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Abstract. Associating specific gene activity with functional locations in the
brain results in a greater understanding of the role of the gene. To perform such
an association for the over 20,000 genes in the mammalian genome, reliable auto-
mated methods that characterize the distribution of gene expression in relation to
a standard anatomical model are required. In this work, we propose a new auto-
matic method that results in the segmentation of gene expression images into dis-
tinct anatomical regions in which the expression can be quantified and compared
with other images. Our method utilizes shape models from training images, tex-
ture differentiation at region boundaries, and features of anatomical landmarks, to
deform a subdivision mesh-based atlas to fit gene expression images. The subdi-
vision mesh provides a common coordinate system for internal brain data through
which gene expression patterns can be compared across images. The automated
large-scale annotation will help scientists interpret gene expression patterns at
cellular resolution more efficiently.

1 Introduction

With mammalian genomes of over 20,000 genes [1] now sequenced, the next challenge
facing the biomedical community is to determine the function of these genes. Knowledge
of gene function is important for a better understanding of diseases and the development
of potential new therapies. The mouse is a well-established model system for explor-
ing gene function and disease mechanisms. Consequently, determining where genes are
active in different mouse tissues can lead to a greater understanding of how gene prod-
ucts affect human diseases. Non-radioactive in situ hybridization (ISH) is a histological
method that can be applied to reveal cellular-resolution gene expression in tissue sec-
tions [2]. This is an appropriate resolution for addressing the questions about the role of
genes in cell identity, differentiation, and signaling. Robotic ISH enables the systematic
acquisition of gene expression patterns in serially sectioned tissues [3]. By organizing
a large collection of gene expression patterns into a digital atlas, ISH data can be used
to make great advances in functional genomics as DNA sequence databases have done.

A major step toward efficient characterization of gene expression patterns is the au-
tomatic segmentation of gene expression images into distinct anatomical regions and
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(a) (b) (c)

Fig. 1. Variation in the shape of the brain and expression pattern of (a) Npy, (b) Cbfat2t1h, and
(c) Neurog2 genes in mouse brain images

subregions. This is a challenging task, mainly because each gene is expressed differ-
ently from region to region leading to a substantial variation in the appearance of each
image. There is also a natural variation in the shape of anatomical structures, com-
pounded by the non-linear distortion introduced during sectioning of the brain. More-
over, there are many regions where no edges or intensity variation can be visually ob-
served. Figure 1 depicts typical gene expression images.

To compare gene expression patterns across images, Ju et al. [4] constructed a
deformable atlas based on subdivision surfaces which provide a common coordinate
system when fitted to sagittal sections of the mouse brain. The 2D brain atlas is rep-
resented as a quadrilateral subdivision mesh, as shown in Fig. 2(a). Subdivision is a
fractal-like process of generating a smooth geometry from a coarse shape [5]. Starting
from an initial mesh, subdivision generates a sequence of refined meshes with increas-
ing smoothness. In our application, the mesh is partitioned by a network of crease edges
into sub-meshes, each modeling a particular anatomical region of the brain. The atlas
was fitted to images using affine transformation to account for rotation and translation,
and local deformation based on iterated least-squares to account for shape variation.
However, the accuracy of the local fitting, and interior coordinate system resulting from
the segmentation, is limited by its reliance on tissue boundary detection only. Thus,
manual deformation of the internal regions of the atlas must still be performed.

In our previous work [6], we have extended that approach by identifying selected
anatomical landmarks in expression images and using them to guide the fitting of inter-
nal regions of the mesh. Our method improved the general fitting of the internal regions,

(a) (b) (c)

Fig. 2. (a) The atlas at subdivision level 2. (b) Feature-extracting templates overlaid on selected
anatomical landmarks. (c) A typical gene expression image manually segmented into anatomical
regions.
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ensuring that specific landmarks were placed in appropriate regions. However, the re-
gion boundaries did not always match those drawn by neuroanatomists. In this paper,
we propose a new hybrid segmentation framework that combines texture variation at
region boundaries with textural features of specific landmarks to deform the subdivi-
sion atlas. In the rest of the paper, we explain the hybrid segmentation framework in
detail in Section 2 and present results from using our algorithms in Section 3. Section 4
summarizes our work.

2 Hybrid Segmentation Framework

Our hybrid model is a triplet {S, B, L} where S represents the shape of the subdivi-
sion mesh, B represents the appearance of the quads on the boundaries of anatomical
regions, and L models the texture features of selected anatomical landmarks. The shape
and boundary quad appearance are obtained for multiple mesh subdivision levels. Our
framework consists of training and deployment stages. Training is performed on sev-
eral mouse brain gene expression images which were previously fitted with a standard
subdivision atlas by neuroanatomists (Fig. 2(c)). Deployment involves fitting the atlas
to new gene expression images in order to segment them into anatomical regions.

2.1 Training

Shape: The shape term, S, defines the geometry and topology of the subdivision atlas
(Fig. 2(a)) that will be fitted to each image. The geometry is a collection of the co-
ordinates of the vertices of the mesh at a given subdivision level while the topology
denotes the relationships between the vertices to form anatomical regions. The geom-
etry is modeled as xk = [x1, x2, ..., xn, y1, y2, ..., yn]T for a mesh at subdivision level
k, where [xi, yi] are the Euclidean coordinates of vertex i. For all N meshes in the

training set, the mean shape is obtained as: x̄k = 1
N

N∑

i=1
xk. A training instance that is

close to the mean was selected as a standard mesh. The shape is obtained for different
subdivision levels of the mesh in a multi-resolution approach.

Boundary quad features: The second element, B, of our hybrid model captures infor-
mation about the features at the anatomical region boundaries. It can be observed that
the cell density pattern in the cerebellum is different from that of its neighbors in most
images. A texture variation can similarly be observed along the boundaries of the cortex,
septum, and thalamus. This slight variation in the texture patterns of anatomical regions
is utilized to model the boundary quads at subdivision level k as Bk = [Bk

1 Bk
2 . . . Bk

s ]
for s selected segments in the mesh boundary. A boundary segment is a collection of
adjacent crease edges and has quads from no more than two anatomical regions attached
to it (Fig. 3). By separating the regional boundaries into segments, optimal features for
each segment can be chosen, since no set of features will be equally optimal for all re-
gion boundaries. For each segment, Bj = {Qj, F j , pj} where Qj is the set of all quads
attached to segment j and distinguished by the side of the segment they belong to, F j

is the set of optimal features, and pj is the set of classifier parameters to distinguish
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(a) (b)

Fig. 3. Boundary quads at subdivision level (a) 2, and (b) 3

between quads on either side of the boundary segment. For purposes of this research,
we have selected the Support Vector Machine (SVM) [7] classifier due to its ability to
obtain a good decision boundary even on sparse data sets. The optimal feature set, F j ,
and classifier parameters, pj , for each segment are obtained as follows:

Step 1: Extract features from quads. Each image was filtered with Laws’ texture filters
[8] to obtain a bank of 25 texture energy maps. The 1st, 2nd, and 3rd moments of the
distribution of intensity values of all pixels in each quad on either side of the boundary
were used as feature for the quad in each filtered image [4].

Step 2: Feature normalization. The feature values vary widely, necessitating normaliza-
tion. A few feature normalization techniques were considered, including linear scaling
to unit range, linear scaling to unit variance, transformation to uniform random vari-
able, and rank normalization [9]. We obtained the best performance with rank normal-
ization in which the feature values f1, f2, . . . , fm are first ordered to obtain their ranks
(1 . . . m), where m is the number of samples in the boundary segment. Each feature
value is then replaced by f̃i = Rank(fi)−1

m−1 .

Step 3: Optimal feature selection. The relevance of each feature f is computed us-
ing the Information Gain (IG) metric [10] after discretization using Fayyad and Irani’s
minimum description length algorithm [11]. The features were then sorted according
to the relevance indices assigned by IG and each feature is included one-at-a-time in
a feature set, F j . The average error, Ec, of classifying with the feature set F j is then
obtained in a 10-fold cross-validation and the smallest set of features, F j , with a stable
and sufficiently low value of Ec is selected.

Step 4: Model parameter computation. For each segment j, a SVM classifier was
trained to distinguish between quads on either side of the boundary segment based on
the optimal features. Best performance was obtained by using the Radial Basis Func-
tion (RBF) kernel [12] with SVM. The optimal values for the kernel parameter and
error penalty parameter are obtained by cross validation and used to compute SVM
model parameters, pj , for each segment as part of the hybrid model.

Anatomical landmark features: In addition to the region boundary quads, a few
anatomical landmarks were modeled with respect to their texture features. Each land-
mark is associated with a vertex and they are used to guide the general position and



258 M. Bello et al.

orientation of the mesh during fitting. Each landmark i is modeled as Li = {vi, F
i, pi},

where vi is the coordinates of the vertex that it is attached to at subdivision level 3,
the highest level used in the model. The set of optimal features, F i, that can be used to
distinguish a landmark from its surrounding area and the set of classifier parameters, pi,
are computed as described above. To extract the features for the landmarks, a rectan-
gular template was overlaid on the landmark in each of the texture maps and summary
statistics for sub-windows in the template were used as features. Similar features were
extracted from a 4-neighborhood (Fig. 2(b)) of the landmark to serve as non-landmark
examples as described in our previous work [6].

2.2 Deployment

Given a new image, the model is fitted to the image by minimizing a quadratic energy
function E(xk) of the form: E(xk) = Ef (xk) + Ed(xk) using a linear solver such as
conjugate gradient. The energy term Ef (xk) measures the fit of the mesh at subdivision
level k to the image and Ed(xk) measures the energy used in deforming the mesh. The
fitting term Ef (xk) is: Ef (xk) = αEU (xk) + βEB(xk) + γEL(xk), where EU (xk)
is the fitting error of the outer boundary of the mesh to the outer boundary of the image,
EB(xk) measures the fitting error of the regional boundaries resulting from the classi-
fication of the boundary quads, and EL(xk) measures the error of fit of the anatomical
landmarks. The formulation of EU (xk) and the deformation energy term Ed(xk) are
the same as in [4]. The method for obtaining the other terms EL(xk) and EB(xk) is
described below.

Step 1 - Shape Initialization: First, a global alignment of the reference shape to the
image is performed. The image was segmented from the background using a flood-
filling approach after a simple intensity threshold. Principal Component Analysis was
applied to obtain the principal axes of the segmented image. The principal axes of the
reference mesh are also obtained and an affine transformation of the mesh is performed
to align the two pairs of axes [4].

Step 2 - Using the Landmarks for Fitting: Second, the fitting error, EL(xk), of the
mesh to the landmarks is computed as

∑
i(li − vi)2, where vi is the vertex of the mesh

associated with landmark i detected at location li. Specifically, for each landmark, fea-
tures are extracted for the pixels around the expected location and classified using the
model parameters obtained at the training stage. For efficiency, classification is per-
formed on every third pixel initially before conducting a pixel-by-pixel search around
the area with the highest SVM decision values. This is possible because the decision
values were found to monotonically increase towards the expected ground truth in all
the images tested [6].

Step 3 - Using Boundary Quads for Fitting: Finally, for each segment j on the boundary
at subdivision level 1, optimal features F j are extracted for the quads Qj in the segment
and the model parameters pj are used to classify each quad. There are four possibilities
when two quads on opposite sides of a crease edge are classified with respect to the
model. When the classification of both quads is in agreement with the model (Fig.
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(a) (b) (c) (d) (e)

Fig. 4. Classifying opposite quads on a boundary crease edge (the background depicts two re-
gions): (a) both are classified in accordance with the model, no displacement at the vertices. (b,c)
Displacement of the boundary edge towards the misclassified quad. (d) Rare case of opposite
quads being simultaneously incorrectly classified with respect to the model: position the quads
on either side and select best match. (e) Various scenarios of quad classification and the resulting
displacement at the vertices.

4(a)), the force exerted by the corresponding vertices is zero. When either of the quads
is classified contrary to the model (Fig. 4(b,c)), the vertices exert a force pulling the
boundary edge in the direction of the misclassified quad. The decision value returned
by SVM gives an estimate of the confidence in the classification. In the event that both
quads are incorrectly classified with respect to the model (this is very rare since the
mesh boundaries are already quite close to the image boundaries after global fitting),
the two quads are temporarily positioned on both sides of the segment and the position
that results in correct classification is retained (Fig. 4(d)). If both positions still result
in misclassified quads, the vertices are left unchanged. The various possibilities are
illustrated in Fig. 4(e).

This process is performed iteratively until a specified ratio of the quads (e.g., 95%)
are correctly classified, in which case the process is repeated at a finer subdivision level,
up to level 3. With increasing subdivision level, the size of the quads decreases. This
reduces the displacement of the vertices, resulting in a smooth fit.

3 Results and Discussion

Our experimental data are 2D images of sagitally sectioned (level 9) postnatal day 7 (P7)
C57BL/6 mouse brains on which in situ hybridization has been performed to reveal the
expression of a single gene. For computational efficiency, the images were scaled down
by 25% from their original size of approximately 2000x3500 pixels. We trained our
framework on 36 images manually fitted with subdivision meshes by neuroanatomists,
and tested on 64 images. The weights for the terms EU (xk), EB(xk), and EL(xk) in
the energy minimization equations were selected experimentally.

To quantify the quality of fit using our hybrid segmentation approach, we com-
pared individual anatomical regions as delineated by our framework with those manu-
ally delineated by neuroanatomists. The number of overlapping pixels in both meshes
was further normalized by the total number of pixels in the manually fitted mesh.
In Fig. 5(a-e), the accuracy of fit of five major anatomical regions is compared for
all 64 images. In regions where the distinction along the boundaries is pronounced
such as the cortex, cerebellum and their adjoining regions, we expect to have higher
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(a) (b) (c)

(d) (e) (f)

Fig. 5. Comparison of the accuracy of the fit in the (a) cortex, (b) medulla, (c) midbrain, (d)
hypothalamus, and (e) pons in 64 expression images. (f) Mean accuracy of the fit in the 64 images
across 14 regions using our hybrid segmentation framework. The error bars indicate the standard
deviation. The letters indicate the following regions: A-cerebellum, B-cortex, C-basal forebrain,
D-hippocampus, E-hypothalamus, F-medulla, G-midbrain, H-olfactory bulb, I-pons, J-septum,
K-striatum, L-thalamus, M,N-ventral striatum.

(a) (b)

Fig. 6. The result of fitting the standard mesh on (a) ChAT, and (b) BMALI gene expression
images

accuracy in delineating the boundaries. Similarly, we expect lower accuracy in re-
gions where this distinction is minimal, such as in the forebrain and the ventral stria-
tum. This is confirmed by our results summarized for all 14 regions in Fig. 5(f). Note
that the two sub regions of the ventral striatum are treated as two separate regions
for purposes of comparison. Examples of fitting using our approach are illustrated
in Fig. 6.
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4 Conclusion

Due to its many advantages, subdivision surface modeling is becoming increasingly
popular for geometric modeling and is also starting to appear in medical applications.
For example, in gene expression images, subdivision surface modeling facilitates the
comparison of expression patterns not only in regions, but also in subregions of the
brain. The challenge is to fit a subdivision-based atlas to expression images accurately
and automatically. Our approach combines the detection of selected anatomical land-
marks with feature differentiation at regional boundaries using trained classifiers. Our
results have been very encouraging.
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