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Abstract
Poljak and Turzík (Discrete Mathematics 1986) introduced the notion of λ-extendible properties
of graphs as a generalization of the property of being bipartite. They showed that for any
0 < λ < 1 and λ-extendible property Π, any connected graph G on n vertices and m edges
contains a spanning subgraph H ∈ Π with at least λm+ 1−λ

2 (n−1) edges. The property of being
bipartite is λ-extendible for λ = 1/2, and so the Poljak-Turzík bound generalizes the well-known
Edwards-Erdős bound for Max-Cut. Other examples of λ-extendible properties include: being
an acyclic oriented graph, a balanced signed graph, or a q-colorable graph for some q ∈ N.

Mnich et. al. (FSTTCS 2012) defined the closely related notion of strong λ-extendibility.
They showed that the problem of finding a subgraph satisfying a given strongly λ-extendible
property Π is fixed-parameter tractable (FPT) when parameterized above the Poljak-Turzík
bound—does there exist a spanning subgraph H of a connected graph G such that H ∈ Π and H
has at least λm+ 1−λ

2 (n− 1) + k edges?—subject to the condition that the problem is FPT on a
certain simple class of graphs called almost-forests of cliques. This generalized an earlier result
of Crowston et al. (ICALP 2012) for Max-Cut, to all strongly λ-extendible properties which
satisfy the additional criterion.

In this paper we settle the kernelization complexity of nearly all problems parameterized above
Poljak-Turzík bounds, in the affirmative. We show that these problems admit quadratic kernels
(cubic when λ = 1/2), without using the assumption that the problem is FPT on almost-forests of
cliques. Thus our results not only remove the technical condition of being FPT on almost-forests
of cliques from previous results, but also unify and extend previously known kernelization results
in this direction. Our results add to the select list of generic kernelization results known in the
literature.

Keywords and phrases Kernelization, Lambda Extension, Above-Guarantee Parameterization,
MaxCut

1 Introduction

In parameterized complexity each problem instance I comes with a parameter k, and a
parameterized problem is said to be fixed parameter tractable (FPT) if for each instance
(I, k) the problem can be solved in time f(k)|I|O(1) where f is some computable function.
The parameterized problem is said to admit a polynomial kernel if there is a polynomial
time algorithm, called a kernelization algorithm, that reduces the input instance down to
an instance with size bounded by a polynomial p(k) in k, while preserving the answer. This
reduced instance is called a p(k) kernel for the problem. The study of kernelization is a
major research frontier of Parameterized Complexity; many important recent advances in
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2 Polynomial Kernels for λ-extendible Properties

the area pertain to kernelization. These include general results showing that certain classes of
parameterized problems have polynomial kernels [1, 4, 12, 13] and randomized kernelization
based on matroid tools [17, 18]. The recent development of a framework for ruling out
polynomial kernels under certain complexity-theoretic assumptions [3, 8, 14] has added a
new dimension to the field and strengthened its connections to classical complexity. For
overviews of kernelization we refer to surveys [2, 15] and to the corresponding chapters in
books on Parameterized Complexity [16, 22]. In this paper we give a generic kernelization
result for a class of problems parameterized above guaranteed lower bounds.

Context and Related Work. Many interesting graph problems are about finding a largest
subgraph H of the input graph G, where graph H satisfies some specified property and its
size is defined as the number of its edges. For many properties this problem is NP-hard,
and for some of these we know nontrivial lower bounds for the size of H. In these latter
cases, the apposite parameterization “by problem size” is: Given graph G and parameter
k ∈ N, does G have a subgraph H which has (i) the specified property and (ii) at least
k more edges than the best known lower bound? Max-Cut is a sterling example of such
a problem. The problem asks for a largest bipartite subgraph H of the input graph G;
it is NP-complete [24], and the well-known Edwards-Erdős bound [10, 11] tells us that any
connected loop-less graph on n vertices and m edges has a bipartite subgraph with at least
m
2 + n−1

4 edges. This lower bound is also the best possible, in the sense that it is tight for
an infinite family of graphs—for example, for the set of all cliques with an odd number of
vertices.

Poljak and Turzík investigated the reason why bipartite subgraphs satisfy the Edwards-
Erdős bound, and they abstracted out a sufficient condition for any graph property to have
such a lower bound. They defined the notion of a λ-extendible property for 0 < λ < 1, and
showed that for any λ-extendible property Π, any connected graph G = (V,E) contains a
spanning subgraphH = (V, F ) ∈ Π with at least λ|E|+ 1−λ

2 (|V |−1) edges [23]. The property
of being bipartite is λ-extendible for λ = 1/2, and so the Poljak and Turzík result implies the
Edwards-Erdős bound. Other examples of λ-extendible properties—with different values of
λ—include q-colorability and acyclicity in oriented graphs.

In their pioneering paper which introduced the notion of “above-guarantee” parameter-
ization, Mahajan and Raman [19] posed the parameterized tractability of Max-Cut above
its tight lower bound (Max-Cut ATLB)—Given a connected graph G with n vertices and
m edges and a parameter k ∈ N, does G have a bipartite subgraph with at least m2 + n−1

4 + k

edges?—as an open problem. This was recently resolved by Crowston et al. who showed
that Max-Cut ATLB can be solved in 2O(k) · n4 time and has a kernel with O(k5) ver-
tices [7]. Following this, Mnich et al. [20] generalized the FPT result of Crowston et al. to all
graph properties which (i) satisfy a (potentially) stronger notion which they dubbed strong
λ-extendibility, and (ii) are FPT on a certain simple class of graphs called almost-forests of
cliques. That is, they showed that for any strongly λ-extendible graph property Π which sat-
isfies the simplicity criterion, the following problem—called Above Poljak-Turzík (Π),
or APT(Π) for short—is FPT: Given a connected graph G with n vertices and m edges and a
parameter k ∈ N, does G have a spanning subgraph H ∈ Π with at least λm+ 1−λ

2 (n−1)+k

edges? Problems which satisfy these conditions include Max-Cut, Oriented Max Acyc-
lic Digraph, Max q-Colorable Subgraph and, more generally, any graph property
which is equivalent to having a homomorphism to a fixed vertex-transitive graph [20].

Our Results and their Implications. Our main result is that for almost all strongly λ-
extendible properties Π of (possibly oriented or edge-labelled) graphs, the Above Poljak-
Turzík (Π) problem has kernels with O(k2) or O(k3) vertices. Here “almost all” includes
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the following: (i) all strongly λ-extendible properties for λ 6= 1
2 , (ii) all strongly λ-extendible

properties which contain all orientations and labels (if applicable) of the graph K3 (triangle),
and (iii) all hereditary strongly λ-extendible properties for simple or oriented graphs. In
particular, our result implies kernels with O(k2) vertices for Max q-Colorable Subgraph
and other problems defined by homomorphisms to vertex-transitive graphs.

We address both the questions left open by Mnich et al. [20], albeit in different ways.
Firstly, we resolve the kernelization question for strongly λ-extendible properties, except
for the special cases of non-hereditary 1

2 -extendible properties which do not contain some
orientation or labelling of the triangle, or hereditary 1

2 -extendible properties which do not
contain some labelling of the triangle. Note that for non-hereditary properties, we may ex-
pect to find kernelization very difficult, as a large subgraph with the property can disappear
entirely if we delete even a small part of the graph. For the cases when the membership
of the triangle depends on its labelling, we may expect the rules of kernelization to depend
greatly on the family of labellings, and so it is difficult to produce a general result.

Secondly, we get rid of the simplicity criterion required by Mnich et al. Showing
that a specific problem is FPT on almost-forests of cliques takes—in general—a non-trivial
amount of work, as can be seen from the corresponding proofs for Max-Cut [6, Lemma 9],
Oriented Max Acyclic Digraph, and having a homomorphism to a vertex transitive
graph [21, Lemmas 27, 31]. Mnich et al. had proposed that a way to get around this
problem was to find a logic which captures all problems which are FPT on almost-forests
of cliques, and had left open the problem of finding the right logic. The proof of our main
result shows that all strongly λ-extendible properties—save for the special cases —are FPT
on almost-forests of cliques: in fact, that they have polynomial size kernels on this class of
graphs. No special logic is required to capture these problems, and this answers their second
open problem.

Formally, our main result is as follows:

I Theorem 1. Let 0 < λ < 1, and let Π be a strongly λ-extendible property of (possibly
oriented and/or labelled) graphs. Then the Above Poljak-Turzík (Π) problem has a
kernel on O(k2) vertices if conditions 1 or 2 holds, and a kernel on O(k3) vertices if only 3
holds:

1. λ 6= 1
2 ;

2. All orientations and labels (if applicable) of the graph K3 belong to Π;
3. Π is a hereditary property of simple or oriented graphs.

As a corollary, we get that a number of specific problems have polynomial kernels when
parameterized above their respective Poljak-Turzík bounds:

I Corollary 2. The Above Poljak-Turzík (Π) parameterization of Max q-Colorable
Subgraph, q > 2, has a kernel on O(k2) vertices, and the Above Poljak-Turzík (Π)
parameterization of Oriented Max Acyclic Digraph has a kernel on O(k3) vertices.
Furthermore, the Above Poljak-Turzík (Π) parameterization of any problem which is
defined by homomorphism to a vertex-transitive graph with at least 3 vertices has a kernel
on O(k2) vertices.

The corollary follows from Theorem 1 using the fact that each of these problems is
λ-extendible for different values of λ [20].
An outline of the proof. We now give an intuitive outline of our proof of Theorem 1. Our
proof starts from a key result of Mnich et al.
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I Proposition 1 ( [20]). Let Π be a strongly λ-extendible property and let (G, k) be an
instance of APT(Π). Then in polynomial time, we can either decide that (G, k) is a Yes-
instance or find a set S ⊆ V (G) such that |S| < 6k

1−λ and G− S is a forest of cliques.

Proposition 1 is a classical WIN/WIN result, and either outputs that the given instance
is a YES instance or outputs a set S ⊆ V (G); |S| < 6k

1−λ . In the former case we return
a trivial YES instance. In the latter case we know that G − S is a forest of cliques and
|S| < 6k

1−λ ; thus G − S has a very special structure. For λ 6= 1
2 , or when all orientations

or labels of the graph K3 have the property, we show combinatorially that if the combined
sizes of the cliques are too big then either we can get some “extra edges”, or we can apply a
reduction rule. We then show that the reduced instance has size polynomial in k. For λ = 1

2 ,
we need the extra technical condition that the property is hereditary, and defined only for
simple or oriented graphs. In this case we can show that the problem either contains (all
orientations of) K3, or is exactly Max-Cut, or that we can bound the number and sizes of
the cliques. In any of these cases the problem admits a polynomial kernel.

A block of a graph G is a maximal 2-connected subgraph of G. Note that a block B of
G may consist of a single vertex and no edges, if that vertex is isolated in G.

Let G,S be as in Proposition 1, and let Q be the set of cut vertices of G − S. For any
block B of G−S, let Bint = V (B)\Q be the interior of B. Let B be the set of blocks of G−S.
A block neighbor of a block B is a block B′ such that |V (B)∩V (B′)| = 1. Given a sequence
of blocks B0, B1, . . . , Bl, Bl+1 in G − S, the subgraph induced by V (B1) ∪ · · · ∪ V (Bl) is a
block path if, for every 1 ≤ i ≤ l, V (Bi) contains exactly two vertices from Q, and Bi has
exactly two block neighbors Bi−1 and Bi+1. A block B in G − S is a leaf block if V (B)
contains exactly one vertex from Q. A block in G − S is an isolated block if it contains no
vertex from Q. Observe that an isolated block has no block neighbour, while a leaf block
has at least one block neighbour.

Let B0 and B1 be the set of isolated blocks and leaf blocks, respectively, contained in
B. Let B2 be the set of blocks B ∈ B such that B is a block in some block path of G − S.
Finally, let B≥3 = B \ (B0 ∪ B1 ∪ B2). Thus:

B0 is the set of all blocks of G− S which contain no cut vertex of G− S, and therefore
have no block neighbour;

B1 is the set of all blocks of G − S which contain exactly one cut vertex of G − S, and
therefore have at least one block neighbour;

B2 is the set of all blocks of G − S which (i) contain exactly two cut vertices of G − S,
and (ii) have exactly two block neighbours; and,

B3 is the set of all the remaining blocks of G − S. A block of G − S is in B3 if and
only if it (i) contains at least two cut vertices of G− S, and (ii) has at least three block
neighbours.

In order to bound the number of vertices in G−S it is enough to bound (i) the number of
blocks, and (ii) the size of each block. When λ 6= 1

2 or the property includes all orientations
and labellings of K3, we show (Lemma 26) that all blocks with two or more vertices have
positive excess. Using this fact, we can bound the number of vertices in blocks of B1 or B2
directly, and it remains only to bound |B0|. In the remaining case, we have to bound each
of |B0|, |B1|, |B2|, |B≥3| and the size of each block separately. We bound these numbers over
a number of lemmas.



Crowston, Jones, Muciaccia, Philip, Rai, Saurabh 5

2 Definitions

We use ] to denote the disjoint union of sets. We use “graph” to denote simple graphs
without self-loops, directions, or labels, and use standard graph terminology used by Di-
estel [9] for the terms which we do not explicitly define. Each edge in an oriented graph
has one of two directions {<,>}, while each edge in a labelled graph has an associated label
` ∈ L chosen from a finite set L. A graph property is a subclass of the class of all (possibly
labelled and/or oriented) graphs. For a labelled and/or oriented graph G, we use U(G) to
denote the underlying simple graph; for any graph property of simple graphs, we say that
G has the property if U(G) does: for instance, G is connected if U(G) is. For a (possibly
labelled and/or oriented) graph G = (V,E) and weight function w : E(G) → R+, we use
w(F ) to denote the sum of the weights of all the edges in F ⊆ E. We use Kj to denote
the complete simple graph on j vertices for j ∈ N, and K to denote an arbitrary complete
simple graph. For a graph property Π, we say that Kj ∈ Π if G ∈ Π for every (oriented,
labelled) graph G such that U(G) = Kj . A connected (possibly labelled and/or oriented)
graph is a tree of cliques if the vertex set of each block of the graph forms a clique. We use
C(G) to denote the set of connected components of graph G. A forest of cliques is a graph
whose connected components are trees of cliques. A graph G is 2-connected if and only if it
does not contain cut vertices.

Mnich et al. [20] defined the following variant of Poljak and Turzík’s notion of λ-
extendibility [23].

I Definition 3. Let G be a class of (possibly labelled and/or oriented) graphs and let
0 < λ < 1. A graph property Π is strongly λ-extendible on G if it satisfies the following
properties:

Inclusiveness {G ∈ G : U(G) ∈ {K1,K2}} ⊆ Π. That is, K1 ∈ Π, and every possible
orientation and labelling of the graph K2 is in Π;
Block additivity G ∈ G belongs to Π if and only if every block of G belongs to Π;
Strong λ-subgraph extension Let G ∈ G and let (U,W ) be a partition of V (G),
such that G[U ] ∈ Π and G[W ] ∈ Π. For any weight function w : E(G)→ R+ there exists
an F ⊆ E(U,W ) with w(F ) ≥ λw(E(U,W )), such that G− (E(U,W ) \ F ) ∈ Π.

In the rest of the paper we use G to denote a class of (possibly labelled and/or oriented)
graphs, and Π to denote an arbitrary—but fixed—strongly λ-extendible property defined
on G for some 0 < λ < 1. The focus of our work is the following “above-guarantee”
parameterized problem:

Above Poljak-Turzík (Π) (APT(Π))
Input: A connected graph G = (V,E) and an integer k.
Parameter: k

Question: Is there a spanning subgraph H = (V, F ) ∈ Π of G
such that |F | ≥ λ|E|+ 1−λ

2 (|V | − 1) + k?

Let G ∈ G. A Π-subgraph of G is a spanning subgraph of G which is in Π. Let βΠ(G)
denote the maximum number of edges in any Π-subgraph of G, and let γΠ(G) denote the
Poljak-Turzík bound on G; that is, γΠ(G) = λ|E(G)|+ 1−λ

2 (|V (G)| − |C(G)|). The excess of
Π on G, denoted exΠ(G), is equal to βΠ(G)− γΠ(G). Thus, given a connected graph G and
k ∈ N as inputs, the APT(Π) problem asks whether exΠ(G) ≥ k. We omit the subscript Π
when it is clear from the context. We use ex(Kj) to denote the minimum value of ex(G) for
any (oriented, labelled) graph G such that Kj = U(G). Thus, for example, if ex(K3) = t

then any graph G with underlying graph K3 has a Π-subgraph with at least γ(G) + t



6 Polynomial Kernels for λ-extendible Properties

edges, regardless of orientations or labellings on the edges of G. We say that a strongly
λ-extendible property diverges on cliques if there exists j ∈ N such that ex(Kj) > 1−λ

2 . We
say that a simple connected graph K̃ is an almost-clique if there exists V ′ ⊆ V (K̃) with
|V ′| ≤ 1 (possibly V ′ is empty) such that K̃ − V ′ is a clique. For an almost-clique K̃, we
use ex(K̃) to denote the minimum value of ex(G) for any (oriented, labelled) graph G such
that K̃ = U(G), and we say that K̃ ∈ Π if and only if G ∈ Π for every (oriented, labelled)
graph G with underlying graph K̃.

I Definition 4. We use AK+
Π to denote the class of all graphs G ∈ G such that U(G) is an

almost-clique and exΠ(G) > 0. For any strongly λ-extendible property which diverges on
cliques, we use infAK to denote the value inf(G∈AK+) ex(G).

Note that the class AK+
Π contains an infinite number of graphs. Hence, it could be the

case that infAK = 0. In the next section, we will show that for any strongly λ-extendible
property which diverges on cliques, it holds that infAK > 0.

3 Preliminary Results

We begin with some preliminary results. The first two lemmas state how, in two special
cases, the excess of a graph G can be bounded in terms of the excesses of its subgraphs.

I Lemma 5. Let G be a connected (possibly labelled and/or oriented) graph and let v be a
cut vertex of G. Then ex(G) =

∑
X∈C(G−{v})

ex(G[V (X) ∪ {v}]).

Proof. Recall that by definition, γ(G) = λ|E(G)|+ 1−λ
2 (|V (G)| − 1). Observe first that

|E(G)| =
∑

X∈C(G−{v})

|E(G[V (X) ∪ {v}])|,

and

|V (G)| − 1 =
∑

X∈C(G−{v})

|V (X)| =
∑

X∈C(G−{v})

(|V (X) ∪ {v}| − 1).

Thus

γ(G) = λ
∑

X∈C(G−{v})

|E(G[V (X) ∪ {v}])| + 1− λ
2

∑
X∈C(G−{v})

(|V (X) ∪ {v}| − 1)

=
∑

X∈C(G−{v})

(
λ|E(G[V (X) ∪ {v}])|+ 1− λ

2 (|V (X) ∪ {v}| − 1)
)

=
∑

X∈C(G−{v})

γ(G[V (X) ∪ {v}]).

We now derive a similar expression for β(G). For each X ∈ C(G−v), let HX be a largest
Π-subgraph of G[V (X)∪ {v}], and let H =

⋃
X∈C(G−v)HX . Since v is a cutvertex of graph

G, we get that every block of H is a block of some such subgraph HX . Hence we get—from
the block additivity property of Π—that H is a Π-subgraph of G. Since no edge of G appears
in two distinct subgraphs HX , we get that β(G) ≥

∑
X∈C(G−{v}) β(G[V (X) ∪ {v}]).

Now consider a largest Π-subgraph H of G, and let HX = H[V (X) ∪ {v}] for each
X ∈ C(G−{v}). Since v is a cutvertex of graph G, we get that every block of each subgraph
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HX is a block ofH. Hence we get—again, from the block additivity property of Π—that each
HX is a Π-subgraph of the corresponding subgraph G[V (X) ∪ {v}]. Since each edge of the
subgraphH lies in at least one suchHX , we get that β(G) ≤

∑
X∈C(G−{v}) β(G[V (X)∪{v}]).

Thus β(G) =
∑
X∈C(G−{v}) β(G[V (X) ∪ {v}]), and so

ex(G) = β(G)− γ(G)

=
∑

X∈C(G−{v})

β(G[V (X) ∪ {v}])−
∑

X∈C(G−{v})

γ(G[V (X) ∪ {v}])

=
∑

X∈C(G−{v})

β(G[V (X) ∪ {v}])− γ(G[V (X) ∪ {v}])

=
∑

X∈C(G−{v})

ex(G[V (X) ∪ {v}]). J

I Lemma 6. Let G ∈ G be a connected graph, and let V (G) = V1]V2. Let c1 be the number
of components of G[V1] and c2 the number of components of G[V2]. If ex(G[V1]) ≥ k1 and
ex(G[V2]) ≥ k2, then ex(G) ≥ k1 + k2 − 1−λ

2 (c1 + c2 − 1).

Proof. Let Ei = E(G[Vi]) for i ∈ {1, 2}. Then E(G) = E1 ]E2 ]E(V 1, V2). By definition,
γ(Gi) = λ|Ei|+ 1−λ

2 (|Vi| − ci) for i ∈ {1, 2}, and

γ(G) = λ|E(G)|+ 1− λ
2 (|V (G)| − 1)

= λ(|E1|+ |E2|+ |E(V1, V2)|) + 1− λ
2 (|V1|+ |V2| − 1)

= [λ|E1|+
1− λ

2 (|V1| − c1)] + [λ|E2|+
1− λ

2 (|V2| − c2)]

+ λ|E(V1, V2)|+ 1− λ
2 (c1 + c2 − 1)

= γ(G[V1]) + γ(G[V2]) + λ|E(V1, V2)|+ 1− λ
2 (c1 + c2 − 1).

Let Hi be a largest Π-subgraph of G[Vi] for i ∈ {1, 2}. We apply the strong λ-subgraph
extension property to the graph (V,E(H1)∪E(H2)∪E(V1, V2)), its vertex partition (V1, V2),
and a weight function which assigns unit weights to all its edges. We get that there exists
a Π-subgraph H of G such that H = (V,E(H1) ]E(H2) ] F ), where F ⊆ E(V1, V2) is such
that |F | ≥ λ|E(V1, V2)|. Therefore β(G) ≥ β(G[V1]) + β(G[V2]) + λ|E(V1, V2)|. So we get
that

ex(G) = β(G)− γ(G)
≥ [β(G[V1]) + β(G[V2]) + λ|E(V1, V2)|]

− [γ(G[V1]) + γ(G[V2]) + λ|E(V1, V2)|+ 1− λ
2 (c1 + c2 − 1)]

= ex(G[V1]) + ex(G[V2])− 1− λ
2 (c1 + c2 − 1)

≥ k1 + k2 −
1− λ

2 (c1 + c2 − 1). J

We now prove some useful facts about strongly λ-extendible properties which diverge
on cliques. In particular, we show that for a property Π which diverges on cliques, ex(Kj)
increases as j increases; this motivated our choice of the name. We also show that infAK is
necessarily a constant greater than 0.
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I Lemma 7. Let ex(Kj) = a ≥ 1−λ
2 for some j ∈ N. Then, for every almost-clique K̃ with

at least j + 1 vertices, ex(K̃) ≥ a− 1−λ
2 .

Proof. Let G ∈ G be a graph such that U(G) = K̃, where K̃ is an almost-clique with at
least j+1 vertices. Let V ′ be a minimum-sized subset of V (K̃) such that K̃−V ′ is a clique.
Set V1 to be any subset of exactly |V (G)| − j vertices of G such that (i) V ′ ⊆ V1, and (ii)
G[V1] is connected. Set V2 = V (G) \ V1. Observe that G is connected, V (G) = V1 ] V2,
G[V1] is connected, and U(G[V2]) = Kj . Further, ex(G[V1]) is—trivially—at least 0, and
ex(G[V2]) is—by assumption—at least a. So by Lemma 6, we get that ex(G) ≥ a− 1−λ

2 . J

I Lemma 8. Let Π be a strongly λ-extendible property which diverges on cliques, and let
j, a be such that ex(Kj) = 1−λ

2 + a, a > 0. Then ex(Krj) ≥ 1−λ
2 + ra for each r ∈ N+.

Furthermore, lims→+∞ ex(Ks) = +∞.

Proof. We prove the first part of the lemma by induction on r. The claim holds for r = 1
by assumption. Suppose that the claim holds for some r ≥ 1. We show that it holds for
r + 1 as well. Let G = K(r+1)j , and consider a partition of V (G) into two parts U,W
with |U | = j, |W | = rj. Note that G[U ] = Kj , G[W ] = Krj . By assumption we have that
ex(G[U ]) = 1−λ

2 + a, and from the induction hypothesis we get that ex(G[W ]) ≥ 1−λ
2 + ra.

Lemma 6 now tells us that ex(G) ≥ 1−λ
2 + (r + 1)a, and this completes the induction step.

Now consider the function f : N+ → R+ defined as f(r) = ex(Krj). Our arguments
above show also that f is an unbounded function. Indeed, f(r+1) = ex(K(r+1)j) ≥ ex(Krj)+
ex(Kj)− 1−λ

2 = ex(Krj) + 1−λ
2 + a− 1−λ

2 = ex(Krj) + a = f(r) + a. We use this to argue
that given any x ∈ R+, there is an rx ∈ N+ such that ∀r ≥ rx . ex(Kr) > x; this
would prove the second part of the lemma. So let x ∈ R+. We choose y ∈ N+ such that
f(y) = ex(Kyj) = a > x + 1−λ

2 . Since f is unbounded, such a choice of y exists. We set
rx = yj, and from Lemma 7 we get that ∀r > rx . ex(Kr) ≥ a− 1−λ

2 > x. J

I Lemma 9. Let Π be a strongly λ-extendible property which diverges on cliques. Then
infAK > 0.

Proof. Since Π diverges on cliques, there exist j ∈ N+, a ∈ R+ such that ex(Kj) = 1−λ
2 +a.

Then, by Lemma 7, for every graph G ∈ AK+ with at least j + 1 vertices, ex(G) ≥ a. Now
observe that {G ∈ AK+ : |V (G)| ≤ j} is a finite set, hence the minimum of ex(G) over this
set is defined and is positive. So we have that infAK ≥ min(a,min{G∈AK+:|V (G)|≤j} ex(G)) >
0. J

4 Polynomial kernel for divergence

In this section we show that APT(Π) has a polynomial kernel, as long as Π diverges on
cliques and all cliques with at least two vertices have positive excess.

Recall the partition B0,B1,B2,B≥3 of the blocks of G − S. Since |S| < 6k
1−λ , and the

number of cut vertices in G− S is bounded by the number of blocks in G− S, it is enough
to prove upper bounds on |B0|, |B1|, |B2|, |B≥3|, and |Bint| for every block B in G− S.

In order to prove the main result of this section, Theorem 22, it is enough to bound |B0|,
together with the number and size of all cliques with positive excess. This is because only
the blocks in B0 may have fewer than two vertices.

We will prove bounds on |B0|, |B1| and |B≥3| (subject to a reduction rule), and a bound
on |Bint| for all blocks B in G− S. We do not give a bound on |B2| directly, but we do give
a bound on the number of cliques with positive excess, which is enough. The bound on |B1|
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is used to bound the number of components in G− S, which is required to prove Theorem
22. The bounds on |B≥3| and |Bint| are not used by the proof of Theorem 22, but they will
be useful in the following sections.

4.1 Bounding |B0| and |B1|
I Definition 10. Let v be a cut vertex of G and let X ⊆ V (G) \ {v} be such that G[X] is a
component of G−{v} and the underlying graph of G[X∪{v}] is a 2-connected almost-clique.
Then we say that G[X ∪ {v}] is a dangling component with root v.

To bound the number of isolated and leaf blocks in G − S, we require the following
reduction rule.
I Reduction Rule 1. Let G ∈ G be a connected graph with at least two 2-connected com-
ponents and let G′ be a dangling component. Then if ex(G′) = 0, delete G′ − {v} (where v
is root of G′) and leave k the same.

I Lemma 11. Reduction Rule 1 is valid.

Proof. Let G′′ be the graph obtained after an application of the rule. By Lemma 5, β(G) =
β(G′) + β(G′′) and γ(G) = γ(G′) + γ(G′′), which is enough to ensure that ex(G) = ex(G′′).

J

I Lemma 12. Reduction Rule 1 applies in polynomial time if Π diverges on cliques.

Proof. In polynomial time it is possible to find all 2-connected components of G and to
check which ones have an underlying graph which is an almost-clique. Thus, in polynomial
time we can find all dangling components. Now, we claim that in constant time it is possible
to evaluate whether their excess is zero. In fact, by the definition of divergence on cliques,
it holds that ex(Kj) > 1−λ

2 for some j. Given a subgraph G′ whose underlying graph is
an almost-clique, if G′ has at least j + 1 vertices Lemma 7 ensures that ex(G′) > 0. On
the other hand, if G′ has at most j vertices, a brute force algorithm which finds the largest
Π-subgraph of G′ runs in time O(2j2), where j is a constant which only depends on Π. J

I Lemma 13. Let Π be a strongly λ-extendible property which diverges on cliques and let
G be a connected graph reduced under Reduction Rule 1. Then the number of dangling
components is less than k

infAK
, or the instance is a YES-instance.

Proof. Let B1, . . . , Bl be the dangling components of G. Since the graph is reduced under
Reduction Rule 1, ex(Bi) > 0 for every 1 ≤ i ≤ l. Since Π diverges on cliques, Lemma 9
ensures that infAK > 0. Let G′ = G− (∪li=1((Bi)int).

By Lemma 5, ex(G) = ex(G′) +
∑l
i=1 ex(Bi) ≥ 0 + infAK l. Then if l ≥ k

infAK
the

instance is a YES-instance. J

I Theorem 14. Let Π be a strongly λ-extendible property which diverges on cliques and let
G be a connected graph reduced under Reduction Rule 1. If there exists s ∈ S such that∑
B∈B |NG(Bint) ∩ {s}| is at least ( 16

1−λ + 2
infAK

)k − 2, then the instance is a YES-instance.

Proof. Let U = {s}. For every block B of G − S such that |NG(Bint) ∩ {s}| = 1, pick a
vertex in N(s)∩Bint and add it to U . Since the vertices are chosen in the interior of different
blocks of G − S, G[U ] is a star and therefore it is in Π by block additivity. By Lemma 5,
ex(G[U ]) = 1−λ

2 d, where d is the degree of s in G[U ]. Let c be the number of components
of G − U , and assume that U is constructed such that d is maximal and c is minimal. By
Lemma 6, ex(G) ≥ 1−λ

2 (d− c).
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We will now show that c is bounded. The number of components of G−U which contain
a vertex of S \{s} is bounded by (|S|−1) < 6k

1−λ−1. In addition, the number of components
of G − S which contain at least two blocks from which a vertex has been added to U is at
most d

2 .
Now, let T be a component of G − S such that in the graph G, no vertex in T − U

has a neighbor in S \ {s} and |U ∩ V (T )| = 1. Firstly, suppose that T contains only
one block B of G − S. Let {v} = U ∩ V (T ). Note that, by the current assumptions,
N(S \ {s}) ∩ V (T ) ⊆ {v}. If v is the only neighbor of s in T , then it is a cut vertex in
G, hence B is a dangling component of G. If s has another neighbor v′ in T and v has no
neighbor in S different from s, then s is a cut vertex, therefore G[V (B) ∪ {s}] is a dangling
component. Finally, if v has at least two neighbors in S and s has at least another neighbor
v′ in T , let U ′ be the star obtained by replacing v with v′ in U , and observe that T is
connected to S \ {s} in G− U ′, contradicting the minimality of c.

Now, suppose that T contains at least two blocks of G − S. In this case, every block
except B does not contain neighbors of S. In particular, this holds for at least one leaf block
B′ in T . Hence, B′ is a dangling component.

This ensures that carefully choosing the vertices of U we may assume that any component
of G − U still contains a vertex of S \ {s}, or contains at least two blocks from which a
vertex of U has been chosen, or contains part of a dangling component. Hence, the number
of components of G− U is at most 6k

1−λ − 1 + d
2 + k

infAK
.

Therefore, if d ≥ ( 16
1−λ + 2

infAK
)k − 2, then ex(G) ≥ k. J

I Corollary 15. Let Π be a strongly λ-extendible property which diverges on cliques and let
G be a connected graph reduced under Reduction Rule 1. If

∑
s∈S

∑
B∈B |NG(Bint) ∩ {s}| is

at least (( 16
1−λ + 2

infAK
)k − 2) 6k

1−λ , then the instance is a YES-instance.

I Corollary 16. Let Π be a strongly λ-extendible property which diverges on cliques and
let G be a connected graph reduced under Reduction Rule 1. Then |B0| + |B1| ≤ (( 16

1−λ +
2

infAK
)k − 2) 6k

1−λ + k
infAK

, or the instance is a Yes-instance.

Proof. Note that every isolated or leaf block either has a neighbor of S in its interior or is
a dangling block. The claim follows from Lemma 13 and Corollary 15. J

I Corollary 17. Let Π be a strongly λ-extendible property which diverges on cliques and let
G be a connected graph reduced under Reduction Rule 1. Then either G − S has at most
(( 16

1−λ + 2
infAK

)k − 2) 6k
1−λ + k

infAK
components, or the instance is a Yes-instance.

Proof. Since a component of G − S contains at least one block from B0 ∪ B1, the result
follows applying Corollary 16. J

4.2 Bounding blocks with positive excess
I Lemma 18. Let Π be a strongly λ-extendible property which diverges on cliques. If G−S
contains at least (( 16

1−λ + 2
infAK

)k−1) 6k
infAK(1−λ) + k

(infAK)2 + k−1
infAK

blocks with positive excess,
then the instance is a Yes-instance.

Proof. Let d be the number of blocks in G − S with positive excess, and let G′ be the
union of all components of G − S which contain a block with positive excess. Observe
that by Corollary 17, we may assume G′ has at most (( 16

1−λ + 2
infAK

)k − 2) 6k
1−λ + k

infAK

components. Observe that by repeated use of Lemma 5, ex(G′) ≥ d infAK . Now let G′′ =
G − G′, and observe that G′′ has at most |S| ≤ 6k

1−λ components. Then by Lemma 6,
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ex(G) ≥ d infAK − 1−λ
2 ((( 16

1−λ + 2
infAK

)k − 2) 6k
1−λ + k

infAK
+ 6k

1−λ − 1). Therefore if d ≥
(( 16

1−λ + 2
infAK

)k − 1) 6k
infAK(1−λ) + k

(infAK)2 + k−1
infAK

, the instance is a Yes-instance. J

4.3 Bounding |B≥3|

The following lemma is not required to prove the last theorem in this section, but it will be
used in Section 6.

I Lemma 19. Let G ∈ G be a connected graph and S ⊆ V (G) be such that G−S is a forest
of cliques. Then |B≥3| ≤ 3|B1|.

Proof. The proof is by induction on |B|. We may assume that G−S is connected, otherwise
we can prove the bound separately for every component. If |B| = 1, then |B≥3| = 0 and the
bound trivially holds. Suppose now that |B| = l+ 1 ≥ 2 and that the bound holds for every
tree of cliques with at most l blocks. Let B ∈ B be a leaf block and let v be its root. Let
G′ = G − (V (B) \ {v}). G′ − S is a tree of cliques with at most l blocks, so by induction
hypothesis |B′≥3| ≤ 3|B′1|. Now, note that only block neighbors of B can be influenced by
the removal of B: in other words, if a block B′ is not a block neighbor of B and B′ ∈ Bi,
then B′ ∈ B′i for every i ∈ {1, 2,≥ 3}.

We distinguish three cases. Recall that Q is the set of cutvertices of G − S. Let Q′ be
the set of cutvertices of G′ − S.
Case 1 (B has at least three block neighbors): In this case it holds that Q = Q′, which ensures
that the removal of B does not increase the number of leaf blocks, that is, |B′1| = |B1| − 1.
In addition, if a block neighbor B′ of B is in B≥3, then it is in B′≥3, which means that
|B′≥3| = |B≥3|. Therefore in this case, using the induction hypothesis it follows that |B≥3| =
|B′≥3| ≤ 3|B′1| ≤ 3|B1| − 3.

Case 2 (B has two block neighbors): As in the previous case Q = Q′, hence |B′1| = |B1| − 1.
On the other hand, if a block neighbor B′ of B is in B≥3, it could be the case that B′
is in B′2. Therefore, |B′≥3| ≥ |B≥3| − 2. Using the induction hypothesis it follows that
|B≥3| ≤ |B′≥3|+ 2 ≤ 3|B′1|+ 2 ≤ 3|B1|.

Case 3 (B has exactly one block neighbor): Let B′ be the only block neighbor of B. Again,
we distinguish three cases. If B′ ∈ B1, then B and B′ are the only blocks of G − S and
|B≥3| = 0, therefore the bound trivially holds. If B′ ∈ B2, then B′ is a leaf block in G′ − S,
hence |B1| = |B′1| and |B≥3| = |B′≥3|: the bound follows using the induction hypothesis.

Lastly, let B′ ∈ B≥3. If |V (B′) ∩ Q| ≥ 3, then |B′≥3| ≥ |B≥3| − 1 and |B′1| = |B1| − 1:
therefore, by induction hypothesis, |B≥3| ≤ |B′≥3| + 1 ≤ 3|B′1| + 1 ≤ 3|B1|. Otherwise,
|V (B′)∩Q| = 2 and B′ is a leaf block in G′−S. In this case, |B′1| = |B1| and |B′≥3| = |B≥3|−1.
Now, consider the graph G′′ = G′ − (V (B′) \ {v′}), where v′ is the root of B′ in G′ − S.
Removing B′ from G′ corresponds either to case 1 or 2, hence it holds that |B′′1 | = |B′1| − 1
and |B′′≥3| ≥ |B′≥3| − 2. Therefore, using the induction hypothesis on G′′ − S (which is a
tree of cliques with l− 1 blocks) it follows that |B≥3| = |B′≥3|+ 1 ≤ |B′′≥3|+ 3 ≤ 3|B′′1 |+ 3 =
3|B′1| = 3|B1|, which concludes the proof. J

I Corollary 20. Let Π be a strongly λ-extendible property which diverges on cliques and
let G be a connected graph reduced under Reduction Rule 1. Then |B0| + |B1| + |B≥3| ≤
4((( 16

1−λ + 2
infAK

)k − 2) 6k
1−λ + k

infAK
), or the instance is a YES-instance.

Proof. The bound follows from Corollary 16 and Lemma 19. J
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4.4 Bounding |Bint|
I Lemma 21. Let Π be a strongly λ-extendible property which diverges on cliques, and let
j, a be such that ex(Kj) = 1−λ

2 +a, a > 0. If |Bint| ≥ d4k
a + 1−λ

2a ej for any block B of G−S,
then the instance is a Yes-instance.

Proof. Note that G−Bint has at most 6k
1−λ +1 components, since every component of G−S

which does not contain B still has an edge to a vertex of S, while the only component of
G− S that could be disconnected from S is the one containing B. Therefore, if ex(Bint) ≥
1−λ

2 ( 6k
1−λ + 1) + k = 4k + 1−λ

2 , Lemma 6 ensures that we have a Yes-instance.
By Lemma 8, if r is an integer such that r ≥ 4k

a + 1−λ
2a , then ex(Krj) ≥ 4k+(1−λ). This

shows that if |Bint| = rj then ex(Bint) ≥ 4k+(1−λ). Furthermore, by Lemma 7, if |Bint| ≥ rj
then ex(Bint) ≥ 4k + 1−λ

2 . Thus, if |Bint| ≥ d4k
a + 1−λ

2a ej we have a Yes-instance. J

4.5 Combined kernel
I Theorem 22. Let Π be a strongly λ-extendible property which diverges on cliques, and
suppose ex(Ki) > 0 for all i ≥ 2. Then APT(Π) has a kernel with at most O(k2) vertices.

Proof. Let j ∈ N be such that ex(Kj) = 1−λ
2 +a, where a > 0. Let V (G−S) = V ′∪V ′′∪V ′′,

where V ′ is the set of vertices contained in blocks with exactly one vertex, V ′′ is the set of
vertices contained in blocks with between 2 and j − 1 vertices and V ′′′ is the set of vertices
contained in blocks with at least j vertices (note that in general V ′′ ∩ V ′′′ 6= ∅). Observe
that the blocks containing V ′ are isolated blocks, therefore by Corollary 16 there exists a
constant c1 depending only on Π such that |V ′| ≤ c1k

2, or the instance is a YES-instance.
By Lemma 18, there exists a constant c2 depending only on Π such that |V ′′| ≤ c2(j− 1)k2,
or the instance is a YES-instance.

Now, let B′′ be the set of blocks of G − S which contain at least j vertices. For every
block B ∈ B′′, let rj+ l be the number of its vertices, where 0 ≤ l < j. Note that, by Lemma
8 and Lemma 6, ex(B) ≥ ra. Let d =

∑
B∈B′′ r and let G′′ be the union of all components

of G−S which contain a block in B′′. By Corollary 17, we may assume that G′′ has at most
(( 16

1−λ + 2
infAK

)k − 2) 6k
1−λ + k

infAK
components. Furthermore, by repeated use of Lemma 5,

we get that ex(G′′) ≥ da. Observe that G −G′′ has at most |S| ≤ 6k
1−λ components: then,

by Lemma 6, ex(G) ≥ da− 1−λ
2 ((( 16

1−λ + 2
infAK

)k − 2) 6k
1−λ + k

infAK
+ 6k

1−λ − 1). Therefore if
d ≥ (( 16

1−λ + 2
infAK

)k−1) 6k
a(1−λ) + k

(a infAK) + k−1
a , the instance is a Yes-instance. Otherwise,

|V ′′′| ≤ 2dj ≤ c3jk
2, where c3 is a constant which depends only on Π, which means that

|V (G)| ≤ 6k
1−λ + (c1 + c2(j − 1) + c3j)k2. J

5 Kernel when λ 6= 1
2 or K3 ∈ Π

I Lemma 23. Let Π be a strongly λ-extendible property with λ 6= 1
2 . Then ex(K3) ≥ 1− 2λ

and, if λ > 1
2 , ex(K3) = 2− 2λ. In particular, ex(K3) > 0 in every case.

Proof. Note that β(G) ≥ 2 for any connected graph G ∈ G with at least two edges, because
any graph whose underlying graph is a path on three vertices is in Π by inclusiveness and
block additivity. Therefore, β(K3) ≥ 2, which ensures that ex(K3) ≥ 2 − (3λ + 1−λ

2 2) =
1− 2λ, which is strictly greater than zero if λ < 1

2 .
Now, assume λ > 1

2 , let G ∈ G be such that U(G) = K3 and let V (G) = {v1, v2, v3}.
Consider U = {v1, v2} and W = {v3} and note that G[U ], G[W ] ∈ Π by inclusiveness.
Then, by the strong λ-subgraph extension property, it holds that G ∈ Π, which ensures that
β(K3) = 3. This means that ex(K3) = 3− (3λ+ 1−λ

2 2) = 2− 2λ > 0. J
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I Lemma 24. Let Π be a strongly λ-extendible property. If λ 6= 1
2 , then ex(K3) > 1−λ

2 or
ex(K4) > 1−λ

2 . In particular, Π diverges on cliques.

Proof. If λ > 1
2 , then by Lemma 23 ex(K3) = 2− 2λ > 1−λ

2 . If λ < 1
3 , then by Lemma 23

ex(K3) ≥ 1 − 2λ, which is greater than 1−λ
2 . Lastly, if 1

3 ≤ λ < 1
2 , let G ∈ G be such that

U(G) = K4 and let V (G) = {v1, v2, v3, v4}. Consider U = {v1, v2} and W = {v3, v4} and
note that G[U ], G[W ] ∈ Π by inclusiveness. By the strong λ-subgraph extension property,
it holds that β(G) ≥ 4, since λ > 1

4 . Therefore, ex(K4) ≥ 4− 6λ− 1−λ
2 3 = 5

2 −
9
2λ which is

greater than 1−λ
2 . J

I Lemma 25. Let Π be a strongly λ-extendible property. If K3 ∈ Π, then ex(K3) > 1−λ
2 .

In particular, Π diverges on cliques.

Proof. If K3 ∈ Π, then β(K3) = 3, which means that ex(K3) = 2− 2λ > 1−λ
2 . J

I Lemma 26. Let Π be a strongly λ-extendible property. If λ 6= 1
2 or K3 ∈ Π, then

ex(Ki) > 0 for all i ≥ 2.

Proof. By Lemma 24 and Lemma 25, ex(K3) > 1−λ
2 or ex(K4) > 1−λ

2 . In the first case,
by Lemma 7, it holds that ex(Kj) > 0 for all j ≥ 4, while in the second case, using the
same Lemma, ex(Kj) > 0 for all j ≥ 5. In addition, by Lemma 23, ex(K3) > 0. Finally,
ex(K2) = 1− (λ+ 1−λ

2 ) = 1−λ
2 > 0. J

I Theorem 27. Let Π be a strongly λ-extendible property. If λ 6= 1
2 or K3 ∈ Π, then

APT(Π) has a kernel with O(k2) vertices.

Proof. By Lemma 24 or Lemma 25, Π diverges on cliques. Furthermore, by Lemma 26,
ex(Ki) > 0 for all i ≥ 2. Then, by Theorem 22, APT(Π) has a kernel with at most O(k2)
vertices. J

By Theorem 27, the only remaining cases to consider are those for which λ = 1/2 and
Π does not contain all triangles. We do this in the following section.

6 Kernel when λ = 1
2

I Definition 28. A graph property Π is hereditary if, for any graph G and vertex-induced
subgraph G′ of G, if G ∈ Π then G′ ∈ Π.

I Theorem 29. Let Π be a strongly λ-extendible property with λ = 1
2 . Suppose Π is hered-

itary and G /∈ Π for any G ∈ G such that U(G) = K3. Then Π = {G ∈ G : G is bipartite}.

Proof. First, assume for the sake of contradiction that Π contains a non-bipartite graph H.
Then H contains an odd cycle Cl. By choosing l as small as possible we may assume that
Cl is a vertex-induced subgraph of H. Then, since Π is hereditary, Cl is in Π. Note that
if l = 3, then U(C3) = K3, so this is not the case. Consider the graph H ′ obtained from
Cl adding a new vertex v and an edge from v to every vertex of Cl. Since both Cl and
K1 = {v} are in Π, by the strong λ-subgraph extension property we can find a subgraph of
H ′ which contains Cl, v and at least half of the edges between v and Cl. Since l is odd, for
any choice of l+1

2 edges there are two of them, say e1 = vx and e2 = vy, such that the edge
xy is in Cl. Therefore, since Π is hereditary, H ′[v, x, y] ∈ Π, which leads to a contradiction,
as U(H ′[v, x, y]) = K3.

Now, we will show that all connected bipartite graphs are in Π, independently from any
possible labelling and/or orientation. We will proceed by induction. The claim is trivially
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true for j = 1, 2. Assume j ≥ 3 and that every bipartite graph with l < j vertices is
in Π. Consider any connected bipartite graph H with j vertices. Consider a vertex v

such that H ′ = H − {v} is connected. By induction hypothesis, H ′ ∈ Π. Consider the
graph H ′′ obtained from H ′ and G2, where G2 is any graph in G with U(G2) = K2 (let
V (G2) = {v1, v2}), adding an edge from vi to w ∈ V (H ′) if and only if in H there is an edge
from v to w. Colour red the edges from v1 and blue the edges from v2.

Since G2 ∈ Π by inclusiveness and H ′ ∈ Π, by the strong λ-subgraph extension property
there must exist a subgraph H̃ of H ′′ which contains G2, H ′ and at least half of the edges
between them. Note that the red edges are exactly half of the edges and that if H̃ contains
all of them and no blue edges, then we can conclude that H is in Π by block additivity. The
same holds if H̃ contains every blue edge and no red edge.

If, on the contrary, H̃ contains one red and one blue edge, we will show that it contains
a vertex-induced cycle of odd length, which leads to a contradiction according to the first
part of the proof. First, suppose that both these edges contain w ∈ V (H ′): if this happens,
H̃ contains a cycle of length 3 as a vertex-induced subgraph.

Now, suppose H̃ contains a red edge v1w1 and a blue edge v2w2. Note that w1 and w2
are in the same partition and, since H ′ is connected, there is a path from w1 to w2 which has
even length. Together with v1w1, v2w2 and v1v2, this gives a cycle of odd length. Choosing
the shortest path between w1 and w2, we may assume that the cycle is vertex-induced.

Thus, we conclude that the only possible choices for H̃ are either picking the red edges
or picking the blue edges, which concludes the proof. J

The above theorem is of interest due to the following theorem:

I Theorem 30. [5] Max-Cut ATLB has a kernel with O(k3) vertices.

6.1 Simple graphs
In this part, we assume that G is the class of simple graphs, that is, without any labelling
or orientation. Note that, in this case, there is only one graph, up to isomorphism, whose
underlying graph is K3 (namely, K3 itself).

I Theorem 31. Let Π be a strongly λ-extendible property on simple graphs, with λ = 1
2 ,

and suppose Π is hereditary. Then APT(Π) has a kernel with O(k2) or O(k3) vertices.

Proof. If K3 /∈ Π, by Theorem 29 Π is equal to Max Cut and therefore by Theorem 30 it
admits a kernel with O(k3). On the other hand, if K3 ∈ Π, then by Theorem 27 Π admits
a kernel with O(k2) vertices. J

6.2 Oriented graphs
In this part, we assume that G is the class of oriented graphs, without any labelling.

IDefinition 32. Let
→
K3∈ G be such that U(

→
K3) = K3, V (

→
K3) = {v1, v2, v3} and o((vi, vi+1)) =

> for 1 ≤ i ≤ 2 and o((v1, v3)) = <. We will call
→
K3 the oriented triangle.

Similarly, let
9
K3∈ G be such that U(

9
K3) = K3, V (

9
K3) = {u1, u2, u3} and o((ui, uj)) = >

for every i < j, 1 ≤ i, j ≤ 3. We will call
9
K3 the non-oriented triangle.

It is not difficult to see that, up to isomorphism,
→
K3 and

9
K3 are the only graphs in G

with K3 as underlying graph.
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I Lemma 33. Let Π be a strongly λ-extendible property on oriented graphs, with λ = 1
2 ,

and suppose Π is hereditary. If
→
K3∈ Π, then

9
K3∈ Π.

Proof. Consider the graph H obtained by adding a vertex v to
→
K3 and an edge from v to

every vertex of
→
K3, such that o((v, vi)) = > for every 1 ≤ i ≤ 3. Since

→
K3∈ Π, by the strong

λ-subgraph extension property there exists a Π-subgraph H ′ of H which contains
→
K3, v

and at least two edges between
→
K3 and v: without loss of generality, assume these edges

are vv1 and vv2. Then since Π is hereditary H ′[v, v1, v2] ∈ Π and note that H ′[v, v1, v2] is
isomorphic to

9
K3. J

I Lemma 34. Let Π be a strongly λ-extendible property on oriented graphs, with λ = 1
2 , and

suppose Π is hereditary. If
9
K3∈ Π, then ex(K4) > 1

4 . In particular, Π diverges on cliques.

Proof. LetH ∈ G be such that U(H) = K4 and let V (H) = {w1, w2, w3, w4}. IfH[w1, w2, w3] =
→
K3

and H[w2, w3, w4] =
→
K3, then H[w1, w2, w4] =

9
K3. Hence, for any orientation on the edges of

H, the graph contains
9
K3 as a vertex-induced subgraph. Now, since

9
K3∈ Π, by the strong

λ-subgraph extension property there exists a Π-subgraph of H which contains at least 5
edges, which means that β(H) ≥ 5. This ensures that ex(K4) ≥ 5 − (3 + 3

4 ) = 5
4 , which

concludes the proof. J

I Lemma 35. Let Π be a strongly λ-extendible property on oriented graphs, with λ = 1
2 ,

and suppose Π is hereditary,
→
K3 /∈ Π and

9
K3∈ Π. Then ex(Kj) > 0 for every j 6= 3.

Proof. Note that ex(K4) > 1
4 , then by Lemma 7 ex(Kj) > 0 for every j ≥ 4. In addition,

ex(K2) = 1
4 . J

Let B0
2 be the subset of B2 which contains all the blocks with excess zero, and have no

internal vertices in N(S). Let Q0 denote the set of cut vertices of G− S which only appear
in blocks in B0

2. Note that every vertex in Q0 appears in exactly two blocks in B0
2.

I Lemma 36. Let Π be a strongly λ-extendible property on oriented graphs, with λ = 1
2 , and

suppose Π is hereditary,
→
K3 /∈ Π and

9
K3∈ Π. Let (G, k) be an instance of APT(Π) reduced

by Reduction Rule 1. For any s ∈ S, if |Q0 ∩N(s)| ≥ ((32 + 2
infAK

)k − 2)48k − 4k
infAK

+ 4k,
then the instance is a Yes-instance.

Proof. First, note that all the blocks in B0
2 are isomorphic to

→
K3 by Lemma 35. Observe

that every vertex in Q0 has at most two neighbours in Q0. Since all vertices in Q0 are cut
vertices of G − S, it follows that G[Q0 ∩N(s)] is a disjoint union of paths. It follows that
we can find a set Q′0 ⊆ Q0 ∩N(s) such that |Q′0| ≥

|Q0∩N(s)|
2 and Q′0 is an independent set.

For each v ∈ Q′0, let B1, B2 be the two blocks in B0
2 that contain v, and let vi be the

unique vertex in (Bi)int, for i ∈ {1, 2}. Then let U = {s}∪Q′0∪{vi : v ∈ Q′0, i ∈ {1, 2}}, and
observe that G[U ] is a tree with 3|Q′0| edges. It follows that G[U ] ∈ Π and ex(G[U ]) = 3|Q′

0|
4 .

By Lemma 6, ex(G) ≥ 3|Q′
0|−c
4 , where c is the number of components of G− U .

Consider the components of G−U . Each component either contains a block in B1 ∪B≥3
or it is part of a block path of G−S containing two vertices from Q′0: by Corollary 20 there
are at most 4(( 16

1−λ + 2
infAK

)k− 2) 6k
1−λ + k

infAK
= ((32 + 2

infAK
)k− 2)48k+ 4k

infAK
components

of the first kind, while there are at most |Q′0| of the second kind.
Thus, if 2|Q′0| − ((32 + 2

infAK
)k − 2)48k − 4k

infAK
≥ 4k then we have a Yes-instance;

otherwise |Q0 ∩N(s)| ≤ 2|Q′0| ≤ ((32 + 2
infAK

)k − 2)48k − 4k
infAK

+ 4k. J
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I Reduction Rule 2. Let B1, B2 ∈ B2 be such that V (B1) ∩ V (B2) = {v}, B1 =
→
K3= B2,

{v} ∩ N(S) = ∅ and (Bi)int ∩ N(S) = ∅ for i = 1, 2. Let {wi} = (Bi)int and {ui} =
V (Bi) \ {v, wi} for i = 1, 2. If G− {v} is disconnected, delete v, w1, w2, identify u1 and u2
and set k′ = k. Otherwise, delete v, w1, w2 and set k′ = k − 1

4 .

I Lemma 37. Let Π be a strongly λ-extendible property on oriented graphs, with λ = 1
2 ,

and suppose Π is hereditary. If
→
K3 /∈ Π, then Rule 2 is valid.

Proof. Let G′ be the graph which is obtained after an application of the rule. If G − {v}
is disconnected, let G′′ be the graph obtained from G deleting v, w1 and w2 and without
identifying any vertices. Then, note that G′′ has two connected components, one containing
u1 and the other containing u2: hence, G′ is connected. Additionally, ex(G′) = ex(G′′).

Let G̃ = G′′ if G − {v} is disconnected and G̃ = G′ otherwise. We have to show that
ex(G̃) = ex(G) if G−{v} is disconnected and ex(G̃) = ex(G)− 1

4 otherwise. In order to do
this, we will show that for any maximal Π-subgraph H̃ of G̃ there exists a Π-subgraph H
of G such that H[V (G̃)] = H̃ and |E(H[V (B1) ∪ V (B2)])| = γ(G[V (B1) ∪ V (B2)]). Then
the result follows because if G − {v} is disconnected, then γ(G) = γ(G − {v, w1, w2}) +
γ(G[V (B1) ∪ V (B2)]), and if G − {v} is connected, then γ(G) = γ(G − {v, w1, w2}) +
γ(G[V (B1) ∪ V (B2)])− 1

4 .
Let H̃ be any maximal Π-subgraph of G̃. Note that by block additivity and inclusiveness,

G[v, w1, w2] ∈ Π. Then, by the strong λ-subgraph extension property there exists a Π-
subgraph H of G which contains H̃, G[v, w1, w2] and at least half of the edges between
them. Note that these edges are exactly four: vu1, w1u1, vu2 and w2u2. If vu1 and w1u1

are in E(H), then since Π is hereditary it holds that
→
K3∈ Π, which is a contradiction.

Similarly if vu2 and w2u2 are in E(H). This means that exactly two edges among them are
in E(H), that is that |E(H[V (B1) ∪ V (B2)])| = 4 = γ(G[V (B1) ∪ V (B2)]). J

I Theorem 38. Let Π be a strongly λ-extendible property on oriented graphs, with λ = 1
2 ,

and suppose Π is hereditary. Then APT(Π) has a kernel with O(k2) if K3 ∈ Π and has a
kernel with O(k3) vertices otherwise.

Proof. If
→
K3∈ Π, by Lemma 33

9
K3∈ Π. This means that K3 ∈ Π and, by Theorem 27,

APT(Π) has a kernel with O(k2) vertices. On the other hand, if
→
K3 /∈ Π and

9
K3 /∈ Π, then

by Theorem 29 Π is equal to Max Cut and by Theorem 30 it admits a kernel with O(k3)
vertices.

Lastly, suppose
9
K3∈ Π and

→
K3 /∈ Π. By Lemma 34, Π diverges on cliques. Let (G, k) be

an instance of APT(Π) reduced by Reduction Rule 1 and 2 (note that in this case Rule 2 is
valid by Lemma 37).

By Corollary 20, we may assume |B0|+|B1|+|B≥3| ≤ 4((( 16
1−λ + 2

infAK
)k−2) 6k

1−λ + k
infAK

).
We now need to consider different types of blocks in B2 separately. Let B+

2 be the blocks
in B2 with positive excess. By Lemma 18, we may assume the number of such blocks is at
most (32 + 2

infAK
)k − 1) 12k

infAK
+ k

(infAK)2 + k−1
infAK

.
Let B′2 be the blocks in B2 \B+

2 which have an interior vertex in N(S). By Corollary 15,
we may assume the number of such blocks is at most ((32 + 2

infAK
)k − 2)12k.

Let B′′2 be the blocks in B2 \ (B+
2 ∪ B′2) which contain a vertex in Q ∩ N(S). Observe

that these blocks must either contain a vertex of Q0 ∩ N(S) or be adjacent to a block in
B1,B≥3,B+

2 or B′2. Furthermore they must be in block paths between such blocks, from
which it follows that |B′′2 | ≤ 2(|B1|+ |B≥3|+ |B+

2 |+ |B′2|+ |Q0 ∩N(S)|).
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Finally let B′′′2 = B2 \ (B+
2 ∪ B′2 ∪ B′′2 ). These are just the blocks in B2 with excess 0

which contain no neighbors of S. By Reduction Rule 2, no two such blocks can be adjacent.
Therefore every block in B′′′2 is adjacent to two blocks from B1,B≥3,B+

2 ,B′2 or B′′2 . It follows
that |B′′′2 | ≤ |B1|+ |B≥3|+ |B+

2 |+ |B′2|+ |B′′2 |.
Hence, we may conclude that |B0| + |B1| + |B≥3| + |B+

2 | ≤ c1k
2 for some constant c1

depending only on Π. Furthermore, note that by Lemma 36 and the fact that |S| ≤ 12k, we
may assume that |Q0 ∩ N(S)| ≤ (((32 + 2

infAK
)k − 2)48k − 4k

infAK
+ 4k)12k. Then we may

conclude from the above that |B′2|+ |B′′2 |+ |B′′′2 | ≤ c2k3 for some constant c2 depending only
on Π.

Therefore the total number of blocks in G−S is at most c1k2 + c2k
3. It follows that |Q|,

the number of cut vertices of G− S, is at most c1k2 + c2k
3.

By Lemma 21, we may assume that the number of internal vertices for any block is at
most c3k, for some constant c3 depending only on Π. It follows that the number of vertices
in blocks from B0,B1,B≥3 or B+

2 is at most c1c3k3 + c1k
2 + c2k

3. To bound the number
of vertices in blocks from B′2 ∪ B′′2 ∪ B′′′2 , note that each of these blocks contains at most 3
vertices, by Lemma 35 and the fact that these blocks have excess 0 by definition. Therefore
the number of vertices in blocks from B′2 ∪B′′2 ∪B′′′2 is at most 3c2k3. Finally, recalling that
|S| ≤ 12k, we have that the number of vertices in G is O(k3). J

Putting together Theorem 27, Theorem 31, and Theorem 38, we get our main result,
Theorem 1.

7 Conclusion

We have succeeded in showing that APT(Π) has a polynomial kernel for nearly all strongly
λ-extendible Π. The only cases in which the polynomial kernel question remains open are
those in which λ = 1

2 and either Π is not hereditary, or membership in Π depends on the
labellings on edges. For the cases when λ 6= 1

2 or Π contains all triangles, we could show the
existence of a kernel with O(k2) vertices. It would be desirable to show a O(k2) kernel in
all cases.

The bound of Poljak and Turzík extends to edge-weighted graphs - for any strongly λ-
extendible property Π and any connected graph G with weight function w : E(G) → R+,
there exists a subgraph H of G such that H ∈ Π and w(H) ≥ λw(G) + (1−λ)w(T )

2 , where T
is a minimum weight spanning tree of G. The natural question following from our results is
whether the weighted version of APT(Π) affords a polynomial kernel.
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