
author’s email: marc.lewerentz@ipp.mpg.de

Experiment planning using high-level component models at W7-X
Marc Lewerentz

a,*
, Anett Spring

a
,

Torsten Bluhm
a
, Peter Heimann

b
, Christine Hennig

a
, Georg Kühner

a
, Hugo Kroiss

b
,

Johannes G. Krom
a
, Heike Laqua

a
, Josef Maier

b
, Heike Riemann

a
, Jörg Schacht

a
,

Andreas Wernera, Manfred Zilkerb

a
Max-Planck-Institut für Plasmaphysik, EURATOM Association, Teilinstitut Greifswald, Wendelsteinstraße 1, D-

17491 Greifswald, Germany

b
Max-Planck-Institut für Plasmaphysik, EURATOM Association,

Boltzmannstraße 2,D-85748 Garching, Germany

*
Corresponding author; Tel.: +49-3834-88-2762; Fax: +49-3834-88-2509;

E-mail address: marc.lewerentz@ipp.mpg.de

The superconducting stellarator Wendelstein 7-X (W7-X) is a fusion device, which is capable of steady state

operation. Furthermore W7-X is a very complex technical system. To cope with these requirements a modular and

strongly hierarchical component-based control and data acquisition system has been designed.

The behavior of W7-X is characterized by thousands of technical parameters of the participating components.

The intended sequential change of those parameters during an experiment is defined in an experiment program.

Planning such an experiment program is a crucial and complex task. To reduce the complexity an abstract, more

physics-oriented high-level layer has been introduced earlier. The so-called high-level (physics) parameters are

used to encapsulate technical details.

This contribution will focus on the extension of this layer to a high-level component model. It completely

describes the behavior of a component for a certain period of time. It allows not only defining simple value ranges

but also complex dependencies between physics parameters. This can be: dependencies within components,

dependencies between components or temporal dependencies.

Component models can now be analyzed to generate various views of an experiment. A first implementation of

such an analyze process is already finished. A graphical preview of a planned discharge can be generated from a

chronological sequence of component models. This allows physicists to survey complex planned experiment

programs at a glance.

Keywords: experiment planning; high-level component behavior; component model; technical and temporal

dependencies; segment control system

1. Introduction

The superconducting stellarator Wendelstein 7-X

(W7-X) is a highly complex technical system. To cope

with this complexity three basic design decisions have

been made for the W7-X segment control system. A

project – component hierarchy has been implemented

[1].

The behavior of W7-X is characterized by thousands

of technical parameters of the participating components.

The intended sequential change of those parameters

during an experiment is kept in so called (low-level)

segments. Segments are the elementary temporal parts to

define an experiment program from. A detailed

description of the segment control concepts is given in

[2].

Planning an experiment program is a crucial and

complex task. To reduce the complexity an abstract,

more physics-oriented high-level layer has been

introduced earlier [3]. The so-called high-level (physics)

parameters are used to encapsulate technical details. In

high-level segments the high-level behavior (also called

high-level task) of the components is described using

high-level parameters for a certain period of time. Via

transformation functions the high-level segments can be

transformed to low-level segments, which can be

executed by the participating components.

This contribution will focus on the so-called high-

level model layer. It adds a component model instance

on top of each high-level component task.

2. Motivation

Experiments are executed using low-level segments

and parameters. The executability of the low-level

segments is checked short before and during the

experiment [4].

Because it is very complex to plan an experiment

using low-level segments and parameters this is done on

the abstract high-level layer. But planning experiments is

even on this layer a challenging task. During the

planning process arises the question: Will the currently

planned experiment be feasible?

This has to be checked already at planning time on

the high-level layer. But how could one create a most

likely feasible experiment program?

The feasibility is determined by certain constraints

which have to be complied. These constraints can arise

from (1) technical dependencies such as limits,

resources, transitions, etc. or from (2) logical / temporal

dependencies, which could be preparation phases, a

calibration before use of a diagnostic, a post processing,

etc.

To use those dependencies to assure the feasibility of

an experiment program they (1) must be known, (2) must

be possible to be formulated in mathematical terms and

(3) must be possible to be automatically evaluated.

2.1 Case study

The subsequently described concepts will be

illustrated using a case study. The behavior of the

component gas inlet at the CoDaC prototype WEGA is

determined by several high-level parameters. The gas

inlet has 2 valves with different maximal gas flows.

They could be opened or closed. For each opened valve

a gas type must be chosen. The maximal gas flow

depends on the chosen gas type. The valves allow a

higher maximal gas flow for certain gas types.

Furthermore the desired actual gas flow has to be set.

3. Component Model Framework

Component Models are an abstract, high-level

description of a component of a project, such as

Wendelstein 7-X or our CoDaC prototype WEGA. They

add the high-level knowledge of dependencies and

constraints. This knowledge is successively gained by

experimenting or is already known, e.g. from technical

properties.

The only information available from the high-level

parameters of the component task is their value and

static predefined limits. The component models of

course allow keeping the values for the high-level

parameters also. Those values can be constrained, not

only by simple limits, but by complex value ranges.

Those value ranges can dynamically change, because

they could be affected by a dependency.

Furthermore stateful parameters are introduced. They

allow defining replacement values for certain states.

Case study: If a valve of the gas inlet is closed the

corresponding parameters gas flow and gas type aren’t

set. The actual values, which are of course 0 and

undefined, used in the low-level task, are hitherto hidden

in the transformation function (see Figure 1). To allow a

generic analysis of the high-level behavior of a

component this implicit knowledge must be made

visible.

The component model layer is built on top of the

already existing high-level layer (Figure 1).

Figure 1 Different layers at experiment planning time.

4. Ingredients

The high-level layer consists of a high-level

descriptor for each component, high-level tasks and

transformation functions. The descriptor holds the

information of the used parameter types and their

structuring. The corresponding tasks represent various

sets of parameters with their actual values.

The ingredients of the component model framework

and activities between them are shown schematically in

Figure 2.

Figure 2 Ingredients of the component model framework

4.1 Component Model

The equivalents to the descriptors on the high

layer are the component model classes

layer. They are implemented as Java classes and follow

the JavaBeans specification [5]. Each class contains a set

of attributes specific for that component. The attribu

are the equivalent to the parameters from the descriptor,

but could be constrained or stateful, as mentioned in

chapter 3. Furthermore there are setter methods to

change the value or state of the attributes.

If the value, state or constraint of an attr

changed an event is fired.

Case study: the component model class of the gas

inlet has the attributes: magneticValveGI1

magneticValveGI2, gasTypeGI1 (stateful),

(stateful), gasFlowGI1 (stateful and constrained) and

gasFlowGI2 (stateful and constrained).

determines the chosen valve of the gas inlet component.

4.2 Translator

For each component a (component)

instance is created using the static information from the

corresponding component model class and the parameter

types and the structuring from the high-level component

descriptor.

Additionally some meta-information is stored in the

descriptor which is read by the translator. This comprises

of the component model framework

on the high-level

on the model

. They are implemented as Java classes and follow

. Each class contains a set

of attributes specific for that component. The attributes

are the equivalent to the parameters from the descriptor,

but could be constrained or stateful, as mentioned in

chapter 3. Furthermore there are setter methods to

of an attribute has

Case study: the component model class of the gas

magneticValveGI1,

(stateful), gasTypeGI2

(stateful and constrained) and

 GI1 or GI2

determines the chosen valve of the gas inlet component.

(component) translator

instance is created using the static information from the

corresponding component model class and the parameter

level component

information is stored in the

This comprises

the corresponding component model, the available

attributes and dependencies. Furthermore settings for the

creation of views, e.g. a graphical preview for

experiment programs (see [6]), by a generator (see

following chapter) is found here.

Case study: a list that keeps all attributes defined in

the component model class of the gas inlet is generated.

The main purpose of the component

translate high-level component tasks to instances of the

corresponding component model class. These instances

contain the actual values, constraints and states of the

attributes.

Furthermore the translator creates dependency

objects which are generated from the meta

of the high-level component descriptor. They listen to

change events of their input variables and recalculate the

output variable using the defined dependency function.

Thus dependent attribute values, states and constraints

are automatically updated.

Case study: the translator for the gas inlet iterates

over all high-level parameters of a given high

and calls the corresponding setter methods to set t

actual values and states (if available) for all model

attributes. If the value of an attribute with a defined

dependency is changed the output variable is updated.

the corresponding component model, the available

. Furthermore settings for the

a graphical preview for

, by a generator (see

Case study: a list that keeps all attributes defined in

the component model class of the gas inlet is generated.

component translator is to

level component tasks to instances of the

model class. These instances

contain the actual values, constraints and states of the

creates dependency

objects which are generated from the meta-information

level component descriptor. They listen to

change events of their input variables and recalculate the

output variable using the defined dependency function.

attribute values, states and constraints

the translator for the gas inlet iterates

level parameters of a given high-level task

and calls the corresponding setter methods to set the

actual values and states (if available) for all model

If the value of an attribute with a defined

dependency is changed the output variable is updated.

Figure 3 Model types and handled dependencies (Overlay on experiment program in Xedit)

Fehler! Verweisquelle konnte nicht gefunden
werden. shows instances of the three different model

types which all have special translators. They are

depicted as overlay on an experiment program structure

in the experiment program editor Xedit. Each box in the

background represents a task for one of the components

on left side. A vertical aggregation of tasks is a segment.

A component model instance reflects the task of a

single component. The corresponding component

translator handles all intra component dependencies. A

project model instance is an aggregation of component

model instances of a project, which is for example W7-X

or WEGA. It can additionally define attributes on project

level, e.g. which components must be mandatory

available during this phase of the experiment and which

are optional. The corresponding project translator

handles inter component dependencies. The experiment

model instances contain a matrix of component model

instances inclusive the segment switches defined in an

experiment program. The experiment translator handles

logical / temporal dependencies.

4.3 Generator / View

Generators allow analyzing information from the

component model instances and the corresponding

translators generically to produce different views. Here

is where the benefit from the component model

framework emerges. At WEGA a graphical preview

generator (see Figure 4), an automatic segment and task

name generator and a constraints checker are already in

use. Because of their generic nature these generators can

be used at W7-X without modification.

Case study: for the view depicted in Figure 4 the

attributes gasFlowGI1 and gasFlowGI2 have been

selected in the meta-information defined in the

descriptor. The valve 1 is closed during the complete

experiment. This means that no value is set for

gasFlowGI1. It is in state NOT_SET. Therefore it is

automatically removed from the experiment preview to

maximize the clarity of the graphical preview. Only the

time course (green curve) of gasFlowGI2 is shown

(beside other characteristic values for the planned

experiment). The course of the values is determined by

analyzing the values from all component model

instances over the complete span of the experiment. An

in-depth description of the graphical preview can be

found in [6].

Figure 4 Rendering of a graphical preview in Xedit (more detailed information in [6]): characteristic values over time for a

planned experiment is shown;

5. Dependencies Dependencies are defined by a set of input variables,

one output variable and a dependency function. Input

Experiment

Model

Instance

Comp. Model Inst.

P
ro

je
ct

 M
o

d
e

l
In

st
a

n
ce

Intra component

dependencies

Inter component

dependencies

Logical / temporal

dependencies

variables could be any values, states or constraints of

model attributes. They are used as input parameters of

the dependency function, which is currently

implemented in Java. But using a script language here

would allow changing a dependency function without

the need to re-deploy it. The result of the dependency

function is written to the output variable, which again

could be any attribute value, state or constraint.

5.1 Intra component dependencies

Dependencies between attribute values, states or

constraints of a single component are called intra

component dependencies. They are already routinely

used at the CoDaC prototype WEGA.

Case study: A simple example is the upper limit of

the gas flow which depends on a certain calibration

factor of the chosen gas type and the maximal flow of

the chosen valve.

5.2 Inter component dependencies

Dependencies between attribute values, states or

constraints of different components of a project are

called inter component dependencies. First

implementations for some examples at WEGA are

currently in process.

Case study: A simple example is a dependency

between the wavelength of the component SOPRA

Echelle Spectrometer and the gas type at the gas inlet. A

more complex one is the requirement of a minimal gas

flow if the plasma heating is active. It depends on the

heating scenarios such as Magnetron only, Gyrotron X2

and OXB and the chosen gas type, typically Helium,

Argon or Deuterium.

5.3 logical / temporal dependencies

Dependencies that require a certain order of tasks or

segments are called logical / temporal dependencies.

Their expected quantity for long-term discharges is very

high. For multi-experiment discharges it will increase

even further, because a certain state of the components

might be required before the start of the next experiment

within the discharge. The concepts for this type of

dependencies are still in development.

Case study: a very simple, but very important

experiment wide dependency is that it is not allowed to

set different gas types for the same valve. It is simply

technically impossible to do this at the WEGA. Running

such an experiment will always fail. Consistently the

attributes gasTypeGI1 and gasTypeGI2 should be

attributes of the experiment model. This will be

implemented as soon as the conceptional design for

experiment models and logical / temporal dependencies

is finished.

One could easily find other examples for logical /

temporal dependencies. E.g. a laser that has to be

calibrated before it is ready for use. The maximal

duration of use could be a few minutes before it has to

get calibrated again.

6. Conclusion and Outlook

Component models support the creation of feasible

experiment programs already at experiment planning

time. They are easily upgradeable with the growing

knowledge about the physical and technical constraints

and dependencies. By analyzing component models by

generators various views of an experiment can be

generated. Thus it is possible to compile and present

crucial information to the experiment planner at a

glance.

The implementation of inter component

dependencies is currently under development and will be

available for use soon.

The next step will be the differentiation between hard

and soft constraints. At the moment all defined

constraints are hard constraints. They prevent the

creation of illegal experiment programs, which would

fail or would knowingly damage the experimental

machine. On the other hand there are a lot of soft

constraints. They should warn the experiment planner

that the usual value ranges are left. But soft constraints

don’t prevent experimenters from experimenting. They

only mark extraordinary value ranges.

Acknowledgments

The developers would like to thank the WEGA team

for the close co-operation, intense testing and many

fruitful discussions.

References

[1] J. Schacht, H. Laqua, M. Lewerentz, I. Müller, S. Pingel, A.

Spring, A. Wölk, Overview and status of the control system

of WENDELSTEIN 7-X, Proceedings of the 24th

Symposium on Fusion Technology, October 2007, Fusion

Engineering and Design, 82 (988-994)

[2] H. Laqua, H. Niedermeyer, J. Schacht, A. Spring, Real-

time software for the fusion experiment WENDELSTEIN

7-X, 5th IAEA TM on Control, Data Acquisition and

Remote Participation for Fusion Research, July 2006,

Fusion Engineering and Design, 81 (15-17)

[3] H. Riemann et al., From a physics discharge program to

device control – linking the scientific and technical world

at Wendelstein 7-X, Proceedings of the 25th Symposium

on Fusion Technology, June 2009, Fusion Engineering

and Design, 84 (1598-1601)

[4] H. Laqua et al., Resource Checking and Event Handling

within the W7-X Segment Control Framework, this issue

[5] G. Hamilton (Editor), JavaBeans specification,

http://www.oracle.com/technetwork/java/javase/documen

tation/spec-136004.html

[6] A. Spring, Marc Lewerentz et al., A W7-X experiment

program editor – a usage driven development, this issue

