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Thermalization of interacting fermions and delocalization in Fock space
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We investigate the onset of “eigenstate thermalization” and the crossover to ergodicity in a system of one-
dimensional fermions with increasing interaction. We analyze the fluctuations in the expectation values of most
relevant few-body operators with respect to eigenstates. It turns out that these are intimately related to the
inverse participation ratio of eigenstates displayed in the operator eigenbasis. Based on this observation, we
find good evidence that eigenstate thermalization should set in even for vanishingly small perturbations in the

thermodynamic limit.
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Introduction. Statistical physics relies on the assumption
that the system under investigation is in thermal equilibrium.
However, what are the precise conditions for an isolated system
to relax to thermal equilibrium? This question has a long
history, including the groundbreaking observation by Fermi,
Pasta, and Ulam [1] on an anharmonic chain of classical
oscillators, where thermalization was not observed as expected
[2]. Nowadays, thermalization in quantum many-body systems
attracts a lot of theoretical attention [3], inspired by the new
experimental possibilities in systems of cold atoms [4—6]. The
trajectory of classical ergodic systems reaches all regions on
the energy shell for sufficiently long times, establishing the
microcanonical ensemble. Suitably chosen subsystems obey
the Boltzmann distribution. In the quantum case, switching
on interactions in a many-body system combines unperturbed
eigenstates |i) of similar energies into new energy eigenstates:
lo) =), c¥li). If the expectation values A, = (a]Ala) of
observables in these new eigenstates approach their micro-
canonical values Apn;icro(E), as obtained by averaging over all
unperturbed states in a small energy window around E, then
the properties of thermal equilibrium are established in each
many-body eigenstate. This is the idea behind the “eigenstate
thermalization hypothesis” (ETH) [7,8] (see also Ref. [9]).

Recently, the ETH has been tested numerically [10-12]
by means of exact diagonalization. For few-body observables
such as the momentum distribution, indeed it was demon-
strated that A, & Amicro(Ey) and that the fluctuations around
Anmicro decrease with increasing interaction strength and system
size.

Here, we investigate how fast thermal equilibrium, in the
sense of ETH, is approached when increasing the system size.
Our numerical results are obtained for a nonintegrable one-
dimensional (1D) model of interacting fermions that contains
all the features of generic interacting systems. We primarily
consider the momentum space occupation numbers f; = 6}:ék
and the real-space single particle density matrix 9,, = 61614””.

We show that for sufficiently large interaction strength the
fluctuations of expectation values A, of these observables
are determined by the inverse participation ratio (IPR) of
eigenstates in the noninteracting Fock basis. Qualitatively,
similar results were obtained recently [13,14] and it was
conjectured that the IPR might determine the deviations
of steady state expectation values from the corresponding
microcanonical value [15]. The IPR can be considered as the
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inverse number of Fock states contributing to |«) (see, e.g.,
Refs. [16,17]) and thus keeps track of the delocalization of
eigenstates in the many-body Fock space [13,18].

We also consider an example of observables, which are not
diagonal in the noninteracting basis. At large interactions, we
observe a close connection between fluctuations and the IPR
in the corresponding operator eigenbasis.

A crucially important question is how quickly fluctuations
are suppressed upon increasing the system size, even for
small interactions. We observe that for interactions V larger
than A, (the mean level spacing between directly coupled
Fock states) eigenstates delocalize in momentum Fock space
[19,20]. Consistent with earlier analytical insights into Fock-
space localization [21], the IPR drops exponentially with V
on a scale that depends on Ay, which in turn decreases
polynomially with system size. Combining this result with the
observed IPR-fluctuation connection, we find strong evidence
that fluctuations of the relevant observables considered here are
suppressed to zero in the thermodynamic limit (TDL), estab-
lishing eigenstate thermalization, even for vanishingly small
interactions. While this contrasts with recent observations on
relaxation in a classical 1D system [22], it is consistent with
the crucial assumption that tiny interactions are sufficient for
thermalizing the system but can be neglected apart from that.
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FIG. 1. (Color online) Probability distribution p¥ = |(i|e)|* of a
many-body eigenstate |«) in the noninteracting Fock basis (energies
&). (a) For weak interaction V /¢ = 0.1, the eigenstate is localized in
Fock space, consisting of a few isolated peaks. (b) Atlarge V/ = 1.3,
all Fock states with energies &; close to E, contribute. (c) p averaged
over a couple of nearby eigenstates inarange §E/t = 0.1, for V/t =
0.45,1.3 (top, bottom). It can be approximated by a Lorentzian of
width T (red/gray line). The energy was chosen to correspond to
infinite effective temperature (see the main text).
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Model. We consider n spinless 1D fermions with periodic
boundary conditions on a lattice of N sites and with a
next-nearest-neighbor interaction breaking integrability. The
Hamiltonian reads

H+V ==ty éle +He.

M=

+V ) (i = 1/2)(fiy2 — 1/2). (M

IR

i=1

The eigenstates |i) of A, with & = (i|H|i) are given by the
Fock states of n fermions in momentum space. Due to the
translational symmetry, interactions do not mix states with
different total momentum K. Therefore, each momentum
sector K with dimension Dg will be considered separately.
We exclude the K = 0 sector as it possesses a trivial extra
symmetry under reflection. In our numerical examples n = 7,
N =21, and t = 1 sets the energy scale (7 = 1).

Fluctuations and IPR. In the following, we discuss the
expectation values f;* of the momentum occupation numbers
fe = 6iék (where & = 1/+/N Zliv:l e~ki¢;). Being inter-
ested in the properties of typical eigenstates, we analyze
the statistics of an ensemble of states |«) with similar
eigenenergies E, € Ip = [E — §E,E + §E], which will be
called in the following “eigenstate ensemble” (EE). The width
of the energy window § E has to be chosen to be small enough
to avoid artifacts resulting from systematic dependencies on
E. Averages with respect to the EE are denoted by (---)g.
For not too large interactions, one can easily show that
(fEYE & fr,micro(E). However, the crucial statement of the
ETH is that for each eigenstate f;* — fi micro When going to
the TDL, i.e., that the fluctuations of f¥ from state to state
vanish:

N—o00

sz =({re =R, =70 2)

We introduced the EE variance § sz and fi = ( fi)e. Rep-
resenting f;* in the momentum Fock basis f* = ZiD=K1 2 fki
(with £ = (i| fi|i) and p¥ = |(i|er)|?) this statement becomes
plausible. For strong interaction, typical eigenstates are spread
out widely in Fock space [Fig. 1(b)], i.e., they are composed
of a large number of Fock states close in energy. Due to the
law of large numbers, we thus expect the fluctuations to decay
as the mean inverse number of Fock states contributing to |«),
i.e., as the mean IPR

X = <Z <p?>2>E : 3)

i=1

Before deriving the connection between 8 and x formally,
we focus on the numerical results for the present model.
Figure 2 shows § sz as a function of V evaluated at various
energies. The eigenenergies can be reexpressed in terms of ef-
fective temperatures T, with Ey = trg (He /7)) /trg (e~ /7).
The results are compared to the IPR, or more precisely to the
sum over the variances Varg(p}) = ((pf‘)z)E — (pf‘)zE (see
below), demonstrating that indeed §f7 o< Y_; Varz(p?) even
for small interactions. This is in stark contrast to the case of
integrability conserving nearest-neighbor interaction (see the
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FIG. 2. (Color online) Fluctuations of expected occupation num-
ber («| fk |r) between eigenstates decrease with increasing interaction
strength V, indicating eigenstate thermalization. The plot shows
the variance §f2, for states with an effective temperature 7/t =
1.4,2.1,00 (from top to bottom), with energy shells of width §E /1 =
0.25. Solid lines show const x fi—o(1 — fizo) >_; Varg(p¥), with a
slightly T-dependent constant. Finally, the results are averaged over
all total momentum sectors. Inset: As in the main figure, but with §
averaged over all k. Black, open dots show 8?2 averaged over all k for
an integrable model with nearest-neighbor interactions [at T = oo
and K/(2m/N) =1]. K averages are only performed to improve
statistics. The same results are obtained for individual K sectors.
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inset in Fig. 2), where the suppression of §f? with V is much
smaller than in the prior case.
Formally, representing 8¢ in terms of p?, one finds

Dk
8f = Fil = ) Y Varg(p?) + Y 8f; Cove(pf pf),
i i#]
“

with 8f = (fi fi — 7) and the covariance matrix
Cove(pi' p}) = (pi P e — (pi)e(p})e. The first term in
Eq. (4) contains the suppression of § sz with an increasing
number of Fock states contributing to a typical eigenstate. It is
essentially determined by x [we note that x ~ Y . Varg(p¥)
below the ergodic regime (see below)]. We replaced ) ( fki -
Ti)VarE(pf‘)a (fr — ?i) 3. Varg(p®), which is justified as
Varg(p{) is a smooth function of i. The prefactor F(l = Fo)
represents the variance of the momentum occupation numbers
for the noninteracting case.

The off-diagonal contributions in Eq. (4) are sensitive
to residual correlations within eigenstates and are expected
to become small for strong perturbations. Surprisingly, for
strong enough interactions, they approximately reproduce
the diagonal part of Eq. (4). Thus, even though §f7 is still
determined by the IPR, one observes a deviation of the
prefactor of O(1). A very similar observation was made in
Ref. [23] while investigating finite fermionic systems with
random two-body interactions and was traced back to the
strong correlations between matrix elements of two-body
interaction matrices.
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To sum up, we find that the fluctuations in the expectation
value of f} from eigenstate to eigenstate are determined by the
IPR x. Thus, in the following, we discuss how x decreases
with increasing V and system size.

Definitions. For the discussion of y, we set up a few
technical definitions. We introduce the effective density ,o} (w)
of Fock states |j) coupling to a state |i) of energy & €
I (ie., (i|V|j) # 0), where the energy difference between
both states is & — &; = w. Averaging over a couple of
states |i) (indicated by (---)% =Y. 1 [Xieer, - 1)
one obtains the mean effective density of states py(w,E) =
(pj}(a)))%. In the following, the density of interacting states

close in energy (w =~ 0) will be denoted by p; = A;l.
Furthermore we deﬁne the mean squared matrix element

bof2 D
;Uw/Z ,Kl i ViS(E — & — @))%, Numer-
1ca11y, both are evaluated in the 11m1t of small interactions,

where &; ~ (j|I:10|j).

Discussion of IPR. For \/% < p;l, in general, eigenstates
can be obtained within perturbation theory. A given momen-
tum Fock state gets perturbed by the set of directly coupling
states, and eigenstates consist of a small number of sharp peaks
[Fig. 1(a)], i.e., they are localized in Fock space. Increasing

the coupling strength \/ﬁ ~ p7!, one enters the regime of
delocalized eigenstates [20]. Perturbation theory breaks down
and the IPR starts to decrease rapidly [see Fig. 3(a)]. In this
regime, the fluctuations § sz become directly determined by .
Surprisingly, one observes an exponential decay of x and we
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FIG. 3. (Color online) (a) The inverse participation ratio x
decreases as many-body eigenstates get more delocalized for in-
creasing interaction strength V. From top to bottom: Effective
temperatures 7'/t = 1.4,1.7,2.1,2.6,00 (thick, blue lines; averaged
over all momentum sectors). The most important feature is an
exponential decay at intermediate interactions [red dashed line;
see Eq. (5)] followed by a power-law tail in the “ergodic” regime
(see the main text), where it can be well approximated by Eq. (6)
(shown only for T = oo and K = 27/N: blue dotted line). In the
ergodic regime, the amplitudes c{ are Gaussian distributed, leading
tox —>3); (p#)2 (thin, black lines). (b) “Scaling plot”: As before,

but plotted vs 27 o sV V2 (and only for asingle K). (c) Similar plot, but
for various system sizes, at 7'/t = oo. The red line displays Eq. (5),
with C = 0.75, for comparison.

RAPID COMMUNICATIONS

PHYSICAL REVIEW E 85, 060101(R) (2012)

found good numerical evidence that

X X exp{—C,of\/%}. ®)

The numerical constant C is independent of temperature and
system size. In Figs. 3(b) and 3(c), the IPR is shown as a

function of the scaling variable 27'[)0]”\/% for eigenstates
at different energies E and for various N and n. Indeed, in
good accordance to Eq. (5), all curves collapse to the same
scaling curve. An explanation of this exponential decay of x
might be found in the two-particle nature of the interaction.
In Ref. [21] it was argued (in a random matrix setting)
that, for moderate interaction strength, typical eigenstates
are composed of independent pairs of interacting fermions.
Eigenstates decompose into direct products of Fock-state pairs,
resulting in an exponential decay of x, of the form given
by Eq. (5). While this exponential decay (and additional
corrections) was confirmed numerically for arandom quantum
dot Hamiltonian [16], here we find it in a translationally
invariant system without disorder.

We now discuss the dependence on system size. The
effective density of states pr(w) scales as N3. For exam-
ple, at large T, we have p (w)t ~ N3p%(1 — p)*r(w), with
the density p. For our model, r(w) « In(t/w) for w — 0
due to transitions of particle pairs around the inflection point
of the —21 cos(k) dispersion, resulting in ,0;1 o« t/(N*InN)
(assuming a cutoff scale w/t ~ 1/N). Together with the

scaling of the matrix elements \ﬁ = v(E)V /N, this would
yield x o< exp{—CN?1n Np>(1 — p)*V/t}, with C being inde-
pendent of N.

According to this estimate, at any fixed, but arbitrarily small
interaction strength, thermalization will occur in the TDL.
This crucial result corroborates general physical expectations.
We stress that consequently thermalization does not require
interactions comparable to finite thresholds such as the single
particle bandwidth.

For completeness, we now discuss the regime of such
large interactions V ~¢. This is a regime of “ergodic”
eigenstates, by which we understand states which in principle
are composed of all momentum Fock states with given K close
in energy [cf. Fig. 1(b)]. No Fock states are excluded a priori,
e.g., due to the two-body nature of V or further symmetries
from contributing to an ergodic eigenstate. The amplitudes
¢ become Gaussian distributed random variables [7,8] (for
further information see Ref. [24]) with a Lorentzian variance

[7,25,26] (p{) g = # ﬁ, where pg denotes the full

many-body density of states for total momentum K, scaling
as (N — 1)!/(N —n)!n!. We checked that in this regime
the nearest-neighbor level spacing statistics agrees with the
Gaussian orthogonal ensemble (GOE)-Wigner surmise, char-
acteristic for quantum chaotic systems. Due to the Gaussian
distribution for ¢, one finds x = 3 Y_,(p#)%, resulting in

x =~ 3/l p), (6)

which is in fairly good agreement with the numerical results in
Fig. 3(a), demonstrating the suppression of §f? by the inverse
density of states as it was conjectured in Refs. [7,8]. The width
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FIG. 4. (Color online) (a) Fluctuations of the single particle
density matrix @ for EEs at T/t =1.4,2.1,00 [top to bottom;
blue (upper), green (middle), red (lower): Real and imaginary parts
are considered separately (A,o)]. These are compared to const x
(Re g2 — Reon) >, Varg(p) (crosses) with Reg,.Reol =
> ;[Re 0l.(Re Q,{l)z]( P§)e and the analogous expression for the
imaginary part (OJ). Finally, the results are averaged over all m # 0.
One finds good agreement for large enough V. (b) Fluctuations of C¢/
averaged over all m # 0 excluding the special cases m =2,N — 2
(see the main text). As V > t, the density of states splits into bands.
We consider various eigenstate ensembles lying each in the center
of a single band [labeled by the mean number of interacting pairs
7i =0, ...,4:red (thin), blue (thin), green (thin), magenta (thick), blue
(thick) crosses]. This is compared to const x C2 )", Varg(p9) (dots)
averaged in the same fashion. One finds good agreement for V /¢ > 1.
In (a), (b), K = 4 /N and constants depend on 7" and i, respectively.

[ can be extracted numerically [24]. For small V, Fermi’s
golden rule applies and T o< V?/t.

Eventually, for very large V > ¢, interactions dominate and
the density of states splits into bands. Whether integrability is
restored in this limit has to be analyzed carefully, but is beyond
the scope and interest of our analysis.

Other observables. The crucial IPR-fluctuation connec-
tion holds for further observables, e.g., the operator 6;[614_,,,
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corresponding to the single particle density matrix % =

(a|éTél+m|a) is diagonal in the momentum Fock basis for
a given K. In fact, 0% = N1, /"™ f¥ We consider both
the fluctuations of the real and imaginary part of o, within the
EE and find [Fig. 4(a)] that for large enough V, § Re 02, and
§Im Qi [defined analogously to Eq. (2)] are oczj VarE(p‘]’?).

In contrast, the operator 71,71, is diagonal in the real-
space Fock basis |J) (for a given K). Nevertheless, for
V >t one observes [Fig. 4(b)] that the fluctuations of
Co = (a@ﬁmﬂa), ie, 8C2 =((C*)?*) g — ((C,‘;‘,))%,_be-
come xC2 ", Varg(p%) with p% = |{e|J)]* and C2 =
> (CIH?(p%) . In this limit, the density of states splits into
bands centered around 7V + V(N /4 — n), where /i denotes
the number of interacting pairs. In each band, the fluctuations
increase with increasing V. The cases m = 2,N — 2 are spe-
cial, as we are dealing with next-nearest-neighbor interactions
and periodic boundary conditions. The fluctuations of C5 and
C%_, are largely suppressed for V /¢t > 1 and not longer
proportional to ), Varg(p9).

Conclusions. We investigated the interaction induced onset
of eigenstate thermalization in a system of 1D fermions. We
found that the fluctuations of the expectation value of the
momentum occupation number and the single particle density
matrix from state to state are proportional to the IPR of
eigenstates displayed in the momentum space Fock basis.
For small interactions the latter decays exponentially. The
interaction scale for the onset of this decay is determined by
the mean level spacing between directly coupled Fock states
and vanishes in the thermodynamic limit. This corroborates
the physical expectation that in this limit thermalization sets
in at arbitrarily small interactions.
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