POSSIBLE STATIONARY POTENTIAL
DISTRIBUTIONS OF A COLLISIONLESS
TWO-EMITTER CS-DIODE

M. Troppmann

IPP 2/82 August 1969




INSTITUT FUR PLASMAPHYSIK

GARCHING BEI MUNCHEN

POSSIBLE STATIONARY POTENTIAL
DISTRIBUTIONS OF A COLLISIONLESS
TWO-EMITTER CS-DIODE

M. Troppmann

IPP 2/82 August 1969

Die nachstehende Arbeit wurde im Rahmen des Vertrages zwischen dem Inslitut
fiir Plasmaphysik GmbH und der Europdischen Atomgemeinschaft tber die
Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgefiihrt.




IPP 2/82 M. Troppmann Possible Stationary Potential
Distributions of a Collisionless
Two-Emitter Cs-Diode
(in English)
August 1969

Abstract

The POISSON equation together with boundary conditions suitable for a plasma
diode with two equally heated emitter plates has been solved for stationary
particle velocity distribution funetions. The non-collision approximation is
used and trapped particles are neglected.

Overlapping of the ranges of existence of the different types of potential
shapes and consequently an ambiguity of the mathematical solutions of the
problem is found. Except for these regions the non-monotonic potential shapes
are uniquely determined by the boundary conditions in the case of ion rich
emission of both end plates. A shape characterized by monotonic potential
variation within both sheaths results in this case. On the other hand, for
electron rich emission always two distinet shapes occur. One solution has an
electron rich sheath in front of each emitter, the other one has a double sheath
with its negative face nearest to the "negative" emitter at - Ed and an electron
sheath at the other plate.

A criterion of stability is not given in the framework of this paper. However,
the necessary additional condition F(y) 2 0 (F(y) = square of the normalized
electric field strength) reduces the number of ambiguous (mathematicallsolutions
of the problem.
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LIST OF SYMBOLS

Symbol Definition
d half the distance between the two emitter plates
E electric field strength, E = - dV/dx )
S

E(x) error function, E(x) = err (xl'?) = 5,—" / exp(- £2)dt

o
e absolute magnitude of the electron charge
F(n) square of the normalized electric field, F(n) = (n')g
r(x,v) veloecity distribution function

/:
G(n) G(n) = exp(n) [1 - E(n)] + 2lnfa)e =1
g statistical weight
7

H(n) H(n) = exp(n) [ 1 + BE(n)| - 2(n/m'/2 -1

PLANCK's constant

ionization potential

current density

BOLTZMANN's constant

emission DEBYE-length, L = (kT/8m e°N__ (-ng
particle mass

particle density

normalized particle density
RB_(8) = N(OA_ (- gy
R_(8) = V(O (+ g

i, (r) = E+(E)/f¢ (- £4)

n, (k) = N (AN, (+ gy)
ionization coeffiecient

temperature of the emitter
potential

veloecity of the charge carrier
distance variable
z=n+nd4l

emanx<<:e*u=l+=0mm::lzar-wuH:-

a = N (- eI (- gy)
8 =N_(+ gd)/y_(— t£q)
v = N (+ gd)/N_(— £q)

™

total energy of a particle

n normalized potential, n = eV/kT

Y] evaporation rate

£ normalized distance variable, ¢ = x/L
¢ space charge density

) work function (measured in volts)

Superseript

” value at the emitter II (see appendix A)
Subscript

1,I emitter at -g,

2,11 emitter at +g;

a value at the emitter

e value at the extremum

- electron

+ ion

o neutral particle

- particle moves from emitter I to emitter II
- particle moves from emitter II to emitter I




1. INTRODUCTION

The work on the collisionless description of a low-pressure thermionic converter originates
from AUER and HURWITZ ‘17 who investigated the various possible dec states of such a device.
This work was later extended by MeINTYRE /27/.

EICHENBAUM and HERNOVIST /3/ studied the electrostatic potential distributions of a "two-
emitter diode" with no net current flowing through the device. They demonstrated the
possibflity of ambiguous solutions of POISSON's equation under certain conditions. Later on,
applying AUER's method to the collisionless emitter sheaths of a Q-machine, RYNN /4 /supposed
nonmonotonic potential distributions to exist there. Experimentally, no evidence supporting
this assumption has been found up to now. More recently two papers were published by SESTERO
and ZANNETTI /5/ and HU and ZIERING /6/ respectively, dealing with collisionless plasma
sheaths. The former authors considered different temperatures of the electrodes of a two-
emitter device, but postulated a priorl a monotonic change in the electric potential of the
emitter sheath. The most important result was that even a small difference in temperatures of
both emitter plates changes the plcture drastically. HU and ZIERING presented a thorough
analysis of a plasma sheath near an electrode ineluding also mieroscopic boundary conditions,
e.g. absorption, neutralization, and reflection, both diffusely and specularly, of the charge

carriers.
Up to now only one aspect of the behaviour of the two-emitter diode -- the influence of a
temperature difference between both plates -- has been discussed and even this in a nonrigid

way. Other aspects, e.g. the ambiguity of solutions of POISSON's equation are only mentioned.
Are these "static" solutions only of academic interest, or do they actually exist in a real
diode? This question arises and has not found an answer up to now.

Therefore, our principle interest is to give a detailed analysis of the solutions of POISSON's
equation restricted to the case of equal temperatures. We confine curselves to this speclal
case for two reasons: Firstly, this assumption simplifies the calculations in a high degree
without limiting our interest in the ambiguity of the solutions. Secondly, the most interesting
application of the present results is the O-machine, which is usually operated with both plates
at equal temperatures.

In chapter 2 all the assumptions used for discussing this problem are presented. A general
procedure for obtaining the solutions of POISSON's equation is given in chapter 3. Then we

shall deal with the monotonic potential shape discussing its boundaries in parameter space
(chapter 4). Nonmonotonic potential distributions are described in chapter 5. The complexity of
solutions in the case of electron rich emission of both emitter plates will be demonstrated.

In chapter 6 the ambiguity of the various potential shapes found to the same boundary conditions
will be considered.

These results have been obtained neglecting certain features of the problem, e.g. the effect
of trapped particles. Possible consequences are discussed.

2.ASSUMPTIONS

We are dealing only with static potential distributions, i1i.e. we assume

At = {1y

The model of the one-dimensional low-pressure diode consists of two infinitely extended
identical planar electrodes facing each other (diameter of the plates » distance apart) (fig. 1)

and heated to identical temperatures fTI = T..). The work function of both plates 1s assumed

II
to be equal and the potential across their surfaces to be uniform. The mean free paths for
encounters between the charge carriers are large compared with the DEBYE-length and with the
diode spacing. Therefore, the electric field in the diode space is determined by POISSON's

equation in its simplest form (in Gaussian units)




a2v(x) /ax® = me{N(x) + N_(x) - N, (x) - N, (0} (1)

where the N's denote the various particle densities contributing to the space charge density.
The arrows speclify the possible directions of the velocity of the particles with respect to
the x-coordinate.

The velocity distribution functions are described by the VLASOV equations for ions and electrons

respectively
+ e .
Vaxff = 5K Avft =0. (2)
The electric field is given by E = - dV/dx

having only a component in the x-direction.

If elastic and inelastic collisions of short range are neglected, each charged particle interacts
only with the COULOMB field of all the other ones. By using the method of characteristics we are
able to integrate eq.(2). The solution can be expressed as

ft = ft(S)Q
where

mve ¥ eV(x)

]
1]
o=

is the total energy of the particle which remains constant in the absence of collisions.

We further assume that both electrons and ions issue with a Maxwellian veloecity distribution
corresponding to the plate temperature. The total flux density of the electrons is governed by
the RICHARDSON-DUSHMAN equation

_ hom_ek® 2 bt
J_= h3 T exp {- T }

(e®# 1is the electron work function of the emitter /7/). The ion emission is given by the net
current density of the neutrals and ions striking the emitter surface and their ionization
probability P. The LANGMUIR-TAYLOR relation /8/ deseribes this process:

Vo/”+ = (neutral evaporation rate)/(ion evaporation rate)

g e(s, - 1)

=E%exp ———'}T‘—}.

The probability P is given by the relation
P=(1 +\)/\) )-1.
o/ Y+

e@; is the effective work function of the process of ionization, being up to 0.5 eV higher
than the electron work function e#_/7/.

Neglecting collisions at all means to neglect the capture of charged particles about a potential
extremum, keeping in mind that this is only a rough approach to reality. Even if the collision
time is much larger than the transit time of a particle through the diode the probabllity of
collisions is finite and therefore particles are existing which travel in closed orbits in

phase space never touching one of the emitter surfaces. These trapped particles may alter the
operating conditions of the diode substantially. If they are included into the model the
spatially oscillatory solutions (to be discussed in a separate paper /9/) might vanish or at
least decrease in amplitude. However, no reasonable assumption on the distribution function of
the trapped particles has been established up to now 5, 10/.

The diode plates are assumed to be nonreflecting to incoming particles.




Processes of ionization and recombination may only occur at the hot endplates. This 1s true
if the particle denslity 1is low enough to prevent volume processes.

The diode space, except two narrow sheaths near the electrodes, is occupied by a uniform
plasma with vanishing space charge density

¢ plasma boundary 9 (3)
Neglecting resistivity in the plasma body the eleectric field at the plasma boundary has to
vanish

E lasma boundary = ©° ")
According to the previously existing diode theory /2, 11/ the emission conditions of the
diode are characterized by -

(N+)
a-= ==
N /neg.emitter

the ratio of densities of the charge carriers leaving the negative plate, and

+

N
Y =\lxN
N pos.emitter

which describes the same quantity for the positive emitter. If 5 islarger than unity the state
of emission of the diode is said to be ion rich. The emission is electron rich if a < 1.

In the present paper the case Va > 0 is considered only. Obviously, by interchanging the roles
of both emitters and, therefore, of the parameters a and y, the case V& < 0 is described as
well.

3. GENERAL DESCRIPTION

We shall give here a summary of the technique leading to the solutions of POISSON's equation.
First-order ordinary differential equations are obtained which can only be solved numerically
to get the potential as a function of the distance coordinate. If, however, one 1s interested
in a survey of the shape of the potential distributions alone there is no need to perform

this time-consuming numerical gquadrature. The range of allowable parameters is obtained by
simple calculations of F'(n) and its first integral F(n) as a function of n (a list of symbols
used can be found on page iv). The main properties of the potential distribution can be seen
from this procedure.

It turns out to be convenient to transform POISSON's equation (1) to reduced variables in
order to eliminate as many parameters as possible from the equation,

n"(g) = 3 {fi_(¢) + 8h_(&) - afi (¢) - ¥0 ()},

where the prime denotes differentiation with respect to the argument.

The distribution funections of the particles as well as the particle densities are sectionally
monotonlc explieit functions of V(x) and n(g) respectively. Therefore, instead of the distance
coordinate # we can use the normalized potential n as the variable:

F'(n) =H_ (n) + 80_ (n) - afi,(n) - yn (n), (5)

where we define

F(n) = n'2(g). (6)




Since TI = TII
the RICHARDSON current densities 3, and 3_ are enual which means
,&n_dl=1
3_(-ny)

For the ion current densities there does not exist such a simple expression. As shown 1in
appendix B, the relation (eq.(B4)) holds

Yy =n exp(—Qnd).

Integration of eq.(5) leads to an analytical expression of the electric field strength.
(Both the space charge density and the electriec field strength for the various shapes of
potential distributions are shown in a general presentation in appendix A). Further integration
yields the potential distribution, the formal solution of which is given by

n

£(n) = /(F(nwl"? dne (7)
LA

Therefore, the problem of computing actual potential distributions is reduced to numerical
quadrature. The externally controllable parameters are the de potential difference 2nd, the
distance 2f, between the two emitter plates and the condition of ion rich or electron rich
emission. Internal parameters include values at the potential extrema Ngs slope of the potential
distribution near one of the emitters, which corresponds to F(+ “d)' and determination of the
form of potential shapes possible under given conditions.

We classify the potential distributions as follows:
I. Uniform pontential in the diode plasma
1. Potential shape of monotonic character, type A: One sheath’ being ion rich and the other
one electron rich (fig. 2a).
2. Nonmonotonic potential distributions
Type B: both sheaths ion rich (fig. 2b).
Type C: both sheaths electron rich (fig. 2ec).
a) The change in electric potential in both sheaths is monotonic (figs. 2(b1),
2(c1)). g L e
b) The potential shape has an extremum Ng in one of the emitter sheaths (figs.
2(b2-4), 2(c2-4)).
II. Spatially oscillatory solutions of POISSON's equation
Potential distributions of this kind will be considered in a separate paper /9/.

Now, several models applying to the types of potential shapes mentioned above can be developed
and their compatibility with the space charge equation and its first integral, the electric
field equation be studied. The conditions defining the transition from sheath to the body of the
plasma are equations (3) and (4).

The internal parameters are to be determined such that the integral in eq.(7) results in the

given value of distance 25d of the two emitters. It should be noted that, except for the

periodic types of potential distributions,the shape of the potential curve in the immediate vicinity
of either electrode is rather insensitive to diode spacing as long as

13

g > -

Therefore, it is possible to assume infinite spacing in solving this problem numerically.




4. MONOTONIC POTENTIAL SHAPE (TYPE A)

At first we define the range of existence of type A in the parameter space n VS. ng- Later on
we have to distinguish between two cases according to the two possibilities of boundary
conditions, i.e. vahishing electric field and vanishing space charge density respectively.

The criterion for a transition to a nonmonotonic potential distribution is a vanishing
slope of the potential curve of shape A at one of the emitters.

The potential distribution is described by

>
1"Ip"""tﬁ
and

n'(ﬂ1 = (F(-ng)}2 = 0. (8

n=-ng
The space charge equation (Al) ylelds
= £ exp(2n ){1 + exp(2ny) + E(n +ny)[1 - exp(2 )]} (9)
= 2 ﬂp 'nd “p d ﬂd 2

Together with the condition on the electric field in the plasma volume, eq.(4), and the boundary
condition, eq.(8), we arrive at an expression

g(nprng) = Glngng) [1 - exp(-2ng)| + 2 [exp(ny-ng) - exp(-2ng)] +
+[exp(np-nd) N exp(eﬂp)] {1 + exp(znd)+ E(np+nd) [1 - exp(znd)]} =0. (10)

To solve eq.(10) for given values of ngs one solution can be specified immediately

N = = nge

As can be shown by numerical methods there exists another solution

o A ¥ |

(fig. 4). The values a corresponding to a given set of values (“p’ “d) may be calculated from
eq.(9). Now the question arises:
Are both solutions of POISSON's equation

T = g and np > - Ny
realized? Due to the following argument the trivial solution must be excluded. Expanding the
square of the electric field strength (eq.(A2))

F(n) = G(n +nd)[ 1 - exp(—2nd)] + E[exp(n - “d) - exp(—endﬂ-+

+ 2a [exp(—nd -n) -1]
where the parameter a is calculated from eq.(9),

o= % [1+ exp(—end)]. (o, S mg)s

for small values z = n + 4 <« 1 one gets

F(n) m_‘;—"z”’e[exp(_end) wa e b (11)

The term on the right-hand side of eq.(11) is negative. The square of the electric field strength,
however, has to be positive definite. Hence the solution

cannot be realized.




4,2, Transition A to B (fig. 3b)

In the transition from A to B the expressions

"I'(ﬂ) = 0, (12)
= +ﬂd
F(“?L‘l:‘l"d) =0
n=np
(13)
n"(n;ﬁ,nd) - =0
=np
together with
<
T\p - + ﬂd)
must hold for the curve separating the two regions. The maximum slope n'(n) has to be
n=-n4

calculated from the boundary condition (eq.(12)). Eliminating the parameter @ from the two
last expresssions (eqs.(13)) ylelds the equation

h(np,nd) = [G(np+nd) - G(2nd)][1-exp(-2nd)] + E[exp(np - “d) - 1]
+[exp(n;-ng) - exp(e(np-nd))]{l + exp(2ny)
+ E(nytng) [1 - exp(any)] } - 0. (1%)

The relation

" = + ng

satisfies eq.(14). It can be shown numerically that a further solution does not exist within
the physically accessible range of parameters (a, nd). The plausibility of this result can be
seen in the following way. Both plates are emitting equal electron currents, whereas the ion
production at the negative emitter EI exceeds that of the positive emitter EII; since the
potential distribution directs most of the ion flux from the plasma to the negative plate.
Furthermore, in the vicinity of plate I the ions stay always longer than at EII; consequently,
only near emitter I the space charge can be afforded to form a double sheath. Therefore, at
the transition from A to B, a double sheath can never be formed in front of EII'

________________________________________________________ T

We have seen in the preceding consideration that a double sheath might be possible in front of
emitter I. This forces to subdivide region A corresponding to the two possibilities:

1) vanishing electric field strength, n' = 0,

2) vanishing space charge, n" = 0,
in the immediate vicinity of the negative emitter.

The first case has already been treated. Choosing vanishing space charge at the emitter - n4
(fig. 3c) ylelds from eq.(Al)

n = % [l + exp(- End)] 2

To get the plasma potential "o one has to solve
k(ﬂp,hd) = exp{E(ﬁp+nd)'{(l + exp(?nd) + E(np+ﬂd) [1 - exp(End)]}

- 1= exp(end) = 0.

Except of the trivial solution "o = - ngs an additional solution np > - "4 can be found




numerically. This solution is shown in fig. 5.

Again we have two solutions corresponding to the same external parameters (g, ). As in

case 4.1. we arrive at

"4

Y [ 3/2
F(n) a F(- nd) + { jF z [exp(— 2nd) - 1]} +odeeas
The second term on the RHS is negative. Therefore, it is not possible that, at the same
time, both space charge and electric field (2 F(- nd)) in the vieinity of the emitter - n,

may vanish because this requires N, == g to be possible as a solution.

Fig. 6 shows the range of existence for the monotonical potential shape A.

5. NONMONOTONIC POTENTTAL SHAPES

Investigating the models B and C of nonmonotonic potential distributions (fig. 2) we arrive

at two expressions with the unknown quantities o and Ng* In general it is impossible to give

an analytical solution. To obtain numerical solutions the procedure is as follows: The contour
lines of the space charge and the electric field equation respectively are calculated and looked

for common zeros.

Firstly, we consider potential distributions of type B with only one potential maximum. Two
cases may be distinguished
1) "o 2ok gt The potential maximum is reached within the sheath in front of
emitter (- ny), (fig.2(p2)),
emitter (+ ny), (fig. 2(b3)),

2) my, < + ng, (fig. 2(b4)).

"p
It can be demonstrated that in the first case the space charge density does not depend on
position and magnitude of the potential maximum (see eq.(A5)). Both opposite ion currents have
to overcome the potential barrier. Their values,depending on the potential maximum, differ by
the factor exp(- End). The influx of fresh ions from the positive emitter, however, is reduced
by Just the same factor. Hence, no net ion current flows in the diode. Therefore, the shape

must be symmetric about the potential maximum for values of n larger than + ng

Fig. 7 shows a plot of the second derivative of n as a function of n for the potential shape
B for different values of nq- Each of the curves rises to a maximum at its respective value
of ng’ dips down and comes back again. As long as n" does not reach zero in the range n < +nd,
the function n" has only one zero (for some value n > + “d)' In this case, consequently, the
potential distribution must have shape B (plasma potential equals to extremal potential).
Therefore, all distributions with o # no and n, >+ g (figs. 2(b2,3)) are excluded.

In the second case to be discussed the plasma potential has to fulfil the condition np < + ng»
corresponding to more than one zero of the function n"(n). One can see immediately from fig.7
that in a narrow range of values of ny this potential shape (fig. 2(bk4)) may be a solution of
the space charge equation.

Summarizing, the solutions of type B are given by the shapes n_. = n

jo] e
Fig. 8 presents a picture of Ne and n_ Vs. g with ~ as a parameter.

and ﬂp #ne: ﬂp< + nd‘

p




5.2. Potential distributions of type C

We discuss the four models (fig. 2(cl-4)) analogous to those of type B. Contrary to the
previous case (type B) both the functions of the space charge density and the electric
field strength are different at the two sides of the potential minimum (eqs.(A?)...(AMB»
This behaviour is caused by the charge carriers which contribute to the space charge in

a different way for the cases B and C respectively. In the former case both ion currents
of either direction have to overcome the potential barrier. As discussed in section 5.1.,
under these conditions the total lon current flowing through the diode is zero. On the
other hand, in presence of case C the ions fall through the sheath potential near elither
emitter, whereas the electrons have to overcome the potential minimum. In this case terms
with e do not cancel out.In this case, the equations cannot be solved analytically;
results can only be obtained numerically. One has to calculate the contour lines of space
charge and electric field equations for all three cases (rig. 2(c2-4)) separately and
look for common Zzeros.

In the series of illustrations in fig. 9 we assume e.g. 0 to have the value 0.2. The point
of intersection of the two contour lines results in a (mathematical) solution of POISSON's
equation together with the specialized boundary conditions. As a result we can see: the
potential distribution with n < - n4 and a potential extremum inside the sheath near the
positive emitter (+ nd) (fig. 2(e3), marked with IT in fig. 9) has the only solution

ﬂp = MNge

which means, that there exists a nonmonotonic potential shape with monotonic sheaths. Fig.
10 displays the potential minimum ng as a function of the applied diode voltage n4 for
different values of the parameter .

For the other potential shapes I and IIT with "p i - Mp and a nonmonotonic sheath in front
of the emitter (- nd)(figs. 2(c2,c4)) the number of solutions depends on the value of the
applied diode voltage.

Discussing the two cases separately, we see that there exists only the trivial solution
np = Mg for the potential distribution I (fig. 9) for values of ny larger than 1.068. The
difference in e of the contour lines F and F' respectively, is always negative 1if plasma
potential p is fixed. At constant o with decreasing values of "4 the contour line of the
space charge equation F' bulges and touches the electric field curve F. An additional
solution with "o > ng appears. Reducing g further the solution splits. A critical value
4 erit is reached if one of the points of intersection coincides with the limiting line
np T o Tg (“d orit = 0.835 607). For values n, smaller than this eritical value ny ..5¢
there exist only two solutions which coincide at ng = 0.

In case IIT there exists a solution only if nq is larger than the above mentioned critical
value g erit” For values of the parameter n lower than 0.4 the nd—values are not limited,
otherwise the upper limit of nddepends on the combination of the values a and g The
1imiting number pair (a, nd) is given by the curve separating reglons A from C (fig. 6).
with large expense of calculations we computed the cut surface of the two four-parametric
equations

F'(nd:ﬂp,ne.n) =0
and

F(“d;“p,‘ﬂe,ﬁ) = 0.

Its projection into the planes ng VS- "o and ng VS. Tg for the case of a = 0.2 1s shown in
fig. 9a. The ambiguity of the solutions of POISSON's equation is obvious.

As a main result we can say: For the type C of the potential shapes always two solutions are
existing, one with monotonic sheaths and the other one with a potential minimum in the
sheath in front of the negative emitter (- nd\. In a small range of the external variables
(a, vd) two more solutions appear.

To achieve an impression of the variety of solutions of POISSON's equation with the assumption




of varlous boundary conditions fig. 11 shows a three-dimensional representation of the
above mentioned cut surface. Again the complexity of type C of potential shapes (fig.llc)
1s ciearly seen. For discussing the physical properties of this representation we make
three cross-sections, one parallel to the axis of the parameter a (fig. 12) and other
ones parallel to the axis of the diode voltage g (figs. 13 and 14).

6. SEOUENCE OF SOLUTIONS OF POISSON'S EQUATION AS A FUNCTION OF EXTERNAL VARIABLES

In a series of i1llustrations in figs. 12-14 we see some of the successive potential shapes
(drawn schematically) appearing if'a and g’ respectively are varied.

In fig. 12 we assume 4 to have the value 1.2. Shapes of potential distributions are shown

as a funetion of a. At first, if a decreases from very large values, only potential shapes

of type B are found characterized by a uniform potential throughout most of the interelectrode
volume and monotonie sheaths in front of each emitter plate (fig. 12(1)). The potential

shape 1s nonambiguous until a point 1s reached where two solutions appear (fig. 12(2)), one
of type B and one of type A, where the plasma potential is equal to the potential + g of the
emitter at + Ed‘ One identifies this point as the transition point from potential shape A

to B. As can be seen the potential distribution "B" may overlap the range of existence of
solutions of type A by a small amount.

A further decrease in the parameter a will yield only monotonically increasing potential
shapes (fig. 12(3-6)), case A, which persists until the slope of the potential curve in
the immediate vieinity of the emitter I is reduced to zero (fig. 12(6)). As a is further
decreased the potential curve will dip down in the region near the emitter I (fig.12(7))
exhibiting a shape which 1s one of the possible forms of type C. This distribution is
characterized by a double sheath with the negative face nearest to the emitter at - Ed’
whereas within the emitter-II region an electron sheath remains. Throughout the remainder
of the diode volume there is a uniform potential np larger than the potential - g of the
emitter I. In general, decreasing a implies decreasing plasma potential Np* If "y equals
the negative emitter potential - ng (rig. 12(9)) another critical point is reached in the
vicinity of which several solutions of the space charge equation and its first integral
exlst and below which a shape is developed similar to the one described Jjust above, but
now with a plasma potential which is less than - nj (fig. 12(10)).

For sake of simplicity we have omitted for the moment another branch of the curve demoted
as "np = "e" in fig. 12. For values a larger than the value corresponding to the lower
limit of case A (fig. 12(6)), we find an additional potential distribution of type C, the
sheaths of which are both monotonic (fig. 12(5)). It is the counterpart to the solution of

shape "B" for a larger than the upper limit of shape "A".

It is worthwhile to point out the presence of always two shapes of type C, between the
points (7) and (10) in fig. 12, one of the form just mentioned with two monotonic sheaths
and one with a double sheath in front of the negative emitter. The plasma potential of

the latter may be larger or lower than the negative emitter potential - ng-

Figs. 13 and 14 show the shapes of potential distributions for varying diode voltage,where
a = 0.65 and 4 = 10 respectively. The main features described are displayed again, 1.e.
overlapping ranges of existence ol dirrerent types and therefore the ambiguity of the
solutions of POISSON's eauation in these regions. -

v
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. DISCUSSION

It should be born in mind, that in the present state of discussion we cannot decide
which of the possible potential distributions within the ambiguous regimes might
really exist. A general decision must be reserved for future work. Another point 1s
unsatisfactory up to now. We do not know any mechanism which produces a transition
between the two solutions of type ¢ for nonzerc values of ng- Only for zero diode
voltage the two branches fall into each other (fig. 13).

We have to keep in mind furtheron that the solutions discussed here were obtained by
looking "mechapically" for common zeros of the equations (3) and (4). To estimate,
however, the physical significance of these results and to calculate explicitly the
potential n as a function of the normalized distance ¢, 1t 1s absolutely necessary to
know the character of the function F(m) in the whole range of possible values of n.
Solutions which are physically realizable are characterized by the condition

F(n) 2 0 (15)

since F(n) corresponds to the square of the normalized electric field strength. --
If we take into account this condition (15) some of the ambiguous solutions will

vanish as shown in /9/.

8. SUMMARY

In this paper we calculated the solutions of POISSON's equation with boundary conditions
suitable to a plasma diode. To simplify the effort of computation reasonable assumptions
have been made. The most restricting one was to negleet the influence of the trapped
particles. No reasonable form of their velocity distribution function has been established
up to now. In addition, the spatially oscillatory potentials have been dropped from
consideration.

The most interesting result is the overlapping of the ranges of existence of different
types of potential shapes and therefore the occurrence of more than one solution of
POISSON's equation compatible with the same boundary condition. No efforts have been made
at present to decide which of them are really existing. Since the function F(n)eorresponds
to the square of the normalized electric field strength it has to be positive semidefinite
for each value of 4 to yield actual potential distributions. .
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APPENDIX A

J =

Tn the following a general presentation of reduced particle densities n(n) and of the
square of the electric field strength F(n) in the diode volume will be given. Different
temperatures of both end plates, T and T* are assumed. Their corresponding surface

potentials are it and s respectively. Six cases have to be distinguished (fig. 15).

Using the abbreviations 1/2
n

1/2y. 5 2

Jn

E(n)

exp(n

0

G(n) = exp(n)[1 - E(n)] + 2(n/n)

H(n)= exp(n)[1 + E(n)] - 2(n/n)

- G(n) + 2 exp(n) - 2,

/ exp(- t2)dt,

/:
172 _

1/2 _ 1,

one arrives at the following expressions for n(n) and F(n).

Case 1(a)

J

¢yl = ex/o(‘?-?,lfl—é‘fy-;';],

3

L (y) = exp (p%-p) [1eECpT-p00]

Py ty) = eplyp, -y 71+Ep %)/

Aoyl = eplpt-y*) [1-E0 -7

Ply) = Flp) ¢ Gly-p) 4/6Jaﬁ/?"_;"};,74,7'*,4
“oep (- g Ay y) g

*fJ[G{Z!"f‘} - 6/74";,*!/.

Case lgb!

7’:/7} reply-y,) [f—!q-;.l],

7 ly) = eplyp ) [1460%0. )] =
ceply p [ -2y EGTRY] p2 g,
Pty = @ (9 201467, yiee
-qp("-zj/-f—c‘_()e'P)']’ y'so
iy < ety g1 [ 12 E00" ") o
ceply-y /€070 7’20

Ty« Gly-gi) - G g I [em (0= 1" (61575, -
-6/,'—/,‘;741/0;/7'-‘;,') -f—G/;,J‘/}"//'
saeply,- g1l pr <pdap 15 600,

i P B

Case 2(a)

nry) e erp/;-;.i[f*f'/;—;.if,
(mp) (-0,

-

a_ly) - ep
s TR (ye=p) [1-€Cp, =717,
By« ap gty [14EC2 -y
Tip)« Tp) v ep ly -3 #y-p S Glypl) ¢
+a[Gly-3)-Gly-nl] *
+pd ep a3 )[40 77 - #0770

Case 2!b!

7y = eply-g (1 Eped] gre
-ap/;-;.)["f(}’/c)/, 720

Aly) = eply® g1l 1+El" pc)], yora
op (- p I 1-EL 0] 750

Blp) s eply-p)/t1-Elp,-71]
By - eplpl-9 ) L1267 E45 7] 75
mep 5ty L1400, 77 7% 7%
Foy) = ap g1 Wy pe? Plep (717 6™ 0
e a6y 16l i P I P 001G R
“Gly - Y 2 eplyy -1~/ p U,
75,7 “o




-G(?-;,J’nyr‘;,? "/ch/uﬂ("".z'*}[ﬁ/,"_;"}_ .q’{}e_)‘)’/,-/‘}%{"ﬂ(’e"b‘fﬁ"}{’e‘} . 1
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satep Uy 1o lpe=1) ¢ (2120017, -Gl 02 l6g - 6n 5
& Trdls 757, 7'20-
case 1(c) case 2(c)
B.ty)e eply-plt-260-p0 +Ely -, y3y 2y ep (g7 * €07 pe /<0
< eqply-g1 (1460 y ], 757 < ap(p-pilt- Ely-pelf, yxe
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If the preceding expressions are restricted to the case of equal temperatures of both

end plates, i.e. T = T*, it results

5 =1: B =1:
a exp(- 2ny) [ see eq.(BY)].

Y

The above mentioned cases reduce now to three potential shapes as one can see from the

following scheme.
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cases 1(a), 2(a)+) —— case A
1(6), 1{e¥! — B
2(e), 2(0)*) —» c

[”The emitters I and IT and also the parameters n and v~ change their roles].

Type A

Flyr - ”ﬂ/i"klff‘erfu%a/fffyfydf [1-ep {J;vd/]j' ~deepl-gp-y),

Fly) = Floygy) + 6(’,7d)ff-ap(—-(/dVf.l/a/v{?-;d) -erp f“',"d//* Jafe/,o/—;{-;} -2

Type B (ﬂe > +ﬂd)
730, )"0

F"/y)- eply-gu ;/!pefp(!zd) * E{,o]d)[f—a/,(_(’a,y/z- Lxepl-n-y),

Fly) - [6/;.-,‘,)-6/‘;,»‘7, JLr-enp Ay l] *ep Ly 4 1= 7 Clye-Ju)] + 2afenl- g =2 - er,-/-}'d";d_/,-

Y 0, ‘20

Tl = eaply-gu ) % eiptdpg )+ Epe sl t-ep 2] = 2ECp-pu)f -2« exp -7,

Tlyre 60y 707~ 6pe g [f L7 ep (200 % A6 Gy p) ~Glpe - ] # Leclop C g = o =20
7wy O

In this case the formulae are identical with egs. (A5) and (A6).

Type C (n, < -ny)

F oy e

Fly) e eply-pyglf1rem Ly "‘7)"2':)/‘-’-6'/9/4?(.’//' 2 o anp C g X 1 EC g 7

Fly) s epl ge-pu? 6/y-pet (1-0p (23g i * 2 erp 72 2a?~ e (e gglf + 2w (GO Ju 1)~ Gl Y pe )

7= Yits y =0

Ty - eply-yu? 1o (pg) »Ely-pe1(1-op L7 i) = 2t eop Cppg- 0 (7-E 1],

Ty =g lpepu? G1p-per (7-epp( 270 #2lep Cy-pur - ep ge -y )« 22 (6 0= ) = 602 2e -
7, 7700

Flpr= aply-pa) 172 0pCyy) # EQp-gos [1-eop Cig)]F -4 P20 2,

Tlp) v —explte-3g) Clo-per{1-p (g )]+ 2 ep (1= 3g7 - et (o0l Il ept 22 =76 Cru-p )]

Equations (Al)...(Al12) are the equations we started from in the body of the paper.
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APPENDIX B

The process of ilonization at the surface of a hot end plate is, to a high degree of
accuracy, described by the LANGMUTIR-SAHA equation 712/

V4 _ ion evaporation rate g, {6 = 1)

o_ _ neutral evaporation rate = E; exp {e kT }

o

The probability P for a particle, ion or neutral,to be ionized after hitting the emitter
plate is equal for both kinds of incoming particles and is given by
Yo -1

P=(1+g5
+

It has been shown experimentally by ZANDBERG and TONTEGODE /7/ that the ionization probability
P is nearly unity for cesium at polyerystalline refractory metals. For sake of simplicity we
use for the present calculations

P=1. (B1)
1) Potential shapes of type A and C respectively.

3,. = P

. O.‘+ J+." + P1Z P\}(Joq_-‘- ‘j+’)(l - exp(—— gﬂd))\,'

=PpJ P 1 - - i
20: (. _j+__)( exp( 2nd))

1] )

P(JO-P + -

1 - P(1 - exp(- 2nd))"

Jpu = P[JO‘ + 3, exp(- 2nd)]:

Jogu ¥ 3

- = exp(- End) =J,.* 3 .

+ - + -
Combining these equations results in the equation

5. . [r- P[1 - exp(- End)” = (B2)

Assuming P = 1 we arrive at the relation
.= j+_‘exp(- 2-nd),
which may be rewritten in the following form

~v =a exp( - End).

2) Potential shape type B.
In an analogous procedure we recelve

J

o= Py, + 3, explng - ng))+ PL V(3 + 3, . exp(ng=ng))(1-exp(-ng-ng))”

[
+
[

— P%‘_ PV(1 - exp(ny - ne))V(J0_+ J, exp(-ng - ne))s
Jou + 3y exP(- g = mg) = Jo_ * Iy, explng - ne)s

1 - P(1 - exp(- nqg - ne))
=]
- +=T1 - P(1 - exp(nyg - ng )

(B3)

If eq.(Bl) holds, we get




= 3, exp(- 2n.),

+ d

or

~ =a exp(- End).

We summarize: With the assumptions used in this paper we get the relation

v =n exp(- End) (B4)

for all types of potential shapes.
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FIGURE CAPTIONS
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The model used for calculations

Trial distributions of potential between electrodes
a) Potential shape of type A .

b) Potential shape of type B

¢) Potential shape of type C

Potential shape of type A and its limiting cases
a) Transition A to C

—.—. type A
n'(n=- ng) = 0; n"(n=-mn3) ¥0
---- type C
b) Transition A to B
---- type B
— n'(n = + ﬂd) =0; n"(n =+ ﬂd) =0
—.—. type A
¢) Type A
_———— ““ n = - nd) > 0
— n"(n = - “d) =0 } n'(n = - ﬂd) £ 0
—— n"(n=-nJ)< o0

Limiting case of potential shapes of type A(see fig. 3a);
plasma potential vs. diode voltage

Plasma potential vs. diode voltage for the potential shape
of type A with vanishing space charge density near the emitter I at -gd(see fig.3e)

Regions of various potential distributions in parameter space. The broken
line separates electron and ion sheath in front of the negative emitter

The second deviation of the actual potential n as a function of n for the
case of potential shape of type B (eqs. (A3), (A5): n = 2

Potential distribution of type B; values of plasma potential and potential
extrema for given values of 4

Potential shape of type C
a) Cross-section of the solution surface for a = 0.2
b) Contogr l%nes 2f the space charge and electric field equations respectively
F2ana';: F' 2 q
I (rig. 2(c2))
—.—. II (rig. 2(c3))
--=- IIT (fig. 2(cl))

Potential distributions of type C with monotonic varying sheaths (fig. 2(cl))

Cut surface of the two equations F' = 0 and F = 0 (equations of the space
charge density and of the electric field at the plasma boundary)

a) ion-rich emission, a > 1

b) electron-rich emission a < 1, m_ = n
¢) electron-rich emission n < 1, ng # “Z

a) Cross-section of the solution surface (fig. 11) parallel

to the axls of the parameter a; ng = 1.2
b) Potential distributions for various values of a (schematically)
a) Cross-section parallel to the axis of the diode voltage WE

a = 0.65

b) Schematic potential shapes for different values of "4

see fig. 13; a = 10

Shapes of potential distributions
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