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Abstract

Magnetohydrodynamic (MHD) turbulence is studied from the Lagrangian viewpoint by following

fluid particle tracers in high resolution direct numerical simulations. Results regarding turbulent

diffusion and dispersion as well as Lagrangian structure functions are presented. Whereas turbulent

single-particle diffusion exhibits essentially the same behavior in Navier-Stokes and MHD turbu-

lence, two-particle relative dispersion in the MHD case differs significantly from the Navier-Stokes

behavior. This observation is linked to the local anisotropy of MHD turbulence which is clearly re-

flected by quantities measured in a Lagrangian frame of reference. In the MHD case the Lagrangian

structure functions display a lower level of intermittency as compared to the Navier-Stokes case

contrasting Eulerian results. This is not only true for short time increments [Homann, et al., to

be published in J. Plasma Phys. (2007)] but also holds for increments up to the order of the inte-

gral time scale. The apparent discrepancy can be explained by the difference in the characteristic

shapes of fluid particle trajectories in the vicinity of most singular dissipative structures.
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I. INTRODUCTION

During the last decade Lagrangian statistics of turbulent flows have been receiving in-

creasing attention as new experimental techniques[1–5] and high-resolution numerical sim-

ulations [6–8] have enabled detailed studies of the dynamics of advected tracer particles.

The Lagrangian point of view is particularly suited for the study of the diffusive charac-

teristics of turbulent flows[9, 10]. The diffusion and dispersion of tracer particles in neutral

fluids has been subject of various experimental (see, for example, Refs [2, 11, 12]) and

numerical studies (see, e.g., Refs [6, 7, 13]). Related problems regarding the turbulent dif-

fusion of magnetic fields and the influence of turbulent magnetic fields on particle diffusion

have been investigated extensively in space and astrophysics, see e.g., Refs [14–19], as well as

with regard to magnetically confined nuclear-fusion plasmas (see, for example, Refs [20–22]).

Moreover the investigation of Lagrangian velocity increments is a complementary approach

that yields information about intermittency and the spatial structure of turbulence (see,

e.g., Refs [23, 24]).

In this paper a first effort is presented to identify differences of the Lagrangian statistics of

turbulence in electrically conducting and electrically neutral media. To this end the results of

several direct numerical simulations of three-dimensional incompressible and macroscopically

isotropic Navier-Stokes and MHD turbulence seeded with massless point particles (tracers)

are analyzed.

The organisation of the paper is as follows. In section II a short overview of the numerical

scheme used for tracking the tracer particles is given. In section III the diffusion of single

particles is discussed. In section IV results regarding relative dispersion of particle pairs

are presented. Section V deals with Lagrangian structure functions and their relation to

the characteristic shapes of particle trajectories near structures of high dissipation. The

conclusions are summarized in section VI.
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II. NUMERICAL METHOD

The incompressible MHD equations in dimensionless (Alfvénic) units are given by

∂tω = ∇× [v × ω − b× (∇× b)] + µ∆ω (1)

∂tb = ∇× (v × b) + η∆b (2)

∇ · v = 0 (3)

∇ · b = 0. (4)

v is the velocitiy field, related to the vorticity by ω = ∇× v, and b the magnetic field. To

obtain this form the MHD equations in Gaussian units (see for example [25]) are normalized

using a typical flow speed V0, a length scale characteristic of its spatial variation L0, and

a characteristic magnetic field strength B0. The interaction parameter, B2
0(4πρ0)

−1/V 2
0 , in

front of the Lorentz force term is set to unity by proper choice of B0. Here ρ0 = 1 is the

uniform density of the fluid. The dimensionless kinematic viscosity µ and magnetic diffusiv-

ity η are formally reciprocals of the kinetic and magnetic Reynolds number, respectively. In

laboratory units, these dimensionless numbers are Re = L0V0/ν
∗ and Rm = L0V0/µ

∗ where

ν∗ and µ∗ are kinematic viscosity and magnetic diffusivity given in dimensional units. The

Navier-Stokes equations are obtained by setting b = 0 in the Equations (1) to (4). The

magnetic Prandtl number Prm = µ/η is set to unity.

A number of direct numerical simulations of macroscopically isotropic turbulence are

conducted by solving the incompressible MHD and Navier-Stokes equations by a standard

pseudospectral method on a cubic grid with periodic boundary conditions. The pseudospec-

tral treatment of the equations preserves the solenoidality of ω ans b down to machine

accuracy. The solenoidality of the velocity field is ensured by its algebraic computation

from the vorticity field in Fourier space. The computational grid has a resolution of 5123

(MHD, NS) and 10243 (NS) grid points respectively. Numerical parameters are summarized

in TABLE I. While Run1 and Run2 use a leapfrog scheme Run3 and Run4 use a Runge-

Kutta scheme of third order. Aliasing errors are reduced by spherical mode truncation [26]

in Run1–Run3 and by a high-order Fourier smoothing [27] in Run4. The standard small

scale resolution requirement kmax`d ≥ 1.5 [28] is approximately met in all simulations.

In this paper the Kolmogorov length and time scales are computed using the kinetic

3



TABLE I: Parameters of the numerical simulations: Taylor scale Reynolds number Rλ =

2/3[15urmsE
3/2/(εµ)]1/2, root mean square velocity urms and magnetic field brms, kinetic energy

dissipation rate εkin, magnetic energy dissipation rate εmag, ε = εkin + εmag, Kolmogorov length

scale `d = (µ3/εkin)1/4, Kolmogorov time scale τd = (µ/εkin)1/2, resolution N 3, number of tracer

particles Np. Run1 and Run3: Navier-Stokes simulations, Run2 and Run4: MHD simulations

Rλ urms brms εkin εmag µ = η dx `d τd N3 Np

190 0.82 - 0.23 - 8 · 10−4 1.23 · 10−2 6.9 · 10−3 5.9 · 10−2 5123 1.18 · 106 Run1

187 0.48 0.69 0.10 0.15 5 · 10−4 1.23 · 10−2 5.9 · 10−3 7.1 · 10−2 5123 1.18 · 106 Run2

316 0.18 - 3.5 · 10−3 - 2 · 10−4 6.14 · 10−3 2.5 · 10−3 0.12 10243 5 · 106 Run3

185 0.22 0.32 1.0 · 10−2 1.5 · 10−2 3 · 10−4 1.23 · 10−3 7.1 · 10−3 0.17 5123 5 · 105 Run4

energy dissipation rate εkin = µ
∫

V
ω2 in both the Navier-Stokes and the MHD case,

`d =

(

µ3

εkin

)1/4

, τd =

(

µ

εkin

)1/2

. (5)

This is motivated by the fact that the tracer particle dynamics are determined by the

turbulent velocity field. The effects of the magnetic field are felt by the tracers indirectly

via the distortions of the velocity field due to the Lorentz-force. Note that the Kolmogorov

length and time scales are denoted by `d and τd in this paper to prevent confusion with the

magnetic diffusivity η.

In order to obtain quasi-stationary turbulence a large scale forcing is imposed by freezing

all modes in the sphere |k| ≤ kf = 2 starting from a fully developed turbulent state.

This leads to an energy transfer from frozen to freely evolving fluctuations via nonlinear

interaction. In the resulting quasi-stationary state the total energy E and energy dissipation

rate ε show only small fluctuations in time not exceeding 10%. The Eulerian structure

function scaling exponents agree in the Navier-Stokes case within errors with experimental

(see, for example, Ref. [29]) and in the MHD case with numerical [30] results. It has been

checked that the large scale forcing does not introduce significant anisotropy by regarding

direction-dependent Eulerian two-point statistics.

After a statistically stationary state is reached for both the velocity and the magnetic

field, up to ten million tracer particles are injected into the flow. In the case of sim-

ulations Run1 and Run2 the initial particle configuration consists of groups of tetrads
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TABLE II: Particle groups and respective initial pair separations ∆0 in simulations Run1 and Run2

∆0 (Run1) ∆0 (Run2) Np pairs

group 1 1.8 `d 2.1 `d 4.42 · 105 3.31 · 105

group 2 3.9 `d 4.6 `d 4.42 · 105 3.31 · 105

group 3 7.9 `d 9.2 `d 1.86 · 105 1.39 · 105

group 4 20 `d 23 `d 5.52 · 105 4.17 · 104

group 5 98 `d 115 `d 5.52 · 105 4.17 · 104

{(∆0, 0, 0), (0, ∆0, 0), (0, 0, ∆0)} with an initial separation distance ∆0 that are placed on a

randomly deformed cubic superlattice with a maximum perturbation of 25% per superlattice

cell. This configuration represents a compromise between randomly distributed tetrads[6]

and a spacefilling and uniform tetrad distribution[7]. In both Run1 and Run2 there are five

groups of tetrads with different initial separation lengths ∆0 (see TABLE II) in order to

probe different length scales of the turbulent velocity field. In the case of simulations Run3

and Run4 the velocity field is seeded with randomly distributed tracers as these runs were

mainly intended for the calculation of Lagrangian structure function scaling exponents.

The particle trajectories are integrated in time according to

dX(t)

dt
= V (t) = v(X(t), t) (6)

using a midpoint method. The instantaneous particle velocities V (t) are computed by

tricubic polynomial interpolation of the velocity field v(x, t), which has proven useful for

high Reynold number flows [31]. The mean relative interpolation error has been estimated

to be of the order of 0.1% by comparing tricubic interpolated values to Fourier-interpolated

values on a turbulent velocity field. Particle positions X(t), their velocities V (t), and in

the MHD case the magnetic field B(t) = b(X(t), t) at the instantaneous position of the

particles have been sampled at an rate of ≈ 1
60

τd for Run1, ≈ 1
80

τd for Run2, ≈ 1
3
τd for

Run3 and ≈ 1
9
τd for Run4.
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FIG. 1: Evolution of mean-square distance to initial position 〈(X(t)−X 0)
2〉 for turbulent single-

particle diffusion in Navier-Stokes (black, Run1) and MHD (gray, Run2) turbulence. The dashed

lines indicate ballistic scaling ∼ t2 and diffusive scaling ∼ t. See also [33].

III. DIFFUSION STATISTICS

The diffusion of single particles relative to a fixed source due to advection by a turbulent

velocity field is characterized by the Lagrangian integral time scale

TL =

∫ ∞

0

dτ
〈(V (t)V (t + τ)〉

〈V 2〉
. (7)

TL is the autocorrelation time of the Lagrangian velocity calculated over all tracer trajecto-

ries. It was introduced by Taylor [32] to divide the single particle diffusion process in two

time ranges with asymptotic behavior. The Lagrangian time scale TL in Run1 and Run2 is

of the same order of magnitude, TL ≈ 16τd in the hydrodynamic and TL ≈ 15τd in the mag-

netohydrodynamic case. The mean square displacement of the particles from their initial

positions 〈(X(t)−X(0))2〉 is expected to grow quadratically with time for t � TL (ballistic

scaling) and to show a diffusive dependence ∼ t for t � TL [32]. In both simulations ballistic

scaling is found (see Fig. 1) up to about TL and diffusive behavior for t > 50τd. For t > 70τd

finite-size effects as well as the influence of the large-scale forcing can be observed, as the

particles have traveled then on average distances of half of the size of the periodic simulation

volume.

The normalized turbulent diffusion coefficient defined by

Dturb(t∗) =

∫ t∗

0

dτ
〈V (t)V (t + τ)〉

〈V 2(t)〉
(8)
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where 〈·〉 denotes averaging over all tracer trajectories increases rapidly in the interval 0 <

t∗ . 50τd and reaches then its saturation value TL.

With regard to turbulent single-particle diffusion no significant differences between the

Navier-Stokes and the MHD system are observed. The slight offset in Fig. 1 can be explained

by the lower level of kinetic energy in the magnetohydrodynamic case. This difference

cannot be compensated entirely by the applied Kolmogorov normalization as the kinetic

energy dissipation rate εkin is not linearly dependent on the kinetic energy. We do not

find a slowing down of diffusion for MHD turbulence predicted analytically [34]. However

in the cited work a delta-correlation in time of the velocity field has been assumed which

neglects the dynamically important adaptation of the small scale velocity fluctuations to the

magnetic field structure (see below).

IV. TWO-PARTICLE RELATIVE DISPERSION

In contrast to turbulent diffusion of single tracers the relative motion of two particles

(in the following denoted by the subscripts 1 and 2) is better suited for the investigation

of the structural differences of the velocity field in the Navier-Stokes and the MHD-system.

In addition the dispersive properties of turbulence have great practical significance with

regard to, e.g., the turbulent transport of passive contaminants and, in the MHD case, the

stretching of magnetic field lines.

A. Separation distance

In homogeneous turbulence which is studied here the statistics of relative dispersion

does not depend on the absolute position of the particles but only on their separation

∆(t) = X1(t)−X2(t).

In the short time limit t � TL the mean squared relative dispersion 〈(∆(t) − ∆0)
2〉

is expected to grow quadratically with time since the relative velocity of the particles is

approximately constant. In the large-time limit t � TL the particle-pair velocities become

statistically independent; this results ultimately in a diffusive scaling of the mean square
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FIG. 2: Evolution of mean-square relative dispersion in Navier-Stokes (black) and MHD turbulence

(gray). The behavior for three different initial pair-separations is shown, solid: group 1, dashed:

group 3, dash-dotted: group 5. The thin lines denote ballistic ∼ t2 and diffusive scaling ∼ t. See

also [33].

relative dispersion [6, 35]

〈(∆(t)−∆0)
2〉 ∼











t2, for t � TL,

t, for t � TL.
(9)

We observe for both Run1 and Run2 t2-scaling of the mean square relative dispersion for

times up to τd. For t > 160τd an approach to the diffusive limit is seen rudimentally. Full

decorrelation of the particle pair velocities is inhibited by the periodicity of the finite simu-

lation volume. At intermediate times a period of acceleration is observed. The acceleration

period is visibly delayed in the magnetohydrodynamic case; this feature will be investigated

below in more detail.

For particles with initial separations in the inertial range there exist in the Navier-Stokes

case predictions of Richardson[36] and Obukhov[37]

〈∆2(t)〉 = gεkint
3 t0 � t � TL, (10)

with the Richardson constant g, as well as of Batchelor[35]

〈(∆(t)−∆0)
2〉 =

11

3
C2(εkin∆0)

2/3t2 t � t0, (11)

where t0 = (∆2
0/εkin)

1/3 can be interpreted as the time scale on which the eddies of size

∆0 evolve. The curves 〈(∆(t)−∆0)
2〉 scaled by ∆

2/3
0 of groups 4 and 5 almost collapse in
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both the Navier-Stokes and the MHD case on short time scales t . 5τd. However no exact

Batchelor-scaling including all prefactors is observed which is probably due to the limited

extend of the inertial range. Furthermore Richardson scaling entails ∆(t) � ∆0 for t � t0

with ∆(t) in the inertial range and an approach of the pair separation curves to one universal

scaling law independent of ∆0. Hence no Richardson scaling is found due to the moderate

Reynolds numbers attained in our simulations. This is not unexpected in view of the fact

that even in experiments at considerably higher Reynolds numbers no Richardson scaling

has been observed[38]. The Lyapunov exponent which characterizes the chaotic separation of

infinitesimally close trajectories has not been computed as the calculation of the finite time

Lyapunov exponent would have increased the computational cost considerably, exhausting

the available resources. The alternative approach using the finite size Lyapunov exponent[39]

would involve the discussion of exit-time statistics which is beyond the scope of this paper.

For comparison with experiments and other numerical simulations an estimate of the

value of the Richardson constant g in the Navier-Stokes case has been made employing the

method used in Refs [6, 7, 12, 13] by fitting a straight line to 〈∆2〉1/3 (not shown). The

linear portion of the curve of group 2 which is closest to an approximate t3 scaling gives

g ≈ 0.50± 0.05. This result is of the same order of magnitude as found in previous studies

[6, 7, 12, 40]. However the value of g must be treated with caution as no clear Richardson

scaling is observed.

The probability density function (pdf) of the particle separation distance P (∆) (see Fig.

3) first introduced by Richardson [36] as distance-neighbor function represents a compre-

hensive diagnostic of the pair-dispersion process. It exhibits a rapid change of shape in time

also observed in Ref. [6].

The differences between the hydrodynamic and the MHD case are identified more easily

in the time evolution of the skewness and flatness of the pdf of the separation distance

defined as S∆ = 〈∆3〉/〈∆2〉3/2 (see Fig. 4) and K∆ = 〈∆4〉/〈∆2〉2 (see Fig. 5), respectively.

In the short time limit negative (NS) and small (MHD) skewness and finite flatness are

observed, since the relative velocity behaves on these time scales like an Eulerian velocity

increment[6]. In the long time limit the particle-pair displacements become statistically

independent and the pdf of ∆2 is expected to approach a chi-squared distribution with three

degrees of freedom (giving values for the skewness and flatness of the pdf of the separation

distance of 0.49 and 3.1 respectively [41]).

9



FIG. 3: The probability density function of the separation distance ∆ in the Navier-Stokes (a) and

MHD case (b) for the smallest initial separations ∆0 = 1.8`d (Navier-Stokes case) and ∆0 = 2.4`d

(MHD case) at t = 0.5τd (solid line), t = 2τd (dotted line), t = 8τd (short dashed line), 32τd

(dot-dashed line), and 128τd (long dashed line).

FIG. 4: The skewness of the pdf of the separation distance ∆ for the smallest initial separations

∆0 = 1.8`d (Navier-Stokes case, black) and ∆0 = 2.4`d (MHD case, gray). The horizontal line is

the appropriate chi-squared result of 0.49.

At intermediate times the separation process is highly non Gaussian in the Navier-Stokes

case as also observed in Refs [6] and [7] as well as in the MHD case. The maxima of flatness

and skewness are in the MHD case even higher than in the Navier-Stokes case and they are

reached at a later time.

For short times t . τd the level of intermittency, that is the aberration of the skewness

and flatness from the corresponding chi-squared or Gaussian results, is visibly higher in the
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FIG. 5: The flatness of the pdf of the separation distance ∆ for the smallest initial separations

∆0 = 1.8`d (Navier-Stokes case, black) and ∆0 = 2.4`d (MHD case, gray). The horizontal line is

the appropriate chi-squared result of 3.1

FIG. 6: Probability density functions of the Eulerian longitudinal increments of the velocity field

δv` measured over a distance of ` = δx in the Navier-Stokes (black) and the MHD (gray) case.

MHD case. Furthermore the period with high flatness and skewness values lasts longer in

the MHD case.

The observed short-time behavior for times t . τd is explicable since the velocity fields

are approximately constant in time during this period. The relative dispersion process

is accordingly dominated by the spatial properties of the velocity fields as obtained by

an Eulerian diagnostic [6]. To clarify this point and for comparison with the Lagrangian

observations the probability density function of the Eulerian longitudinal velocity increments

P (δv`) with δv` = [v(x + `)− v(x)] · ` for an increment length of ` = dx is shown in Fig.
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FIG. 7: Probability density function of the angle κ between the separation vector ∆ of particles

in group 1 and the proxy of the local mean magnetic field B at the times τd (long dash), 4τd

(dot-dashed), 8τd (short dash) and 64τd (solid). The thin line denotes a sinusoidal distribution

indicating isotropic random orientation of B and ∆ .

6. In the Navier-Stokes case a skewness of −0.54± 0.04 is found which agrees within errors

with experimental results[42] and a flatness of 6.6 ± 0.3. In the MHD case the probability

densitity function is decidedly less skewed with a skewness of −0.18± 0.06 and the tails are

more pronounced (flatness 9.0± 0.5) than in the Navier-Stokes case.

Skewness and flatness of the pdf of the separation distance show a rapid increase on

short time scales because a particle pair with high initial relative velocity is more likely

to separate quickly. The separation process is apparently to some extend self-energizing

as particle pairs with higher separation length are more likely to experience high velocity

differences and will continue to separate even more rapidly. In the MHD-case there exist a

higher number of particle pairs with extremely high relative velocities due to the pronounced

tails of P (δv`). Therefore skewness and flatness attain higher values on short time scales

t < τd in the MHD simulation compared to the NS values. In the subsequent time range

from τd . t . 5τd flatness and skewness are approximately constant in the MHD case while

in the Navier-Stokes case they rise to their maximum values.

In order to investigate the effect of the magnetic field in the MHD case we introduce

the quantity B = [b(X1, t) + b(X2, t)]/2 as a rough proxy for the value of the local mean

magnetic field at the particle pair position. In the MHD-case the particle separation vector

shows a tendency to align with the local magnetic field proxy in the abovementioned time
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interval (τd . t . 5τd) due to the anisotropy of the relative velocity with respect to B (see

section IVB). This can be observed in Fig. 7 where the probability density function of the

angle κ = ∠(∆, B) is shown.

In the case of an isotropic random orientation of ∆ and B one would expect a sinusoidal

distribution

P (κ) =
π

360◦
sin(κ). (12)

As the direction of B does not figure in the initial tetrad distribution P (κ) starts from

an approximately sinusoidal distribution at t = 0. With increasing time the orientations

parallel and antiparallel to B become more and more favored. As a result of the alignment

process the maximum values of flatness and skewness of the pdf of the separation distance

are reached belatedly in the MHD-case.

At t ≈ 8τd P (κ) has reached a quasistationary state, no further increase of the alignment

between ∆ and B can be observed. The particle pairs continue to separate while the particle

pair separation vector shows still a preferential alignment to the local mean magnetic field

proxy. For long times the tracer movements become increasingly uncorrelated due to their

growing separation distance. Eventually the differences between NS- and MHD-system in

the relative dispersion process become less pronounced as the skewness and flatness approach

their theoretically predicted large time values.

B. Relative velocity

Studying the relative velocity of particle pairs yields further insight into the relative

dispersion process. The relative velocity of a pair of tracer particles can be split into two

parts

U(t) = V 1(t)− V 2(t) = U‖(t)∆(t) + U⊥(t) (13)

where U‖ is the component of the relative velocity parallel to the instantaneous particle

separation vector ∆ and U⊥ is the perpendicular part. U‖ changes the length of the particle

separation vector ∆ whereas U⊥ alters the direction of ∆.

The mean parallel velocity (see Fig. 8) which is the separation velocity by which the

particle pairs are torn apart shows significant differences between the MHD case and the

Navier-Stokes case. On short time scales a continous increase of the separation velocity

can be observed in Fig. 8. Then the growth of the separation velocity is slowed down as the
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FIG. 8: Mean parallel velocity normalized by vd = `d/τd using the same symbols as in Fig. 2.

Black lines: Navier-Stokes case, gray lines: MHD-case.

FIG. 9: Root mean square transverse relative velocity normalized by vd = `d/τd (the z-component

is shown, the same behavior is observed for the x- and y-components) using the same symbols as

in Fig. 2. Black lines: Navier-Stokes case, gray lines: MHD-case.

particle pairs start to sense the temporal fluctuations of the velocity field, this time interval

ranging roughly from τd to 10τd will be called ”slowing down period” in the following,

although no actual deceleration takes place in the Navier-Stokes case. On larger time scales

the separation velocity rises again more rapidly as the mean separation distance grows and

the particles are dispersed by the more coherent large scale eddies. The separation velocity

attains a maximum value at t ≈ 90τd (at t ≈ 150τd in the MHD case) and starts to decrease

because of the periodicity of the simulation volume. The maximum of the separation velocity

is reached later in the MHD-case compared to the NS-system because the mean separation
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distance reaches half of the length of the simulation volume at a later time. This is for

two reasons: the lower kinetic energy in the MHD-case as compared to the NS-system

and the slowing down period delaying particle spreading. The intermediate slowing down

period is much more pronounced in the MHD case. While in the Navier Stokes case the

separation velocity still increases considerably in this time interval the separation velocity

is approximately constant in the MHD case.

A similar behavior can be seen in the root mean square transverse velocity which is

shown in Fig. 9 and which measures change of orientation of the separation vector ∆. In

time interval of 0.5τd . t . 2τd the transverse velocity decreases in the MHD case. For later

times 〈U2
⊥〉

1/2 grows continuously to its saturation value. A slight decrease of 〈U 2
⊥〉

1/2 can

be observed on short time scales t . τd in the Navier-Stokes case as well (see also [6]) which

can be attributed to the influence of temporal fluctuations of the velocity field. However the

decrease observed in the MHD case is much more pronounced.

The reason for the differences in the time evolution of the relative velocity must be sought

in the effect of the local mean magnetic field on the relative dispersion process. Although

macroscopically our MHD system has no mean magnetic field, on small spatial scales the

slowly evolving large scale magnetic field fluctuations act like a mean magnetic field. It is a

well known fact that in magnetohydrodynamic turbulence turbulent eddies are anisotropic

with respect to a mean magnetic field [43–48]. As the fluid elements travel on average

preferentially along the magnetic lines of force the relative dispersion is significantly reduced

in the field-perpendicular direction. Motions across field lines trigger quasi-oscillatory flow

patterns which are supposed to drive the energy cascade[44] but apparently do not lead to

an effective separation of the particle pairs. This anisotropy causes the alignment of the

particle separation vector ∆ to the local mean magnetic field proxy B as observed in Fig. 7.

In order to support this conjecture the pdf of the angle γ = ∠(U , B) for particle group 1

is shown at several points in time in Fig. 10 where B is the local mean magnetic field proxy

defined in the previous subsection. In the case of an isotropic random orientation of the

velocity field with respect to B a sinusoidal distribution (see Eq. (12)) would be expected.

We observe however, that on short time scales the distribution of the angle P (γ) exhibits

a clear deviation from this behavior favoring velocities aligned with B. A trend towards

an isotropic distribution can be observed for large times which is due to the increase of the

mean particle separation. The proxy B is for large particle separations no longer a good
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FIG. 10: Probability density function of the angle γ between the relative velocity of particles in

group 1 and the proxy of the local mean magnetic field B for the times as in Fig. 7. The thin

line denotes a sinusoidal distribution indicating isotropic random orientation of V and B. See also

[33].

approximation for the local mean magnetic field and becomes statistically independent of

the separation velocity. Furthermore the effect of the magnetic field on large scale velocity

fluctuations is not as pronounced as on fluctuations on smaller scales with significantly less

kinetic energy.

As the particles start to separate preferentially along B the relative dispersion in field

perpendicular direction is reduced. This causes the observed plateau of the separation

velocity shown in Fig. 8.

The B-perpendicular fluctuations of the velocity field contribute largely to the transverse

relative velocity. As in the Navier-Stokes case the effect of temporal fluctuations probably

leads to a decrease of 〈U 2
⊥〉

1/2 on short time scales. A further effect which might explain why

the decrease of 〈U 2
⊥〉

1/2 is considerably higher in the MHD case is the observed alignment

of the particle pair separation vector with B which takes place in approximately the same

time range. As the separation vectors align with the local mean magnetic field the B-

parallel velocity fluctuations start to dominate the tracer dynamics and the influence of

the field perpendicular velocity fluctuations decreases. As the mean separation distance is

approximately constant in this time range (for particles of group 1 the mean separation

distance has grown by t = 2τd only by a factor of 1.5) this results in a decrease of 〈U 2
⊥〉

1/2.

A closer comparison of the time evolution of the relative velocities can be made by
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FIG. 11: The skewness of P (U‖) for the Navier-Stokes (black line) and the MHD case (gray line)

for group 1. The dashed horizontal line indicates the Gaussian value of zero.

FIG. 12: The flatness of P (U‖) for the Navier-Stokes (black line) and the MHD case (gray line)

for group 1. The dashed horizontal line indicates the Gaussian value of three.

regarding skewness and flatness of the pdfs of the parallel and transverse relative velocity

components shown in Figures 11, 12, and 13. In the Navier-Stokes case we find basically the

same time dependence that has been observed in previous simulations [6, 7]. The skewness

of P (U‖) (see Fig. 11) rises from a negative value close to −0.54 observed in the probability

density function of the Eulerian velocity increments (see section IVA) to positive values.

Both, skewness and flatness, reach their peak values which indicate the highest level of

intermittency at t ≈ 4τd and approach Gaussian values in the long time limit. In the MHD

case the period of maximal values in flatness and skewness starts earlier and lasts longer.

Furthermore we discern two peaks, the first at about t ≈ 0.5τd and the second around 8τd.
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FIG. 13: The flatness of P (U⊥,z) for the Navier-Stokes (black line) and the MHD case (gray line)

for group 1. The dashed horizontal line indicates the Gaussian value of three.

For t & 10τd we see again an approach to Gaussian values. Figure 13 shows the flatness for

the pdf of the transverse component of the relative velocity which exhibits a pronounced

decrease in the MHD case in the time range 0.1τd . t . 1τd. In addition the maximum of

the flatness is reached later than in the MHD case.

For a possible explanation of this behavior it is necessary to discern several time ranges.

In the period of time which lasts approximately up to 0.5τd the motion of fluid particles is

dominated by the spatial Eulerian characteristics of the turbulent velocity field which are

discussed in the previous subsection. In MHD turbulence the pdf of the Eulerian velocity

increments is not as negatively skewed as in the Navier-Stokes case and has a higher flatness.

Therefore particle pairs with high separation velocities are more abundant in the MHD case

in this time range. As a result skewness and flatness of P (U‖) (see Fig. 11 and 12) as well

as the flatness of P (U⊥) (see Fig. 13) are considerably higher (see section IVA).

In the subsequent interval of time 0.5τd . t . 2τd, the particle pairs begin to sense the

turbulent fluctuations of the velocity field. As explained above the presence of the local

mean magnetic field leads to a reduction of the dispersion in field-perpendicular direction

and a slowing down of the relative dispersion process in the MHD case. Furthermore it must

be taken into account that for a particle pair separation vector aligned to B the component

of the separation vector in B-parallel direction is considerably larger than the perpendicular

part. Therefore the influence of the B perpendicular fluctuations of the velocity field on

the particle pair decreases relative to the influence of the B-parallel component of the
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fluctuations. In addition it has been found that on small spatial scales turbulent fluctuations

parallel to a mean magnetic field are smoother than the perpendicular fluctuations (see e.g.

[43]). As a result the values of K(U‖) and S(U‖) stagnate and the flatness of the pdf of the

transverse relative velocity decreases.

Once the separation process gains speed again the values of flatness and skewness in-

crease as well and basically the same qualitative behavior as in the Navier-Stokes case can

be observed. In the last time range t > 10τd an approach to Gaussian statistics can be

observed as the particle velocities V 1 and V 2 become increasingly uncorrelated. A perfect

decorrelation can not be attained due to the finite extend of the simulation cube.

Particle pairs with higher initial separations of groups 2, 3, and 4 show a similar behavior

as members of group 1. With rising initial separation the intermittency of the relative

velocity decreases as also observed in [6]. In the MHD case the alignment of the separation

vector with the local mean magnetic field takes longer time which is why the abovementioned

time ranges are shifted to larger times. The particle pairs of group 5 with highest initial

separation show no intermittent behavior as their dynamics is dominated from the start by

more coherent eddies at large scales.

C. Error estimation

Lagrangian statistics are known to be susceptible to extreme events in the fluctuating

turbulent fields (see, e.g., Refs [6, 40]). As a test for the reliability of the results within our

statistical sample an estimate of the statistical error is calculated. The sample is divided

in 6 subensembles of equal size and the maximum and minimum values of the separation

distance and the skewness of the pdf of the relative velocity are calculated. In the Navier-

Stokes case we find a maximum relative error of approximately 14% for the skewness of

the pdf of the separation distance and approximately 19% for the skewness of the pdf of

the longitudinal relative velocity. In the MHD-case we find a maximum relative error of

approximately 18% for both the separation skewness and the longitudinal relative velocity

skewness. These errors are of the same order of magnitude as in previous numerical studies

for the hydrodynamic case (see, for example, Refs [6, 7]).

The periodicity of the simulation volume as well as the large scale forcing unavoidably

affect the long time statistics of the Lagrangian tracers. These effects become visible for
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t > 70τd.

V. TRAJECTORIES AND STRUCTURE FUNCTIONS

To get an impression of the different behavior of passive tracer particles in MHD and

Navier-Stokes turbulence it is instructive to look at their trajectories directly. For the most

part they are rather straight and uneventful. However, near highly dissipative structures,

i.e. vortex filaments in the hydrodynamic case and vortex- and current-sheets in the MHD

case, the tracer trajectories show characteristic shapes and the tracer particles experience

high accelerations. In the hydrodynamic case the fluid particles tend to follow spiraling

paths near vortex filaments (see Fig. 14) which is the so called vortex trapping observed

in numerical simulations[49]. In the MHD case particles are often accelerated along vortex

sheets and tend to show bends in their trajectories (see Fig. 15) in the vicinity of the vortex

sheets. We observe two scenarios which cause high accelerations of tracer particles. In the

first scenario tracers move along a sheet and hit another sheet nearly perpendicularly. The

sudden change in the direction of the trajectory implies high accelerations in a nearly point-

like section of the path (see Fig. in Ref. [8]). In the second scenario tracers move along a

bended vortex-sheet. Here also high accelerations occur in a small section of the trajectory

compared to the size of the entire sheet. These two scenarios might also be related as can

be seen in Fig. 15. As vortex and current sheets often appear in close vicinity to each other

and have similar shapes a clear identification of the primary cause, i.e. current or vortex

sheet, of the characteristic trajectories is not always possible.

By measuring the velocity increments along the particle trajectories one can calculate the

Lagrangian velocity structure functions which are generally believed to display self-similar

scaling in time

SL
p (τ) = 〈|Vi(t + τ)− Vi(t)|

p〉 ∼ τ ζL
p . (14)

For the second order structure function one expects by dimensional analysis ζL
p = 1 [50],

SL
2 (τ) = C0εkinτ, (15)

where C0 is the Lagrangian Kolmogorov constant.

This approach is motivated by the well-established importance of the Eulerian struc-

ture functions which involve spatial instead of temporal increments. Generally, structure
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FIG. 14: (Color) Particle trajectory (blue corresponding to low acceleration, red to high accelera-

tion) near a vortex filament in Navier-Stokes turbulence. The filament is shown at one instant in

time

FIG. 15: (Color) Particle trajectory (blue corresponding to low acceleration, red to high accelera-

tion) near vortex sheets in MHD turbulence.

functions supply a scale-dependent diagnostic of the turbulent fluctuations. This property

renders them useful for measuring the intermittency of a turbulent field, i.e. the occurence

of extreme events on a fluctuating background. A general problem in the measurement
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FIG. 16: Second order Lagrangian structure function normalized by kinetic energy dissipation rate

εkin and time increment τ for the hydrodynamic (black) and the MHD case (gray). Note that no

scaling range can be observed.

of Lagrangian structure function scaling exponents from direct numerical simulations at

the presently achievable resolutions [51] is the absence of a Lagrangian inertial range (see

Fig. 16). Recently it was shown [52] that a different Lagrangian increment derived from a

Corrsin-type approximation yields a significantly larger scaling range than the standard in-

crement. However, in this paper we stick to the conventional definition to allow comparison

with other studies on Lagrangian two-point increments.

One has to add that even at high Reynolds numbers an inertial scaling of the Lagrangian

structure functions does not necessarily occur as the velocity increments calculated for a

single particle may be affected by the non-universal large scale structure of the turbulent

fields.

For want of a clear scaling range we selected the region where the second order structure

function scales approximately linear in t to measure the relative scaling exponents ζL
p /ζL

2

using extended self similarity[53].

Due to the considerable duration of the simulation runs we were able to calculate the

Lagrangian structure functions at several different points of time t separated by several TL

in order to ensure statistical independence of the different samples. The resulting relative

ESS-exponents for two independent simulations each in the Navier-Stokes and MHD-case

are shown in TABLE III. The results in the Navier-Stokes case agree within errors with

recent experimental findings[5, 54].
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TABLE III: Relative ESS-Exponents calculated with respect to the second order structure function

averaged over all three velocity components

Navier-Stokes case MHD case

p Run1 Run3 Run2 Run4

1 0.58 ± 0.006 0.57 ± 0.006 0.527 ± 0.004 0.52 ± 0.004

2 1 1 1 1

3 1.28± 0.02 1.31 ± 0.02 1.41 ± 0.02 1.41 ± 0.02

4 1.46± 0.06 1.50 ± 0.06 1.76 ± 0.04 1.76 ± 0.06

5 1.58± 0.12 1.70 ± 0.10 2.05 ± 0.08 2.06 ± 0.12

6 1.67± 0.19 1.82 ± 0.14 2.30 ± 0.13 2.30 ± 0.21

In Ref. [49] the scaling range has been chosen for time increments τ = 20τd − 50τd which

results in different values for the structure function scaling exponents. However it has to

be noted that for larger time increments τ the influence of the large scale forcing and the

periodic boundary conditions can affect the structure functions. Therefore we have chosen

to follow the approach of Xu, et al., in Ref. [54] in the selection of our scaling range. Note

that the Lagrangian structure functions show a more intermittent behavior in the Navier-

Stokes case than in the MHD case for larger time increments as well. This can be seen

from Fig. 17. Here, the logarithmic derivative of relative Lagrangian structures functions

are given for two different orders in Navier-Stokes and MHD turbulence. Whatever range

one chooses for evaluating the scaling exponents the MHD values are larger than the Navier-

Stokes ones. A second qualitative conclusion can be drawn from Fig. 17. The Navier-Stokes

functions display a pronounced knee at a few Kolmogorov times. This can be attributed

to trapping events of tracer in coherent vortex filaments (see Ref. [55]). The corresponding

MHD functions display no knee. This is in line with the observation that in MHD turbulence

no trapping events occur.

The lower degree of intermittency indicated by the Lagrangian structure functions in the

MHD case is surprising as the MHD Eulerian structure functions show a higher degree of

intermittency than in the Navier-Stokes case [30]. This apparent contradiction can be ex-

plained by regarding the particle trajectories. In hydrodynamic turbulence particle trapping

events have been found to enhance the intermittency of the Lagrangian structure functions
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for times up to 10τd [49]. In our MHD-runs we could not observe particle trapping events.

The corresponding bended trajectories near vortex sheets do not have a similar intermit-

tency enhancing effect. Although the particles experience large accelerations near vortex

sheets, a deflected particle shows basically a single large velocity increment as the direction

of its velocity is turned (see Fig. 19) whereas a trapped particle gyrating rapidly experiences

many large velocity increments because its velocity changes its direction perpetually (see

Fig. 18).

From the second order structure function normalized by εkinτ one can estimate the value

of the Lagrangian Kolmogorov constant C0 in Equation (15). The Lagrangian Kolmogorov

constant plays an important role in the stochastic modelling of Lagrangian statistics (see,

for example, Ref. [10]). In the Navier-Stokes case we find a value of C0 = 4.9± 0.2 (Run1)

which is of the same order of magnitude as previously measured experimental and numerical

values (see, for example, Refs [6, 56]). In the MHD case the value of C0 is somewhat smaller,

C0 = 3.9± 0.2 (Run2). The respective values for Run3 and Run4 are consistent with these

findings. As this parameter is of importance in some statistical models of relative dispersion

[10] the lower value in the MHD case might be connected to the slower relative dispersion

discussed in section IV.

VI. CONCLUSIONS

This paper presents a detailed comparison of the Lagrangian statistics of incompress-

ible and macroscopically isotropic Navier-Stokes and MHD turbulence. To this end data

generated by several high-resolution direct numerical simulations is analyzed.

Simple diffusion does not exhibit significant differences between the MHD- and the Navier-

Stokes system whereas for the relative dispersion of particle pairs many qualitative differences

are observed. Both the particle pair distance and the relative velocity show a different time

evolution in the MHD case. Due to the constricting effect of the local mean magnetic field

the relative dispersion is slowed down. The anisotropy of the small scale turbulent eddies

with respect to the local mean magnetic field leads to an alignment of the particle-pair

separation vector with the local mean magnetic field. This shows that even in cases where

no global mean magnetic field exists the large scale fluctuations of the magnetic field lead

to an anisotropy in the relative dispersion process.
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The tracer particle trajectories show near structures of high dissipation characteristic

shapes. In the Navier-Stokes case near vortex filaments spiraling trajectories are found

whereas in the MHD case deflected trajectories are observed near vortex sheets. This differ-

ence in the characteristic shapes of the trajectories might be responsible for the lower level

of intermittency of the Lagrangian structure functions in the MHD case compared to the

Navier-Stokes case.
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