical sources of uncertainty. For the model
including the treatment of systematic uncertainties, the
DIC was 30 with a pp of —28. We can conclude that
first, the model with consideration of the scale factors
provides a superior explanation for the data. Second,
pp for the simpler model is about the true number of
parameters because the corresponding posterior is about
normal. Third, pp for the model with scale factors is
negative, which is due to the considerable skewness of
the marginal posteriors for the scale factors.

As a simple example of a comparison with a different
model, we discuss the case where, during estimation, the
systematic uncertainties are not modeled via multiplica-
tive scale factors, but through an additive term for both
the continuum and CX data. Clearly, the latter model
is less appropriate to explain our artificial data set that
was constructed using the model with scale factors. In-
deed, this fact comes out of the analysis in the model
comparison phase, since the additive model has a DIC of
83 (pp = 5.12), indicating an inferior model compared
to the case with scale factors.
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FIG. 1. Normal distributions fit to the marginal posteriors for
Zet (synthetic data), based on either the continuum or the
CX data. The cases are shown without and with treatment of
the systematic uncertainties (scale factors or additive terms).

B. Consistency measurement

In order to get a more clear idea of what has really
been gained by modeling the systematic uncertainties, we
investigate to what extent the consistency of the contin-
uum and CX data sets has been improved with respect to
their predictions of the effective charge. Moreover, such a
study can help localize the primary sources of systematic
uncertainty. This can be done by observing the change
of data consistency when one or more of the nuisance pa-
rameters describing systematic uncertainty, is left out of
the model.

To evaluate the data consistency we measured the sim-
ilarity between the marginal posterior densities for Z.g
obtained from either the continuum or the CX data. We
performed this check once using informative prior infor-
mation on the scale factors and once without taking into
account the systematic uncertainties. We first carried
out the estimation of the full model (1) at two levels on
the artificial data, resulting in comparable estimates of
se and ss as the ones mentioned in Table I. Next, the
thus obtained marginal posteriors for the scale param-
eters were used as prior distributions in the estimation
of Zeg using either the continuum or the CX data in
the first time slice. These prior distributions were, in
view of their substantial skewness, modeled by gener-
alized extreme value distributions. The resulting contin-
uum and CX Z.g marginal posteriors were, computation-
ally conveniently, found to be relatively well described
by a normal distribution. Then, the similarity between
the continuum and CX marginal was summarized using
two probability density similarity measures: the sym-
metrized Kullback-Leibler divergence (KLD)* and the
Rao geodesic distance (GD) based on the Fisher informa-
tion as a metric tensor on the manifold of PDFs®. Both
the KLD and GD can be used as a measure of similarity
of the information contained in a PDF, in any applica-
tion where the resemblance of probabilistic models needs
to be assessed. Next, the estimation using either the con-



_

KLD (x 10°)
wo - (o)) (o] o

FIG. 2. Plot of the KLD between marginal posterior Z.g
distributions based on either continuum or CX data.

FIG. 3. Similar to Figure 2, but on a logarithmic scale.

tinuum or CX data in the first time slice was repeated,
but keeping the scale factors fixed at 1. Finally, again
the KLD and GD between the resulting continuum and
CX marginal Z.g distributions was computed.

Figure 1 presents the thus obtained marginal Z.g pos-
teriors. In the case of modeled systematic uncertainties
(scale factors), the overlap between the continuum and
CX distribution is clearly much larger compared to the
case without scale factors. In the former case, the rela-
tively large residual statistical uncertainty is due to the
uncertainty in the priors on the scale factors. However,
note that here data from only one time slice was used,
as opposed to two levels for deriving the results in Ta-
ble I. The difference in overlap is confirmed through the
calculation of the respective similarity measures. The
symmetrized KLD between the Z.g posteriors obtained
from the continuum and CX data in the first time slice,
without treatment of the systematic uncertainty, equals
554 while the GD is 7.1. On the contrary, if the system-
atic uncertainties are modeled and taking into account
the informative prior information on the scale factors,
we obtain a symmetrized KLD value of 0.26 and a GD
of 0.50. This proves that the consistency of the data,
as far as its information content about Z.g is concerned,
improves drastically if we allow for the possibility of a
systematic deviation.

Again, if the true model includes scale factors, but in-

FIG. 4. Similar to Figure 2, but for the GD.

stead the model used during estimation contains additive
nuisance parameters, we can perform a similar analysis.
The resulting marginal Z.g posteriors are also shown in
Figure 1. The obtained Z.g probabilities are compara-
ble to the case of the model with scale factors, and the
consistency of continuum and CX data is also substan-
tially better (KLD = 0.24, GD = 0.48) than in the case
where no systematic uncertainties are considered. Still,
the model with scale factors is to be preferred over the
additive model on the basis of the DIC.

In order to provide a better intuition for the link be-
tween the obtained KLD and GD values and the amount
of actual data consistency, we performed the following
simulation study. Using the values for the density and
Zeg at two levels obtained in Table I, we synthesized a
large number of artificial data sets (¢, § and ne 1), assum-
ing random values for the scale factors (0.5 < s, ss < 3).
For every data set, we carried out the same analysis as de-
scribed above (systematic uncertainties modeled through
scale factors) and we obtained symmetrized KLD and GD
values between Z.g marginal posteriors in the first level.
The result for the KLD and GD is displayed in Figures 2,
3 and 4, respectively, for both the cases with and with-
out treatment of systematic uncertainties. It can be seen
that, as expected, the more the scale factors differ from
unity, the larger the data inconsistency in terms of Zg
as measured by the KLD and the GD (some values of
se and s5 compensate each other). The results from this
simulation study can be used as a scale to which newly
obtained KLLD and GD values can be compared, e.g. us-
ing real data. In addition, the KLD seems to be more
sensitive to data inconsistency than the GD, but on the
other hand in our experiments the GD appeared to be
more faithful to an actual measure of data consistency,
compared to the KLD. For instance, the huge asymmetry
in the KLD values with respect to s. and ss when the
scale factors are not included in the model, is not well
reflected in the size of the systematic uncertainties that
were actually introduced in the artificial data. Indeed,
as far as Z.g is concerned, a somewhat less asymmetrical
behavior with respect to s. and ss would be expected,
as confirmed by the GD measurements in Figure 4. This



finding corresponds to other observations of the KLD and
the GD as PDF similarity measures, where it is seen that
the GD better matches the actual information content of
the distributions®.

IV. CONCLUSION

We have discussed the issues of model selection (using
the DIC) and consistency measurement (using the KLD
and the GD) in an integrated analysis for the estimation
of a consistent Zeg from both bremsstrahlung and CX
impurity density measurements, quantifying systematic
uncertainties. In order to evaluate an IDA analysis, it is
useful to compare with alternative models (assess model
fit and complexity) as well as to analyze the resulting
consistency of the data. The methods developed in this
work can be applied to issues of inconsistency encoun-
tered with other plasma diagnostics as well, for other
plasma parameters.
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