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Abstract. The feedback stabilization of resistive wall modes (RWMs) for realistic wall structures has
been studied splitting the problem in two parts. In the open-loop part, the complete set of eigenvalues
and eigenfunctions of the plasma-resistive wall system without feedback currents has been determined.
Then, in the closed-loop part an initial value problem has been formulated for the time evolution of the
RWMs and the currents of the feedback coils. The feedback logics controlled by a set of free parameters
prescribes the interaction between the feedback currents and the RWMs. After choosing their values,
the effectiveness of the feedback can be studied by solving the characteristic equation of the closed-loop
system. The procedure has been implemented numerically (STARWALL code) and applied to a resistive
wall configuration for ASDEX Upgrade. For an optimal choice of the feedback parameters, the OPTIM
code has been developed which optimizes the stability of a truncated closed loop system under variations
of the free parameters.

1. Introduction

An external kink mode of an MHD equilibrium can be stabilized by a perfectly conducting
wall sufficiently close to the plasma. In case of a real wall with non-zero resistivity the mode
becomes unstable and grows on the resistive timescale of magnetic field diffusion through the
wall. The growth rate of the resistive wall mode is typically orders of magnitude smaller than
the kink mode in the no-wall case so that the stabilization of the RWM by an active feedback
system becomes feasible. There are numerous publications on that topic, e.g. [1] and refer-
ences therein. In this paper, the method published by Chu et al. [1] has been extended so that
RWMs of 3D equilibria and their feedback stabilization in the presence of multiply connected
wall configurations can be studied. The problem has been separated in two parts, namely, the
open-loop and the closed-loop problem. In the open-loop part, the complete set of eigenfunc-
tions of the plasma-resistive wall system has been determined. The feedback coils are included
in the resistive wall configuration. They are additional passive resistive elements without an
applied external voltage. The open-loop system is self-adjoint and one obtainss a complete set
of orthonormal eigenfunctions.
The closed-loop problem can be formulated by including sensor loops and the feedback logics.
The sensors measure the perturbed magnetic field at appropriate locations and the feedback
logics relates the sensor signals to the voltages applied to the feedback coils. One gets an initial
value problem for the time evolution of the RWMs and the feedback currents. The effectiveness
of the feedback can be studied by solving the characteristic equation of the system. In order to
find an optimal choice for the free parameters (gain matrix) of the feedback logics, a nonlinear
optimization procedure has been developed minimizing the largest real part of the closed-loop
eigenvalues. In Section 2, the open- and closed-loop problem and the optimization method are
described. In Section 3, an application for ASDEX Upgrade is presented.
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2. Solution method

An energy principle holds for the open-loop system. Assuming the RWM to be sufficiently slow
the kinetic energy of the plasma perturbation can be neglected. The potential energy

���������	��

of the perturbed plasma and the vacuum energy functional

��
have to satisfy���������	��
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with plasma-vacuum interface 243 , displacement vector
�
, equilibrium magnetic field

-65
, per-

turbed vacuum magnetic field
-

and exterior normal
'

. The potential energy of the plasma
perturbed by the displacement

�
is given by���������	��
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provided by the CAS3D code [2], which computes internal and external eigenmodes of 3D
MHD equilibria. The code uses flux coordinates

Pg� \ � Y , where
Pihj�lk P�k � labels the

magnetic surfaces and
� \ � Y 
mhn��k \ � Y k � are poloidal and toroidal magnetic coordinates on

the surfaces.
U VX �;U V[ are the derivatives of the poloidal and toroidal flux with respect to

P
. The

displacement vector is expanded in
� \ � Y 
 -Fourier space:�o�(Pg� \ � Y 
p� qprLs t8ruvnw"xFy zLw !v�{+xFy zLwg|8z	} � � �(P1
 q`tp~	��� �"� ��� \ ��� Y 
_���g���(P1
 q`tp�,�g~ �1� ��� \ �B� Y 
�f (3)

With respect to the flux coordinate
P
, the Fourier harmonics

� � �(P1
 q`t �	� � �FP"
 qDt are discretized by
a finite element method.
The term

���
in (1) corresponds to the energy flux accross the plasma-vacuum interface. The

perturbed magnetic field
-

has to satisfy Maxwell’s equations
-��.E]RS���SE�R��(E]RS��
����� EM)�� ���

and boundary conditions at the plasma-vacuum interface and the conducting
wall.

�
is the vector potential. In case of a resistive wall, the boundary condition follows from

Faraday’s and Ohm’s law: � ������;� �l����� � �.�
. Assuming a time dependence �+� � , one gets

in the thin wall approximation the boundary condition'�RS�M��� H �('�)+��
e-05 h
on 2D3 (plasma-vacuum interface)H 3��� � 'R a ? h
on 2 ? (resistive wall )

� (4)

where
a ?

is the current in the resistive wall and
� #

is the surface resistance of the wall.
(
�*�

conductivity,
# �

wall-thickness)
The vector potential

�
can be generated by surface currents

a 3 �¡a ? on the plasma-vacuum
interface, the resistive wall and feedback coils:��� �¢ � ?u £¥¤ 3 ��^¦ #&% £ a £§1¨ H ¨ £ § � �¢ � t,©u ª ¤ 3*« �ª �¬g #&% ª ® ª§8¨ H ¨ ª § (5)

with
® ª �

normalized current density, « �ª �
coil current,

� � � number of coils. The currents
have to be determined such that the boundary conditions for

�
on 2�3 and 2 ? are fulfilled.

To solve cases with multiply connected wall configurations, a finite element method has been
applied using a variational procedure.
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One introduces the functional¯ � �°±� ? s ?u£ s ² ¤ 3 ��^¦ #&% £ ��,³ #&% ² a £ )&a ²§8¨ £ H ¨ ² § � ��1´ ���µ #&% ? a ? )&a ?� # � ��"! #&% 3 ��'¶)���
·'m)&�¸a 3 RS-05;


(6)� �°±� t © s t ©uª s ªº¹ ¤ 3 « �ª « �ªº¹ �¬g #&% ª �¬  ¹ #&% ªd¹ ® ª ) ® ª ¹§"¨ ª H ¨ ª ¹ § � �¢ � t © s ?uª s £¥¤ 3 « �ª �¬g #&% ª ��^¦ #&% £ a £ ) ® ª§8¨ £ H ¨ ª §� ��1´ t,©u ª ¤ 3�» ª « �ª ? �¬g #&% ª ® ?ª �]�´ t,©u ª ¤ 3p« �ª½¼ r�¾(¾ �&¿� s ª f
Divergence-free surface currents can be derived from current potentials:

a £ �À' RjEQÁ £ �_Â4� � � � f
The variation of

¯
with respect to

Á 3 �;Á ? gives the correct boundary conditions for
-

at the
plasma-vacuum interface and the wall. The open-loop problem is solved including the feedback
coil currents as passive elements (

¼ r;¾(¾ �&¿� s ª �Ã�
). The feedback coils are modeled as thin ribbon-

like conductors of finite width. Replacing the
a £

in
¯

by the current potentials, the independent
variables of the system are

Á 3 ��Á ? and « �ª . For the finite element procedure the plasma-wall
interface, the resistive wall and the feedback-coils are discretized into triangles. A triangle
consists of the set of points given by¨ � ¨ 3 �BÄ ¨ ? 3 �BÅ ¨ 9 3 �S� ÆÇÄ��BÅÈÆ � � ¨ £ ² � ¨ £ H ¨ ² �*Âe��ÉQ� � � � �;Ê�f (7)

The surface-current density is assumed to be constant on the triangle and can be written asa�Ë�� Á 3 ¨ ?Ì9 ��Á ? ¨ 9 3 ��Á 9 ¨ 3 ?§ ¨ ? 3 R ¨ 9Ì? § f
(8)

The
Á £

are the values of the current potential at the vertices of the triangles and they are the
independent variables of the discretized functional

¯
. The contribution of a pair of triangles to

the functional
¯

is given by¯ ËÍË ¹ � �°±� a�V Ë )&a,Ë � Ë ¹ #&% V � Ë #&% �§"¨ V H ¨B§ (9)

Two integrations of the fourfold integral are performed analytically, the remaining two are com-
puted numerically. In order to compute the term determining the boundary condition at the
plasma-wall interface, ¯ �¸a 3 �	��
�� ��"! #&% 3 ��'¶)���
_'¶)&�da 3 RS-05�


(10)

one has to adjust the spectral discretization of the plasma perturbation to the finite element
discretization of the vacuum part. There are two representations for the plasma-wall interface.
For the plasma part, a Fourier expansion in

� \ � Y 
 is used, while for the vacuum part the surface
is discretized into triangles such that the vertices coincide with the mesh-points

� \ £ � Y ² 
 used for
the Fourier transform. With�j)1EQPÎ� qprLs t8ruvnw"xFy z	w !vÏ{8xFy z	w�|+zL} � �q`t ~	��� �"� ��� \ �B� Y 
_��� �qDt �,�Ð~ �"� ��� \ �B� Y 
 (11)

and a 3 �À' 3 R�EÑÁ 3 �Ò��Á 3 �lÓ+� \ � « � Y ��Á � � \ � Y 
^� (12)
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one gets ¯ �¸a 3 �	��
Ô� �(U VX Ó8� H U V[ « �1
_�+5Ì5`� u q�s t �1� ���ÍU [ V �B��U X V 
,�¡� �qDt » �q`t H � �q`t » �qDt 
��» �qDt �BÂ » �qDt � ���Õ"��Ö t+×;Ø 3 s t+Ù,Ø 3uÚ ¤ 5 s ² ¤ 5 Á � ��Û��Õ � É�ÏÖ 
�Ü^Ý�Þ �1� Â����ÔÛ��Õ �B� É�ÏÖ 
^� (13)

where
Ó8�g� « � are the net toroidal and poloidal perturbed plasma currents driving the

�±5Ì5
mode. The remaining terms of the Lagrangian

¯
can be discretized accordingly. The vari-

ables are the displacement
�
, the current potentials on the plasma-vacuum interface and

the resistive wall and the feedback currents. The discretized variables are noted as fol-
lows: ß � à8� � �(P £ 
 qDt �+f,f+f��e� � �(P £ 
 qDt �+f,f+fâá consists of all components of the displacement
vector except of the normal components at the plasma boundary which are denoted by

�ã�à8� � � � 
 qDt �,f+f+f,�e� � � � 
 qDt �,f+f+fâá The current potential on the plasma-wall interface, on the resistive
wall, and the feedback currents are denoted by ä � �Òà±Á 33 ��Á 3? �,f+f+fâá�� ä�å �Ôà±Á ? 3 ��Á ?? �+f,f+fæá�� « � �à « �3 � « �? �+f+f,f¥á respectively..
Varying the discretized eq. (1) one obtainsç�èOé4é èOé4êèOêëé èOêëê�ì ) ç ß � ì H ç �í ê � ä � ��í ê å ä�å ��í ê � « � ì ���

(14)

From the discretized Lagrangian
¯

one gets the set of equationsíT�&� ä � ��íT� å ä å ��íT� � « � � H » � ê ��� (15)##gî �Fí å � ä � ��í å�å ä å ��í å � « � 
�� H �� #·ï å�å ä å �##gî �Fí � � ä � ��í � å ä å ��í ��� « � 
�� H » � « � � ¼ r;¾F¾ �$¿� f (16)

The open-loop problem is defined by the set of equations with

¼ r;¾F¾ �$¿� �À�
.

The closed-loop problem can be formulated by setting¼ r;¾F¾ �$¿� ��ð 3� �Wñ � ��ð ?� � ##gî ñ � � ñ � � ñ � � ä � � ñ � å ä å � ñ � � « � (17)

where
ð 3� � �Lð ?� � are gain or amplification matrices and

ñ � ��à ñ � ! � ñ � µ �+f+f,f¥á
are magnetic sensor

signals produced by the currents of the system.
Eliminating ä � by solving eq. (15) for ä � givesä � � H í Ø 3�&� íT� å ä å H í Ø 3�&� íT� � « � H í Ø 3�&� » � ê ��f (18)

Substituting (18) into (14) yieldsç è.é`é èOé4êèOêëéòèOêëê �6í ê �"í Ø 3�&� » � ê ì ) ç ß � ì � ç ��Fí ê � H í ê �1í Ø 3�&� íT� � 
 « � �À�(í ê å H í ê �1í Ø 3�$� íT� å 
 ä�å ì
(19)

or , when solved for
�
, �@��í ê ��ó å ç « �ä å ì f (20)

Inserting (18) and (20) in eqs. (16) one gets a set of linear equations defining an initial
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value problem of first order in time. Assuming a time dependence �8� � , the normal modes of the
system are obtained by solving the generalized eigenvalue problem´Bônõ÷öí ��� öí � åöí å � öí å�åãø H õ÷öí � ê )1í ê ��ó åöí å ê )1í ê ��ó å�ø H ç ð ?� �;ù ñ � ��ó å� ì½ú ç « �ä å ì� û H ç » � �� 3��� ï å�å ì � ç ð 3� � ù ñ � ��ó å� ìýü ç « �ä å ì �

(21)

öí ��� � í ��� H í � �8í Ø 3�&� �FíT� � � » � ê í ê � 
öí � å � í � å H í � �1í Ø 3�&� �(íT� å � » � ê í ê å 
 (22)öí å � � í å � H í å �1í Ø 3�&� �Fíþ� � � » � ê í ê � 
öí å�å � í å�å H í å �1í Ø 3�$� �FíT� å � » � ê í ê å 
��ñ � �ÿ� ñ � � H ñ � �"í Ø 3�&� íT� � 
� ��� �� ¿�� © « � �À� ñ � å H ñ � �8í Ø 3�&� íT� å 
� ��� �� ¿��	� ä å H ñ � �1í Ø 3�&� » � ê� ��� �� ¿ ��
 � �
(23)ù ñ � ��ó å �ÿ� ù ñ � � � ù ñ � å 
 H ù ñ � ê í ê ��ó å f (24)

The STARWALL code solves this problem numerically. The potential plasma energy
���������	��


is provided by the CAS3D stability code [2], the equilibrium by the VMEC code [3]. For faster
wall modes the open-loop problem can be solved with an extended version of the CAS3D code,
in which the kinetic energy of the plasma perturbation is taken into account [4].
The problem remains to find the best available feedback logics, i. e., to make an optimal choice
of the numerous elements of the gain matrices

ð 3� � and
ð ?� � . To simplify this problem, these

matrices are assumed to be linear combinations of a few, skillfully predefined basic matrices:ð 3� � � ��u £¥¤ 3 Ä £ ð 3� � s £ � ð ?� � � ���u £¥¤ 3 Å £ ð ?� � s £ f (25)

The coefficients
Ä £

and
Å £

are free, variable design parameters. To make a good choice for them,
the eigenvalue optimization code OPTIM has been developed. Its principle is described in the
following.
Substituting (25) into the closed loop stability problem (21), one finds that it takes the form� ¨ � ´ - ¨ �

(26)

whith
¨ � � « � � ä å 
 [ being the system’s state vector. The

í Ròí
matrices

�
and

-
are

decomposed as �M�À�Z5`� � u £¥¤ 3 Ä £ � £ � -ÿ�À-05`� ���u £¥¤ 3 Å £ - £ � (27)

where
��5

and
-05

are the open loop contributions,
� £

,
Â¶� � �,f+f+f,� ï�� the “proportional gain”

feedback matrices, and
- £

,
Âý� � �+f+f+f�� ï�� the “derivative gain” feedback matrices. Assuming

that
-

is invertible, (26) is equivalent to the ordinary, parametrized eigenvalue problem- Ø 3 � ¨ � ´ ¨ �
(28)
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yielding the eigenvalues

´ Ú , Û � � �+f+f,f���í . Feedback stabilization is achieved when a set of
parameters

Ä £
and

Å £
is found such that Re

� ´ Ú 
�Æ �
for all Û . To determine such parameter

sets automatically, the OPTIM code minimizes either the so called spectral abscissa � 3 or the
“exponential spectral function” � ? ,

�j3 � ´ 3 �+f+f+f�� ´�� 
�� ���1ÝÚ ¤ 3 s������ s � Re
´ Ú � � ? � ´ 3 �+f,f+f�� ´�� 
�� �u Ú ¤ 3 Ü^Ý�ÞD� Re

´ Ú 
 (29)

under variations of
Ä £

,
Â�� � �+f,f+f�� ï�� and

Å £
,
Â�� � �+f+f,f�� ï�� . Optimization of �@3 gives the best

achievable asymptotic stability of the system, whereas minimization of � ? results in a faster
decay of transient disturbances.
Let � be either �c3 or � ? , and

�� �(Ä 3 �+f,f+f,�;Ä �  �LÅ 3 �,f+f+f^�LÅ � � 
 �
� � ´ 3 �Ìà1Ä £ á��,à"Å £ á±
��+f+f+f�� ´�� �&à1Ä £ á���à"Å £ á±
e


. For the numerical efficiency of minimizing
�� ,

it is highly beneficial to provide an analytic expression for its gradient:

 �� Ä £ � �u Ú ¤ 3  � ´ Ú  ´ Ú Ä £ �  �� Å £ � �u Ú ¤ 3  � ´ Ú  ´ Ú Å £ f (30)

The derivatives
 �"!  ´ Ú are easy to determine. But there also exist analytic formulas for ´ Ú !  Ä £ and

 ´ Ú !  Å £ , which can be derived by means of first-order perturbation theory, cf.
[5]. Despite the existence of an analytic gradient, the optimization procedure is feasible with
today’s computational resources only if the matrices

� £
,
- £

can be substantially reduced in size.
To this end, each matrix is first subjected to a similarity transform of the form

è V �$# [ è #
,

where
è � � £

,
- £

, and the columns of
#

contain the orthonormal open loop eigenvectors,
sorted according to descending order of the respective eigenvalues:

# �ÿ� ¨ 3 �+f,f+f�� ¨ � 
^� - Ø 35 �Z5 ¨ Ú � ´ Ú ¨ Ú � ´ Ú&% ´ Ú ó 3(' Û � � �,f+f+f^��í H � f (31)

Afterwards, the system is projected onto the least stable eigenvectors, i. e., only an upper left
quadratic matrix block with ) � � �g�g
 rows and columns is accounted for, respectively. The
optimization procedure is applied to this reduced system. At last, as a cross-check, the resulting
optimal parameter values

Ä £
,
Å £

are substituted into the full-sized closed loop system, and the
corresponding eigenvalue problem is solved. It is often found that the matrix truncation hardly
affects the leading eigenvalues if the reduced matrices are still sufficiently large.
Conventional algorithms for nonlinear optimization usually fail when attempting to minimize
spectral functions like (29). This is due to the fact that such functions are likely to be non-
smooth or even non-Lipschitz, i. e., there exist manifolds in parameter space where the gradient
diverges. Adapted from [6], the OPTIM code includes a so called gradient bundle method which
can cope with such malicious kind of functions.

3. Application
The numerical procedure has been applied to an ASDEX-Upgrade type equilibrium. The equi-
librium has been calculated with the VMEC code [3]. The magnetic surfaces, the * -profile and
the pressure are shown in FIG. 1a-b. The equilibrium with an average

Æ�Å % �i��f¸�gÊ
is
�ý� � ex-

ternal kink unstable without a stabilizing conducting wall. The Fourier harmonics of the normal
displacement

� �q`t �,+.- #�# 
^�e� �qDt �/+ � Y � �_
 of the unstable
����� � 
 eigenfunction obtained with

the CAS3D stability code are plotted in FIG. 2.



7 TH/P3-8

0 0.5 1 1.5 2 2.5 r−1

−0.5

0

0.5

1

z

flux surfaces
resistive wall
feedback coils

0 0.2 0.4 0.6 0.8 1
s1/2

0

1

2

3

4
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FIG. 1a FIG. 1b
FIG. 1a-b Flux-surfaces, 0 -profile and pressure of an ASDEX Upgrade type equilibrium: 132547698;:<8>=
The mode can be stabilized by an ideally con-
ducting wall

���T�@?Ç

sufficiently close to the

plasma boundary. The equilibrium has been
found to be stable by applying the multiply con-
nected wall shown in FIG. 5a. The wall config-
uration is a preliminary design for ASDEX Up-
grade. For non-zero wall resistance

���BA�C?Ç

the

equilibrium becomes again unstable. Running
the STARWALL code in the open-loop mode
two unstable

����� � 
 eigenvalues are obtained:´ED 5L� # �GF�f ¢IH
and

´JD 5	� # � H f ° Ê
. In FIG. 4 the

m-harmonics of the normal displacement of the
unstable modes at the plasma boundary and in
FIG. 3 the growth rate versus resistance � ! ��� # 

of the most unstable mode is shown. In order
to stabilize the modes, a feedback configuration
has been chosen taking into account the propor-
tional gain matrix only. Poloidal field sensor
signals were taken from

�_� ¾ � °
sensors located

at the center of the central coil set (FIG. 5b).

0 0.2 0.4 0.6 0.8 1
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−0.7
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ξs

n=1  ideal kink mode    γ = .085

m=3 odd
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m=2 odd
m=2 even
m=4 odd
m=4 even
m=5 odd
m=5 even
m=6 odd
m=6 even
m=7 odd
m=7 even
m=8 odd
m=8 even
m=1 odd
m=1 even
m=9 odd
m=9 even

FIG. 2 m-harmonics of the KMLN6"OQP external
kink mode without conducting wall
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0.2

0.4
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FIG. 3 Growth rate of the KML�6ROQP resistive wall
mode versus OQS;KUT�VWP , magnetic field X 5 6ZYW:\[�] T,
major radius ^_6ZO`:\a>bdc , egf"6 Alfv́en time.

FIG. 4 m-harmonics of the normal displacement
at the plasma boundary of the KML�6hOQP resistive
eigenmodes.
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FIG. 5a FIG. 5b
FIG. 5a-b Design of a stabilizing wall for ASDEX Upgrade, 3 sets of 8 feedback coils and sensor
positions are shown. Discretisation of the wall: L å� 6ZOgi;OgjkY triangles and of the plasma boundary:
L Õ 6ZOgikY poloidal mesh-points, L Ö 6lik[ toroidal mesh-points, L

� � 6m=k[kjk[�] triangles

−15 −10 −5 0 5 10
Re γµ0σd

−20

−10

0

10

20

Im
 γ

µ 0σ
d

open loop
closed loop
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R
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γ iµ
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d
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FIG. 6a FIG. 6b
FIG. 6a-b Complex eigenvalues (a) and the real part of the first 60 eigenvalues in decreasing
order (b) of the open- and closed-loop solution, total number of eigenvalues computed L ¾ 6li`8nbd]
Anticipating the toroidal

���6� � 
 mode structure of the perturbation a gain matrix with 6 free
parameters has been definedð 3� s � s £ s ² �BC �ª ~	�b� ç �1��Í� ¾ � Û H É 
 ì �SC �ª �,�g~ ç �1��Í� ¾ � Û H É 
 ì � Â`� Û �B� � ¾ o � Û � � �L�Í� ¾ � o �À��� � �É6� � �	�Í� ¾ �� ÆãÂ�kÇ�Í� ¾ h central

�L�Í� ¾ ÆãÂ�k � �Í� ¾ h upper
� � �Í� ¾ Æ�Â�kòÊÐ� � ¾ h lower coil set.

Running the optimization procedure a stable configuration has been obtained with the
parameter:

C �5 � H � ° f H �QC �5 � H �g� f ¢ �QC � 3 �Gp�f ° �6C � 3 � � ¢ f¸Ê��QC �? � H ÊqF�fsr��6C �? � H � p�f H f
For the feedback coil resistance it was assumed » � ����f¸� � 3�^� , 3�^� � wall resistance. In FIG. 6a-b
the leading parts of the eigenvalue spectrum of the open- and closed-loop solution are shown.
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