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Abstract

An important feature of some modern facilities (such as optimized stellarators) with low shear is

that the value of their rotational transform is close to a rational number. If a mode helicity is close

to the rotational transform of the background magnetic field, the Alfvén continuum frequency can

lie in the range of the diamagnetic frequencies of the background electrons. An analytical analysis

shows that if the local electron diamagnetic frequency curve crosses the Alfvén continuum from

above as one proceeds from the axis to the plasma edge at a radial location relatively distant

from the axis, a family of unstable drift-kinetic Aflvén modes (DKAEs) arises due to the coupling

between the drift and Alfvén waves having same poloidal numbers. The coupling is mediated by

the parallel electric field and the mode is destabilized due to parallel resonances. The mode growth

rate can be relatively large and comparable to the real part of the mode frequency. The growth rate

peaks at a small radial number, so that the most unstable mode can appear global and be confused

with the magnetohydrodynamic (MHD) modes which can occur in this part of the spectrum. It

follows that it is important to consider the diamagnetic effects and finite parallel electric field, which

are frequently neglected for such phenomena in tokamaks, when studying Alfvén phenomena in

the lowest part of the electromagnetic spectrum in optimized stellarators.
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I. INTRODUCTION

A large number of the experimental data in partially and fully optimized stellara-

tor facilities indicates unstable modes in the lowest part of the Alfvénic spectrum (e.g.,

Refs. [1],[2],[3]). It is therefore important to understand which varieties of electromagnetic

modes can in principle exist there and whether they can become unstable.

A salient feature of a number of existing or planned modern stellarator facilities is the low

shear of the rotational transform of the magnetic field to avoid low order resonant rational

surfaces and thus suppress formation of magnetic islands and undesirable magnetohydro-

dynamic (MHD) activity. In such facilities the value of the rotational transform is close to

a low order rational number in the entire radial domain. It follows that the shear Alfvén

continuum of a mode with helicity close to the rotational transform can lie in the range of

very small frequencies, comparable to the local diamagnetic frequencies of the background

species. One may assume then that shear Alfvén waves and drift waves can strongly interact

with each other through the parallel electric field at the locations where their local frequen-

cies match, giving rise to drift-kinetic Alfvén modes (DKAEs) ([4]). Since the sign of the

energy transfer in the parallel Landau resonant wave-particle interaction is determined by

the sign of the factor ω∗/ω− 1, where ω∗ is diamagnetic frequency of a background species,

such a mode can become unstable when the condition ω∗ > ω holds in a significant part

of a plasma. Therefore, such a mode is, generally speaking, non-perturbative, because its

existence and growth are brought about by the same kinetic effects connected to the parallel

electric field.

In this paper we perform a local analysis of the DKAE with helicity close to the rotational

transform in an inhomogeneous plasma of an optimized stellarator. The DKAE considered

here is produced by coupling between the shear Alfvén wave and the electron drift wave

having the same poloidal numbers determined by the closeness of the mode helicities to

the rotational transform. The paper is organized as follows: in Sec. II we derive equations

governing the shear-Alfvén dynamics with the parallel electric field taken into account, which

enables us to describe the coupling between shear-Alfvén and drift modes with the same

mode numbers and to justify the neglect of the sideband response for the modes in question,

in Sec. III we study the equations of Sec. II in the vicinity of a point where the shear Alfvén

continuum and the local electron diamagnetic drift frequencies match, we demonstrate that
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there exist unstable DKAEs with the real part of the frequency lying above the minimum

of the shear Alfvén continuum and the growth rate comparable to the real frequency, in

Sec. IV we verify predictions of the local analysis of Sec. III with numerical solution of the

general equations of Sec. II for a case with parameters relevant to the Helically Symmetric

Experiment (HSX, see Ref. [5]), and in Sec. V we draw conclusions.

II. SHEAR ALFVÉN DYNAMICS WITH FINITE PARALLEL ELECTRIC FIELD

To derive the equations governing the low-frequency shear Alfvén dynamics in a toroidal

plasma with finite E‖ taken into account, we start from the the ansatz of a plasma with

low beta (β ' me/mi, where β = 2µ0p/B
2 is the ratio between the kinetic and magnetic

pressures), hot electrons and cold ions (Te À Ti). We consider a background plasma with

nonuniform density but constant temperature. The analysis conducted in this paper can

easily be generalized to the case when both density and temperature have radial profiles.

The distribution function of the background plasma is assumed to be Maxwellian. For the

mode of interest the mode numbers satisfy mι− n ¿ 1.

We employ magnetic Boozer coordinates (ψ, θ, φ) (Ref. [6]) to represent the magnetic field,

neglecting Bψ, which is related to Pfirsch-Schlüter current and generated by the pressure

effects (Bψ/Bφ = O(β) [7], where Bφ ≡ BR0 = const ). Further, similarly to Ref. [8], one

can assume that Bθ/Bφ = O(a2/R2
0) , where a/R0 is the ”average” aspect ratio, B2J ≈ Bφ

with 1/J = [∇ψ×∇θ] ·∇φ. Note that in an ideal current-less stellarator Bθ, which basically

represents the toroidal current, would have been zero. Thus, in the covariant representation

the background magnetic field is B ≈ Bφ∇φ. Analogously to Ref. [9] we assume the magnetic

field strength to be B = BhB, hB = 1 + 1
2

∑
µ,ν

εµ,ν
B ei(µθ−νNφ) with εµ,ν

B = ε−µ,−ν
B ¿ 1 and N

the number of field periods, and dominant components of the contravariant metric to be

gψψ = 2δBψhψψ
g and gθθ = δB

2ψ
hθθ

g , and gψθ = δBhψθ
g with hij

g = δij + 1
2

∑
µ,ν

ε
ij(µ,ν)
g ei(µθ−νNφ),

δij the Kronecker symbol, δ = (κ + κ−1)/2 with κ the elongation, ε
ij(µ,ν)
g = ε

ij(−µ,−ν)
g , and

the other components being smaller by factor of order O(a2/R2
0) (Ref. [8]).

As a first step, this paper considers only interaction of the drift-kinetic Alfvén modes with

well-circulating particles, the trapped particle contribution being the subject of a separate

study, and omits compressional effects.

It follows that the parallel component of the perturbed magnetic field can be set to
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zero, and the perpendicular one can be described in terms of the parallel component of the

vector potential, so that the magnetic field perturbation is B̃ = [∇A‖ × b] with b = B/B.

By linearizing the gyrokinetic equation in the limit of zero Larmor radius (although the

FLR effects are insignificant for this problem, they can in principle be trivially recovered

by applying the gyrokinetic averaging to the corresponding potentials) for both background

species in the presence of a low-frequency electromagnetic wave (e.g., [10]), one obtains

∂δfs

∂t
+

d(0)R

dt

∂δfs

∂R
+

d(0)v‖
dt

∂δfs

∂v‖
= −d(1)R

dt

∂f0s

∂R
− d(1)v‖

dt

∂f0s

∂v‖
, (1)

where δfs = fs − f0s, with s = i, e, is the deviation of the distribution function from

Maxwellian f0s, µ = msv
2
⊥/2B, index (0) indicates that the derivative is taken along the

unperturbed motion,

d(0)R
dt

= v‖
(
b +

msv‖
qsB

[∇× b]
)

+ [b×µ∇B]
qsB

d(0)v‖
dt

= −
(
b +

msv‖
qsB

[∇× b]
)
· µ∇B

ms

, (2)

with Φ the electrostatic potential, and index (1) points out that the derivation is made along

the perturbations of the particle orbits in phase space due to the electromagnetic field,

d(1)R
dt

= v‖
[∇A‖×b]

B
− [∇Φ×b]

B
d(1)v‖

dt
= − [∇A‖×b]·µ∇B

msB
− qs

ms

((
b +

msv‖
qsB

[∇× b]
)
· ∇Φ +

∂A‖
∂t

) , (3)

and in derivation of these equations we used b · [∇× b] ≈ −B2
φ

B2∇φ · [∇B ×∇φ] = 0.

To make the description self-consistent one needs to describe influence of the plasma on

the electromagnetic fields. To this end, it is appropriate to use the quasineutrality equation,

−∇ ·
(nmi

B2
∇⊥Φ

)
=

∑
s

qsδns, (4)

where δns =
∫

δfsd
3v with d3v = 2π B

ms
dv‖dµ, and the parallel Ampere’s law,

b · [∇× B̃] = µ0

∑
s

δj‖s, (5)

where δj‖s = qs

∫
v‖δfsd

3v. As is demonstrated in Ref. [8], the left hand side of Eq. (5)

equals to − 1
B
∇ · B2∇⊥

A‖
B

in case of small background pressure.

We are looking for the normal modes of the system,

(Φ, A‖) =
∑
m,n

(
Φm,n(ψ), Am,n

‖ (ψ)
)

ei(−ωt+mθ−nφ), (6)
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with ψ the flux label. To obtain the eigenfunction equations governing the coefficients Φmn

and A‖mn, we first integrate Eq. (1) multiplied by qs over v‖ and µ, and then add the resulting

equations using Eqs. (4) and (5). This procedure leads to

ω2∇ ·
(

1
v2

A
∇⊥Φ

)
+ ∇ ·

[
b
B
∇ ·

(
B2∇⊥

∇‖Φ
B

)]
− µ0[∇∇‖Φ× b] · ∇ j0‖

B

= iωµ0

∑
s

qs

∫
(vds · ∇)δfsd

3v +∇ ·
[

b
B
∇ ·

(
B2∇⊥

∇‖(Φ−Ψ)

B

)] , (7)

with v2
A = B2

0/µ0nmi, vds =
(v2
‖+v2

⊥/2)

Ωs

[b×∇B]
B

, and A‖ is expressed as A‖ = 1
iω
∇‖Ψ, which

is basically the well-known vorticity equation in ideal MHD in the appropriate limit of low

beta but for the term arising from particle drifts and the term proportional to the parallel

electric field on the right hand side. In this equation we kept only one term which depends

on ∇‖(Φ − Ψ) and consequently describes the coupling with the parallel electric field. As

we will see later, if one expresses this term in terms of Φ using an equation for the parallel

electric field which we will derive shortly, it will result in a fourth-order radial derivative

of Φ and thus will allow for the existence of discrete modes. In the same way, the other

term depending on ∇‖(Φ−Ψ) does not vanish only provided the parallel background plasma

current is not zero, leads to the second radial derivative of Φ, and thus does not significantly

alter the resulting modes. Henceforth we drop this term.

By using bφ = 1/JB, bθ = ι(ψ)/JB, and ∇‖ = hBL̂/R0 with L̂ = ∂/∂φ + ι∂/∂θ, Eq. (7)

in the coordinate representation becomes

L̂ ∂
∂xi

(
gij ∂

∂xj (k‖Φ)− ibik2
‖hBΦ

)
− ω2R0

∂
∂xi

1

v2
Ah4

B

(
igij ∂

∂xi + bik‖hB

)
Φ− µ0

k‖R0

hB

∂
∂θ

(hBΦ)
dj0‖/hB

dψ

= µ0ωR0

hB

∑
s

qs

∫
(vds · ∇)δfsd

3v + L̂ ∂
∂xi

(
gij ∂

∂xj (k‖(Φ−Ψ))− ibik2
‖hB(Φ−Ψ)

) ,

(8)

where k‖(ψ) = (mι(ψ)−n)/R0, v2
A(ψ) = B/µ0n(ψ)mi, and in the coordinate representation

vds = ms

qshB

(
eθ

∂hB

∂ψ
− eψ

∂hB

∂θ

)
. To simplify this equation we note that the terms of order

O(ε) (with ε = max(a/R0, εB, εg)) lead to the coupling of a mode (m,n) to the modes

with different poloidal and toroidal numbers, (m + µ, n + νN). However, the mode we are

interested in with the mode numbers (m,n) satisfying n/m ≈ ι has frequency much lower

than the Alfvén continuum frequencies for the modes with other mode numbers. Besides

that, we assume that the mode is local enough not to be affected by the other drift modes.

Consequently, we neglect the coupling to the modes with different mode numbers in Eq. (8)

and take hB along with hij
g to be approximately unity everywhere in this equation but the
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expression for vds where we keep the full form for hB because there remains a possibility

that the mode is affected by the self-driven sideband response through the first term on the

right hand of Eq. (8). To compare this contribution with the contribution from the parallel

electric field given by the second term of the right hand side of Eq. (8), we re-write Eq. (1)

similarly to Refs. [11] and [12] as

(−iω + v‖∇‖ + (vds · ∇))gs =
qsf0s

Ts

(
1− ω̂∗s

ω

)
(v‖E‖ + vds · E⊥), (9)

where E‖ = −∇‖Φ− ∂A‖
∂t

, E⊥ = −∇⊥Φ, and gs = δfs − [∇Φ×b]·∇f0s

iωB
with the second term in

this expression representing the ”sloshing” non-resonant part of the perturbed distribution

function, which does not contribute to the resonant wave-particle interaction and thus to

the mode growth. Hence, the corresponding contribution to the first term in Eq. (8) is of

no significance. Additionally, ω̂∗s ≡ iTs

qsBr
χn

∂
∂θ

, where we introduced a new radial coordinate

r = (2ψ/B)1/2, χn = −(dn/dr)/n, and this operator acts only on the potentials Φ and Ψ.

In derivation of Eq. (9) we assumed (d2n/dr2) /(dn/dr) ¿ Φ/(dΦ/dr). Then, proceeding in

the spirit of Ref. [12], one can write equations for the coupling of the (m,n) mode with the

(m + µ, n + νN) sideband response (here each of µ and ν can be either positive or negative)

arising due to a (µ, ν) harmonic in the spectrum of the magnetic field strength in Boozer

coordinates,

(−ω + km,n
‖ v‖)gm,n

s + vdsk̂
m+µ,µ
⊥ gm+µ,n+νN

s

= − qs

Ts
f0sv‖

(
1− ωm∗s

ω

)
km,n
‖ (Φm,n −Ψm,n)− qs

Ts
f0svds

(
1− ωm+µ

∗s

ω

)
k̂m+µ,µ
⊥ Φm+µ,n+νN

,

(10)

and

(−ω + km+µ,n+νN
‖ v‖)gm+µ,n+νN

s + vdsk̂
m,−µ
⊥ gm,n

s

= − qs

Ts
f0sv‖

(
1− ωm+µ

∗s

ω

)
km+µ,n+νN
‖

(
Φm+µ,n+νN −Ψm+µ,n+νN

)

− qs

Ts
f0svds

(
1− ωm∗s

ω

)
k̂m,−µ
⊥ Φm,n,

(11)

where for each term we took just first non-vanishing terms in terms of ε, ωm
∗s = − mTs

qsBr
χn,

vds = ms

qsBR0
(v2
‖ + v2

⊥/2), km,n
‖ = (mι − n)/R0, and k̂m,n

⊥ = R0

2r

(
m

∂εµ,ν
B

∂r
+ nεµ,ν

B
∂
∂r

)
. Under

the assumption of cold ions and after the neglect of the coupling with the (m + µ, n + νN)

components of the potentials as has been argued above, there only remains (m + µ, n +

νN) sideband response of the perturbed electron distribution function driven by the (m,n)

component of the potentials. This generates the (m,n) perturbed current response through

the (−µ,−νN) harmonic of the vde in the first term on the right hand side of Eq. (8).
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Similarly to Ref. [12], by using the ordering parameter (k⊥ ·vde)/ω ¿ 1, one can neglect the

second terms on the left hand side of Eqs. (10) and (11), after which it is straightforward

to solve for the gm,n
e and gm+µ,n+νN

e in terms of Φm,n and Ψm,n. Then, by substituting the

resulting expressions into the first and second terms on the right hand side of Eq. (11)

(in the course of this procedure (Φm,n − Ψm,n) is to be determined from the corresponding

quasineutrality equation Eq. (4), see also Eq. (14) ), the ratio of the imaginary contribution

from the first term to that of the second term can be estimated as O
((

1− ωm∗e

ω

)2
1

k2
rρ2

s

me

mi

)
¿

1, where, as we will see below in Sec. III, kr can be estimated as kr = d/dr ≈ 1/aσ1/4 À 1/a

where σ is defined after Eq. (16). In deriving this estimate the asymptotic of Z function for

small arguments, km,n
‖ VA ≈ ω, km+µ,n+νNR0 = O(1), and vthe ≈ VA were used. Note also that

for the DKAEs ω ≈ ωm
∗e. Therefore, one can conclude that the sideband coupling in Eqs. (1)

and (7) can be neglected altogether by imposing hB = 1 and hij
g = δij and correspondingly

vde = 0 everywhere in these equations. Since no coupling will be considered, from this point

on we will write these equations for the (m,n) harmonic, suppressing the (m,n) subscripts

in the notations.

We proceed with separation of the rotational transform generated by the external mag-

netic coils ιext as suggested in Ref. [17], repeating briefly the arguments given in the reference.

By writing the rotational transform as ι = Bθ

BΦ = gθθ

BΦ + gθΦ

Bθ ≡ ιext + gθΦ

Bθ ≡ ιext + νιι, one

can separate the part of the rotational transform generated by the external coils (denoted

as ιext), and write the part of the rotational transform produced by the plasma current as

νιι. Expressing further the parallel background plasma current as j0‖ = B
µ0R0r

d
dr

r2νιι, Eq. (8)

yields
1
r2

∂
∂r

r3
(

ω2

v2
A

− k2
‖
)

∂
∂r

Φ
r
− (m2−1)

r2

(
ω2

v2
A

− k2
‖
)

Φ + G(r)Φ

=
(
−k‖m2

r2 +
k‖
r

∂
∂r

r ∂
∂r

)
k‖(Ψ− Φ)

, (12)

where G(r) = ω2

r

(
1

v2
A

)′
+

mk‖
rR0

((3ι′ + rι′′)(νι − 1) + (2rι′ + 3ι)ν ′ι + rιν ′′ι ). When νι = 1, i.e.

the entire rotational transform is generated by the plasma current, and Φ = Ψ, Eq. (12)

agrees with the well-known MHD counterpart for tokamaks (e.g., Eq. (33) in Ref. [12]). The

case with νι = 0 corresponds to a currentless stellarator.

To make the system self-consistent, one has also to obtain an equation for the parallel

electric field. To this end we solve the Eq. (1), which yields

δfs = − qs

Ts

f0s

[
ω∗s
ω

Ψ +

(
1 +

ω − ω∗s
k‖v‖ − ω

)
(Φ−Ψ)

]
, (13)
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where ω∗s = ωm
∗s. Further, we insert the distribution function perturbation from Eq. (13)

into the quasineutrality equation (Eq. (4)), which results in

(Φ−Ψ)
(
1− ω∗e

ω

) (1 + ζeZ(ζe))

v2
A

= ρ2
s

(
− m2

r2v2
A

+
1

r

∂

∂r

r

v2
A

∂

∂r

)
Φ, (14)

where ρs = cs/Ωi, cs =
√

Te/mi, Ωi = eB/mi, ζe = ωm
1/2
e /k‖(2Te)

1/2, and Z(ζ) =

1√
π

∫∞
−∞ dte−t2/(t − ζ) is the plasma dispersion function (e.g., Ref. [15]). In deriving this

equation we assumed that the background ions are cold, i.e.
√

Ti/mi ¿ vA and that

k‖cs ¿ ω, so that one can neglect the ion contribution in the parallel plasma response on

the left hand side. Eqs. (12) and (14) describe normal modes in the system.

III. DRIFT-KINETIC ALFVÉN MODES

To see how the coupling between a shear Alfvén wave and a drift wave gives rise to a family

of discrete drift-Alfvén modes we first note that such a mode should spatially reside close

to the radial position r0 where the local electron diamagnetic frequency is equal to the local

frequency of the Alfvén continuum, i.e. ω0 ≡ ω∗e(r0) = k‖(r0)vA(r0). The mode frequency

should also be close to ω0. Consequently, we expand the functions F ≡ ω2/v2
A(r) − k2

‖(r)

in Eq. (12) and ω − ω∗e(r) in Eq. (14) in Taylor series around r0 in the radial domain and

around ω0 in the frequency domain, and take all other quantities at r0 constant with the

exception of G(r), which we also expand up to the first order. The latter term is important

in the treatment of the modes with m = 1, as will become clear later.

Following this procedure, one obtains





(x− δ) (Ψ− Φ) = 1
(1+ζeZ(ζe))

ω
ω′∗ea

ρ2
s

a2

(
d2

dx2 − k2
⊥a2

)
Φ

d
dx

x d
dx

Φ− fxΦ + gΦ =
k2
‖

F ′0a

(
d2

dx2 − k2
⊥a2

)
(Ψ− Φ)

, (15)

here x = r−r0

a
+ F0

F ′0a
, k⊥ = m

r0
, F0 =

(ω2−ω2
0)

v2
A0

, F ′
0 =

(
1

v2
A

)′
0
(ω2−ω2

0)−
(k2
‖v

2
A)′0

v2
A0

, δ = F0

F ′0a
+ (ω−ω0)

ω′∗e0a
,

prime denotes the radial derivative and all quantities with the subscript ”0” are taken at

r = r0, f and g are defined in Appendix A. The following analysis assumes that −∞ < x <

∞, which can hold only if ω2 > (k2
‖v

2
A)min. Eq. (15) must then be solved subject to the

boundary conditions Φ(x → ±∞) = Ψ(x → ±∞) = 0.

Further, we apply a Fourier transform defined by Φ̂ =
∫∞
−∞ dxe−ikxΦ to Eq. (15). After
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combining the resulting equations into one, we obtain

d2Φ̂
dk2 + dΦ̂

dk

(
k3+k(3k2

⊥a2−2f)

(k2+f)(k2+k2
⊥a2)

+ iδ + ig
k2+f

)

+ Φ̂
(

k2
⊥a2−k2

(k2+k2
⊥a2)(k2+f)

− σ
(k2+k2

⊥a2)2

k2+f
− gδ

k2+f
+ iδk

k2+f
− 2igk

(k2+k2
⊥a2)(k2+f)

)
= 0

, (16)

where σ = 1
(1+ζeZ(ζe))

k2
‖0

F
′
0a

ω
ω
′
∗ea

ρ2
s

a2 . In order for the inverse Fourier transform to exist, Φ̂ in

Eq. (16) must satisfy the boundary conditions lim
k→±∞

Φ̂(k)/k = 0.

Note that σ, δ,f , and g in Eq. (16) are complex. After the following transformation of

variables, Φ̂ ≡ Ψ
(k2+k2

⊥a2)

(k2+f)3/4 exp
(
−i δk

2
− i g

2f1/2 tan−1
(

k
f1/2

))
, Eq. (16) acquires the form of

Schrödinger’s equation,
d2Ψ

dy2
+ (ε− U(y))Ψ = 0, (17)

with the normalized independent variable y ≡ k/k⊥a, energy ε = δ̃2/4, δ̃ = δk⊥a, and the

potential

U(y) = σ̃ (y2+1)2

y2+f̃
− − 3

4
y6+y4(− 7

2
f̃+ 5

2
)+y2( 1

4
+2f̃−2f̃2)+f̃2− f̃

2

(y2+1)2(y2+f̃)2
− g̃2

4(y2+f̃)2
+ g̃δ̃

2(y2+f̃)

− iδ̃y
2

(y2+2f̃−1)

(y2+1)(y2+f̃)
+ ig̃y

2
3y2+6f̃+1

(y2+1)(y2+f̃)2

, (18)

with σ̃ = σk4
⊥a4, f̃ = f/(k2

⊥a2), and g̃ = g/(k⊥a). The first four terms in Eq. (18) are even

and the next two are odd with respect to y. Even when m = 1, all terms remain regular as

|y| → 0 because f̃ is finite there due to the radial profiles of ι, n, and G (see Appendix A).

For the small values of y the form of the potential is defined by the second term in Eq. (18),

which basically describes a potential well centered at y = 0 with the minimum equal to

Umin = −1 + 1/(2f̃) − g̃2

4f̃2 + g̃δ̃

2f̃
. Conversely, for large values of y the first term in Eq. (18)

dominates and asymptotically describes the harmonic oscillator potential. Consequently,

solutions of Eq. (17) have discrete spectrum, which for large values of ε is

εl ≈ σ̃1/2(2l + 1). (19)

In practice, owing to the fact that the potential well for small values of y described by the

second, the third, and the fourth terms in Eq. (18) is too shallow to contain a bounded state

(this is a manifestation of the absence of discrete modes in the monotonous parts of the

Alfvén continuum, i.e. far from its maxima and minima, in the framework of ideal MHD

with the parallel electric field set to zero), bounded states with small energies are also caused

mainly by the first term in Eq. (18), so that Eq. (19) is generally applicable. The largest
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error in using Eq. (19) is for the fundamental solution with l = 0, which can be improved

by use of a variational method (see Appendix B).

Substituting the definition of δ̃ and σ̃ in Eq. (19) one obtains the dispersion relation that

determines frequency of the mode with toroidal and poloidal numbers n and m, respectively,

in terms of its radial number l. This dispersion relation can be written as

h(ω̃) = (2l + 1)c, (20)

where ω̃ ≡ ω/ω0, h(ω̃) = (1−ω̃)2(ω̃2∆1+ω̃+1−∆1+∆1∆2)2

4(ω̃2−1+∆2)3/2ω̃1/2 , and c =
(
∆1

ρ2
s0

a2

(χna)2

(1+ζeZ(ζe))

)1/2

, ∆1 =

−(ω0χn)/ω′∗e0, ∆2 = (k2
‖v

2
A)′0/(χnω

2
0), where χn ≡ −(dn/dr)/n, are constants. In optimized

stellarators with low shear ∆2 is close to unity (in shear-less case (k2
‖v

2
A)′0/(χnω

2
0) = 1

exactly). However, since in such stellarators k‖ is also small due to the closeness of the ι to

the magnetic field helicity, we keep ∆2 6= 1.

When the background electrons are close to the parallel resonance with the mode at r0,

i.e. ω ≈ k‖
√

2Te/me, the mode growth rate can become relatively strong, γ/ωr ' O(1),

where we used notation ω̃ ≡ ωr + iγ . When this is not the case and γ/ωr ' O(10−1) or

less, one can estimate the maximum growth rate that the family of the drift-kinetic Alfvén

modes has. Indeed, in this case one can solve Eq. (20) perturbatively, first finding the real

part of the frequency, calculating then the growth rate in terms of the real frequency and

finding its maximum over the range of possible values of ωr. From Eq. (20) it follows that

this procedure leads to

γmax = max
ωr

F(ωr), (21)

where

F(ωr) = Im(c)
Re(c)

h(ωr)
∂h(ωr)/∂ωr

= 2ωr(ωr−1)(ω2
r∆1+ωr+1−∆1+∆1∆2)(ω2

r+∆2−1)
5ω5

r∆1+ω4
r(1−∆1)+8ω3

r∆1(∆2−1)+7ω2
r∆2+3ωr∆1(∆2−1)2+(∆2−1)(1−∆1+∆1∆2)

. (22)

IV. NUMERICAL RESULTS

In order to verify the outcomes of the analytical analysis we investigate Eqs. (12) and

(14) by a Ritz-Galerkin method with B-splines as finite element basis. One seeks solutions of

these equations in the form of an expansion in terms of a B-spline basis, Φ(r) =
N∑

n=0

anBn(r)

and Ψ(r) =
N∑

n=0

bnBn(r), where an and bn are coefficients of the expansion and Bn are

10



splines of desired order (in this particular code we used splines of the fourth order). By

substituting Φ and Ψ in this form in Eqs. (12) and (14) and by applying a projection

operator on basis element Bm(r) one obtains a system of linear equations for the complex

coefficients of the form M(ω) · (a,b)T = 0, where M is a 2N × 2N matrix which depends on

the frequency. Eqs. (12) and (14) are written self-adjoint form, i.e. (Bm, L̂Bl) = (Bl, L̂Bm),

where (f(r), g(r)) =
a∫
0

f(r)g(r)rdr, and L̂ denotes an appropriate linear operator in the

equations. This form is particularly suitable for the numerical solving of the equations.

Roots of the characteristic equation det[M(ω)] = 0 correspond to the eigenfrequencies of

the system, and solving for the coefficients for each eigenfrequency by either inverse iteration

or single value decomposition algorithms provides the radial structure of eigenfunction. It

is worth noting that a direct calculation of the determinant in the characteristic equation

is numerically inefficient and error prone. It is much more robust to use the fact that the

determinant of a matrix equals the product of all its eigenvalues. Then, by monitoring the

smallest eigenvalue of the matrix M(ω) and finding values of ω where it vanishes, one is able

to find the roots of the characteristic equation [14, 16].

As an example we use a plasma with parameters and profiles relevant to HSX, which

is an operating optimized stellarator with low shear (Ref. [5]). Recent experiments on this

facility demonstrated an unstable mode with frequency in the lowest part of the Alfvénic

spectrum in the presence of a heated electron component of the background plasma (e.g.,

Ref. [3]), which makes this device an interesting system in context of the present study. The

background magnetic field strength is chosen to be equal to B = 0.5 T , and the rotational

transform ι = ι0 + (ι1 − ι0)(r/a)2 with ι0 = 1.05 and ι1 = 1.1. The appropriate mode

has then n = 1 and m = 1. The particle density of the background plasma is taken to be

n(r) = n0 +(n1−n0)(tanh[(r/a− s∗)/∆]− tanh[−s∗/∆])/(tanh[(1− s∗)/∆]− tanh[−s∗/∆])

with n0 = 2 × 1018 m−3,n1 = 0.01n0, s∗ = 0.3, and ∆ = 0.4, the background temperature

chosen is Te(r) = const = 1.5 keV , and Ti(r) = const = 20 eV (so that our assumption

about cold ions is well satisfied). The background ion species were assumed to be deuterium.

The corresponding profiles for the Alfvén continuum, the electron diamagnetic frequency,

and k‖vthe, where vthe =
√

2Te/me, are shown in Fig. 1. The basic parameters in Eq. (20)

calculated from these profiles are r0/a = 0.64, ∆1 = 1.6, ∆2 = 1.6, and c = 0.28− 0.12i.

As mentioned in Section III, the local analysis developed here assumes that ω2 >

(k2
‖v

2
A)min, it turns out that there also do not seem to be numerical solutions for which

11



this condition fails. For the case in question there are three radial eigenfunctions which sat-

isfy it (the corresponding radial eigenfunctions are plotted in Figs. 2 and 3). Note that the

eigenfunctions are quite broad in the radial domain and therefore have global appearance.

These solutions exhibit good agreement with Eq. (20) (see Figs. 4 and 5). As predicted, the

largest error is found for the fundamental state with l = 0. Although the real part of the

ratio between the numerically calculated energy of this state is not so far from the prediction

of Eq. (20), the complex phase of this ratio is comparable with the complex phase of the

energy itself (see Fig. 5). This discrepancy is caused by the fact that Eq. (20) accounts

only for the ”harmonic oscillator” part of the total potential, while the fundamental state

is also influenced by the potential well described by the second and third terms in Eq. (18).

However, since this potential well is not able to contain a bounded state by itself as it was

mentioned above (the appropriate parameters of the potential being in this case g̃ ≈ −0.38,

f̃ ≈ 0.7, and δ̃ ≈ 0.41), this state ultimately arises also due to the ”harmonic oscillator”

part of the potential. The real frequency and the growth rate calculated from Eq. (20) using

the MATHEMATICA software package (Ref. [18]) still yield relatively good agreement with

numerical predictions (see Figs. 6 and 7). Whereas the prediction for the energy of the

fundamental state can be improved by using the technique described in Appendix B, this

solution is not the most important one as it has relatively small growth rate. The other solu-

tions with l = 1 and l = 2 provide much better agreement with Eq. (20) (see Figs. 4 and 5),

the l = 1 eigenfunction being in particularly good accord with the predicted value of energy

and the corresponding values for the real part of the frequency along with the growth rate

(see Figs. 6 and 7). The latter numerical solution has the largest growth rate. The numerical

solution with l = 2 seems to depart from the prediction of the analysis, which is apparently

due to the limitations of the local analysis and non-local corrections not considered in the

local approximations of the analysis. Indeed, from the definition of x after Eq. (15) one can

see that it expresses the distance from the point where the function F describing the Alfvén

continuum vanishes. The linear expansion of the coefficients in Eq. (12) adopted in the

local analysis is no longer valid when the quadratic terms start to become comparable with

the linear ones, which occurs for (r − r0)/a ≈ (dn/dr)(r = r0)/a(d2n/dr2)(r = r0) ≈ 0.35.

Since the l = 2 solution has Re(ω)/ω0 ≈ 0.41 and ωAmin/ω0 ≈ 0.35, it follows from Fig. 1

that the distance between the point where the Alfvén continuum vanishes, r∗/a, to r0/a is

(r0−r∗)/a ≈ 0.4, so that the linear expansion breaks down. On the other hand, the distance

12



between r∗/a to the point r/a = 0, where global boundary condition clearly overrides the

local assumptions, is just r∗/a ≈ 0.2. The width of the eigenfunction from the local analysis

can be approximated as ∆x ≈ σ1/4 ≈ 0.16. Consequently, the assumption of the local anal-

ysis that x → −∞ marginally holds for this solution and the global boundary condition at

the axis starts to heavily influence the solution. Given these limitations of the local analy-

sis, its agreement with the numerical prediction is surprisingly good. Further, by assuming

validity of the local analysis for the modes with l > 2 one can see that the predicted growth

rate is also peaked with respect to the radial number of a mode with the maximum growth

rate close to the numerical value, but reached for l = 4 rather than l = 1 deduced from the

numerical solutions (see Fig. 7 (left)). Finally, applying the approximated formula given in

Eqs. (21) and (22) with the corresponding F function plotted for the chosen parameters in

Fig. 7 (right), one can see that the estimate for the growth rate given by that formula also

yields a value γmax ≈ 1.02 × 10−1 close to the numerical result. Although direct compar-

ison with the experiment is not possible due to the limitations of the analysis conducted

in this paper (e.g., distribution function of the background electron component during the

ECRH heating in HSX differs significantly from the Maxwellian), this study demonstrates

that there do exist unstable modes in the frequency range of interest which are due to the

kinetic rather than the MHD effects, notwithstanding their global appearance in the radial

domain.

V. CONCLUSIONS

In this paper a mode in the lowest part of the Alfvén spectrum possessing helicity close

to the background magnetic field rotational transform in a plasma with low shear has been

considered. It turns out that the frequency of such a shear Alfvén mode can be so low

that it can couple by means of the parallel electric field, usually neglected for MHD modes,

with the drift mode in an inhomogeneous plasma. A local analysis for a case of coupling

between the modes with same mode numbers has been developed and the sideband response

is demonstrated to be insignificant for the investigated mode. The analysis predicts the exis-

tence of unstable drift-kinetic Alfvén modes with potentially large growth rates propagating

in the direction of electron diamagnetic drift when the local electron diamagnetic frequency

curve crosses the Alfvén continuum from above at a value larger than the minimum of the
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latter. A numerical solution of the equations governing the shear Alfvén dynamics in the

presence of a finite parallel electric field was investigated for a set of parameters relevant

to the optimized stellarator HSX, where electromagnetic activity in the lowest part of the

Alfvénic spectrum was observed experimentally. A good agreement between the numerical

solutions and the predicted values for the real part of the frequency and the growth rate

was demonstrated. Although the analytical analysis differs from the numerical solution in

its prediction of the exact radial number for the function having the maximum growth rate

(presumably, due to the limitations of the local analysis), it yields correct qualitative behav-

ior for the dependence of the peaked growth rate, and the peak value for the growth rate

agrees well with the numerical prediction. The modes described here can appear to have

global radial character and thus can possibly be confused with some other MHD modes in

the same frequency range (e.g., Ref. [17]) when interpreting experimental data.
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Appendix A: Expansion of the coefficients in Eq. (12) around r0

Let us define F (r) = ω2/v2
A(r)−k2

‖(r). Then, the left hand side of Eq. (12) can be written

as

F
∂2Φ

∂r2
+

(
F ′ +

F

r

)
∂Φ

∂r
−

(
m2F

r2
+

F ′

r
−G

)
Φ. (A1)

To obtain the coefficients f and g in Eq. (15) we expand the bracketed factor in the third term

of this expression around the r = r0, and take the dominant terms under the assumption

that F0 is small. We note that

g0 ≡
(

m2

r2
F +

F ′

r
−G

)
(r = r0) ≈ F ′

0

r0

−G0 =
mk‖0
r0R0

(ι′0 + r0ι
′′
0). (A2)

Similarly,

(
m2

r2 F + F ′
r
−G

)′
(r = r0) ≈ (m2−1)F ′0

r0
+

F ′′0
r0
−G′

0

≡ (m2−1)

r2
0

(
ω2

(
1

v2
A

)′
0
− (k2

‖)
′
0

)
+ g1

= (m2−1)

r2
0

(
ω2

(
1

v2
A

)′
0
− (k2

‖)
′
0

)
+ ω2

r2
0

(
1

v2
A

)′
0

+
mk‖0
r0R0

(−3
ι′0
r0

+ ι′′0 + r0ι
′′′
0 ) + m2

r0R2
0
((ι′0)

2 + r0ι
′
0ι
′′
0)

. (A3)

Thus, using the definitions of Eq. (15), it is straightforward to see that f = (m2−1)a2

r2
0

+ a2g1

F ′0

and g = − a
F ′0

g0 with g0 and g1 defined by Eqs. (A2) and (A3).
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Appendix B: Estimate of the energy value for the fundamental solution

Proceeding in the spirit of Ref. [13], one starts with an observation that the condition of

zero variation of the functional F =
∞∫
−∞

dyS(Ψ, Ψy), where S ≡ Ψ2
y−(ε−U(y))Ψ2, is fulfilled

through the Euler-Lagrange equations for such functions Ψ, which satisfy the Schrödinger’s

equation, Eq. (17). It follows also that for such functions Ψ the functional F vanishes.

Therefore, by taking Ψα = exp(−αy2/2) as a trial function for the fundamental state and

solving the appropriate equations





F = 0

∂F/∂α = 0
, (B1)

one can obtain a good estimate for energy of the fundamental state ε0. Let us illustrate how

this approach works for a case with m À 1. Taking f̃ in Eq. (18) as f̃ ≈ 1 À g̃, and thus

neglecting the terms proportional to g̃, U in Eq. (18) becomes

U(y) = σ̃(1 + y2) +
3y2 − 2

4(1 + y2)2
. (B2)

Eqs. (B1) yield 



α1/2

2
− ε0

α1/2 + σ̃
2α3/2 (2α + 1)− I(α) = 0

1
4α1/2 + ε0

2α3/2 − σ̃
4α5/2 (2α + 3)− ∂I

∂α
= 0

, (B3)

where I(α) = 1√
π

∞∫
−∞

dye−αy2 −3y2+1
4(y2+1)2

= 5
4
α1/2 −

√
π

8
(1 + 10α)erfc(α1/2). Solving Eqs. (B3) for

ε0, one obtains the fundamental energy level. When |σ̃| ¿ 1, one can use the small argument

expansion for I(α), so that solution of Eqs. (B3) results in ε0 ≈ 3
2

(√
π

8

)2/3

σ̃1/3+
(

8√
π

)2/3

σ̃2/3.
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FIGURE CAPTIONS

FIG. 1. Radial dependence of the local values for the essential frequencies in the system

normalized to the global minimum of the shear Alfvén continuum for the mode

with m = 1 and n = 1. Shear Alfvén continuum is plotted with the solid curve,

electron diamagnetic drift frequency curve with the dashed curve, and k‖vthe with

the dotted curve.

FIG. 2. Real part of the potential corresponding to the three different radial eigenfunctions

of DKAE obtained in the numerical solution. The real part of the eigenfunctions is

normalized to unity.

FIG. 3. Imaginary part of the potential of the same eigenfunctions as displayed in Fig. 3.

FIG. 4. Verification of Eq. (20) with the results obtained numerically. The squares con-

nected with the solid line display the numerical values and the triangles connected

with the dashed line display the analytically predicted values.

FIG. 5. Discrepancy of the Eq. (20) with the numerical predictions. Imaginary part of

h(ω̃)/c in Eq. (20) calculated with the numerical values of the eigenfrequency has

a relatively large imaginary part for the fundamental solution with no radial nodes

indicating a significant digression from the prediction of Eq. (20). On the opposite,

the other two solutions show very good agreement with Eq. (20). For comparison

sine of the complex phase for the right hand side of Eq. (20) is plotted with the

dashed line.

FIG. 6. Numerical values of the normalized real part of the frequency for the modes showed

in Figs. 2 and 3 (squares connected with the solid line) plotted against the analytical

predictions obtained with solving Eq. (20) (triangles connected with the dashed

line).

FIG. 7. Left: numerical values of the normalized growth rate of the frequency for the modes

showed in Figs. 2 and 3 (squares connected with the solid line) plotted against

the analytical predictions obtained with solving Eq. (20) (triangles connected with

the dashed line). The predicted values are extended to the radial numbers beyond
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the numerically existing to demonstrate that the predicted values are also peaked.

Right: F function from Eq. (22) approximating dependence of the growth rate on

the real part of the mode frequency calculated for the parameters of the example

case.
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