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Abstract: We study one bit broadcast in a one-dimensional network with nodes .No, ... ,.Nn , in 
which each .Ni.-l sends information to .Ni.. We suppose that the broadcasting is synchronous, and 
at each step each atomic transmission .Ni.-l --+ .Ni. could be temporarily incorrect with probability 
equal to a constant 0 < P < 1/2. The probabilities of failure for different steps and different nodes 
are supposed to be independent. 

For each constant c there is a "classical" algorithm with O( n log n) broadcast time and error 
prob ability O(n-C

). 

The paper studies the possibility of a reliable broadcasting in o( n log n) time. We first show 
that one natural generalization of the dassical algorithm, which was believed to behave weil, has 
very bad properties (the prob ability of an error dose to 1/2). 

The second part of the paper presents the ultimate solution of the problem of the broadcast 
time in a one-dimensional nework with faults. Our algorithms have linear broadcast time, good 
(though not optimal) delay time, and they are extremely reliable. For example we can transmit a bit 
through a network of N = 1000000 of nodes with p = 0.1 in 8999774 < 9N steps with prob ability 
of error less than 10-436 • 

Index terms: One-dimensional network, fault-tolerant broadcasting, linear time broadcasting. 

1 Introduction 

In the present paper we study how to broadcast one bit of information through a linearone­
dimensional network with noise. The network has nodes .No, ... , .Nn , and anode .Ni.-l sends 

*This research was partially supported by EC Cooperative Action IC-IOOO (project ALTEC: Algorithms for Future 
Technologies) 
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(repeatedly) information to Ni for i = 1, ... , n. We suppose that any elementary node-to-node 
transmission is incorrect with prob ability p < 0.5, and probabilities of errors are independent for 
different nodes and different steps of the broadcast. We also suppose that p does not depend on 
the length n of the network, and the broadcast is synchronous and oblivious. 

The task is to find a protocol that guarantees that the last node determines with large prob ability 
correctly the bit given originally to .No. 

A very simple algorithm, which we call classical, solves the problem in the following way: choose 
a constant kj anode Ni waits until it gets fk log2 n 1 bits from Ni-l, and then it sends fk log2 n 1 
times the most frequent bit among those received from Ni-l . . 

It follows immediately from known bounds to the tail of the binomial distribution that for any 
constant D there exists a constant k = k(D,p) such that the prob ability that the majority bit is 
correct is 1 - O( n-(D+1»), and therefore the prob ability that the broadcast is globally correct is at 
least 1 - O(n-D ). 

The classical algorithm has broadcast time N fk log2 n 1 > N k log2 n, and we will try to speed 
it up. We first study an algorithm that is its natural generalization: any node starts to broadcast 
immediately after it has received the first bit, and at any moment it sends the bit that is the most 
frequent among those received S0 far (breaking tiesarbitrarily). Even though the latter algorithm, 
that will be called temporary-majority, seems quite similar to the former one, we will show that the 
prob ability that the broadcast is correct is 0.5(1 + 0(1)) if the time is bounded by any polynomial 
function. This means that the algorithm is very bad, as the prob ability 0.5 of the correct result 
would mean that the output does not depend on the input at all. 

The second part of the paper introduces a elass of time optimal algorithms that broadcast a 
bit in linear time with prob ability of success elose to 1 as n grows to infinity. The algorithms has 
also very reliable - the prob ability of error can be made as small as exp( -n(nl-~)) for any constant 
g > 0 while keeping linear time bound. We also give several particular examplesj e.g. if p = 0.1, 
then one bit can be transmitted over N = 1000000 nodes in time 9N with prob ability of error less 
than 10-436 , while the ·elassical algorithm needs e.g. time 19N for N = 100 and P < 0.001 and 
time 63N for N > 1000000 and P < 10-9 . 

2 Temporary majorityalgorithm 

In this paragraph it will be convenient to describe the broadcasting by means of three boolean 
matrices E = (Ei,i), R = (a,i)' and S = (Si,i)' where 1 $ i $ n for E, 0 $i $ n for R, S, and 
1 $ j $ m, where m = LndJ for some constant d> 1. The matrix Eis called an error matrix, and 
it describes occurences of elementary errors: Ei,j = 1 means that the bit received by the node Ni 
in the i + j -l-th step was incorrect (note that Ni receives the first bit in the step i). If i > 0 then 
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R;,; will denote the bit received by the node .Ni in the i + j - 1-th step (Ra,; will be the input bit 
for each j), and Si,; will be the majority bit among R;,}' ... , R;J. We suppose that the matrix E 
is generated by setting each Ei,; to 1 with probability p independent1y for different entries of the 
matrix. Once E together with the input bit Bo are given, the value of R is determined by 

Ra,; = Bo for j = 1, ... , m 

Si,; is the most frequent bit among R;,}' ... , R;J (if both 0 and 1 occurs j /2 times, Si,; is chosen 
arbitrarily), 

R;,; = Si-I,; ES Ei';. 

We will suppose without 10ss of generality that the input bit is equal to o. 
We first show the reason why the immediate-majority algorithm is bad. Suppose that Ei,l = 

Ei ,2 = 1 for some i, and all other entries of E are 0, which means that the broadcast is practically 
error-free. Since R;,l = R;,2 are incorrect, i.e. equal to 1, Si,; = 1 for j = 1,2,3. Since there are 
no other e1ementary errors, R;+I,; = 1 for j = 1,2,3, which implies that SHI,; for j = 1, ... ,5, and 
in general SHlc,; = 1 for j = 1, ... , 2lc+ I + 1, and therefore a small error amplifies from one node 
to another. A part of the matrix E in which a propagation of an error takes p1ace will be called 
switch, and we will say that a switch is activated, if the number of errors that occur within a switch 
(and might break a propagation of the original error) is re1atively small. 

We will often use one technical1emma 

Lemma 2.1 Let e}, ... , elc be independent O,1-valued random variables, 1 ::; R ::; S ::; T ::; k be 
numbers, p, be a positive constant. Define Prob(ei = 1) = 'Tri. There exists C = C(p,) > 0 such 
that, with probability al least 1 - C-(S-R+l), 

if 'TrI, ••• , 'Trlc ::; p, then eR + ... + e; ::; (1 + p,)p(j - R + 1) for each j = S, ... , T, 

if 'TrI, ••• , 'Trlc ::; 1- p, then eR + ... + e; ::; (j - R + 1) - (1- p,)p(j - R + 1) for each j = S, ... , T, 

Proof: It follows from the Chernoff bound, see e.g. [1], that 'Tri ::; pimplies 

2 

Prob(eR + ... + e; ::; (1 + p,)p(j - R + 1)) = exp( -~ p(j - R + 1)) 

for arbitrary R ::; j ::; T, and therefore the prob ability that the inequality is true for all j = S, ... , T 
is at most 

p,2 p,2 p,2 
exp( --p(S - R + 1)) + exp( --p(S - R + 2)) + ... + exp( --p(T - R + 1)) = 

2 2 2 
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,.,,2 . . 
= exp( - TP( S - R + 1)) [1 + q + q2 + ... ] , 

where q = exp( _,.,,2p/2) , the proof of the second part of the lemma is similar .• 
N ow we prove that the first bit received by the node in the middle of the network is quite 

unreliable. Later we will show that the output is likely to be determined by this bit. 

Lemma 2.2 Prob(Rrn/2l,l = Ro.l) = (1 + exp( -O(n)))/2. 

Proof: We will prove by induction that Prob(~.l = 0) = (1 + (1- 2p )-i)/2. The equality is true 
for i = 0,1. If it is true for some i, then 

Prob(~+1.1 = 0) = (1 - p)Prob(~.l = 0) + pProb(~.l = 1) = 
(1 + (1 - 2p)) (1 + (1 - 2p)-i) (1 - (1 - 2p)) (1 - (1 - 2p)-i) 

= 2 2 + 2 2 = 

= 1 + (1- 2p) + (1- 2p)i + (1- 2p)i+l + 1- (1 - 2p) - (1- 2p)i + (1- 2p)i+l = 
4 4 

1 + (1 - 2p)i+l 
- 2 

• Let e be an arbitrary positive constant, and let C, fJ be constants that will be specified in the 
proof of Lemma 2.4. Defi.ne a function </> by 

</>(0) = 1, </>(1) = 2, </>(i + 1) = l1.5</>(i)J for i > 2 and </>(i) :5 n 28
, 

l2(1 - 1] )</>( i)J otherwise, 

denote by w the largest number such that </>( w) < n28 , and by z the smallest number such that 
</>( z) ~ m, define a function 1jJ by 

1jJ(i) = 0 for i < w, 1jJ(w) = ln8 J, 1jJ(i + 1) = r2(1 + 1])1jJ(i)l for i > w, 

where 0< 1] < 0.25 is a constant chosen so that </>(z) ~ 1]-l1jJ(Z). It is easy to see that such a choice 
of 1] is always possible. Since </>( i) ~ l.4i for any non-negative integer i, w < 2fJ log n/ log 1.4. 

Definition 2.3 Given a natural v < n - z, denote by ~'II the set of all couples (i,j) such that 
v :5 i:5 v + z, 1 :5 j :5 m, 1jJ(i - v) :5 j :5 </>(i - v). We call ~'II a switch, v is its base. 

We say that (i,j), 1 <i < n, 1 <j < m is left to the switch ~v if either i < v or </>(i - v) < j, 
and (i, j) is right to ~'II if either v + z < i or v + w < i :5 v + z and j < 1jJ( i-v). 

If Si'; = R".l for all (i,j) E ~v, than we say that a switch ~v is activated. 
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We first prove that the prob ability that. a swich is activated is not too small: 

Lemma 2.4 Given a positive constant e > 0) and anode v :::; n - z) there are constants positive 
constants C) -n such that the probability that the switch ~tI is activated is at least n -e/2 for sufficiently 
large n. 

Proof: Let JL be a positive constant such that 

1 
(1 + JL)p < 2' 

3 
4(1 - 2p(1 -JL)) < 1 - 2p, 

(1 - 2p) < (1 + 77) (1 - 2p( 1 + JL)), 

3(1 - 2p) < 4(1 - 2p(1 + JL)), 

(1-77)(1 - 2p(1 - JL)) < (1 - ~)(1 - 2p). 

A choice of JL is always possible, because the left and right hand sides of the inequalities are 
continuous functions of JL, and the inequalities are fulfilled for JL =0. Let C = C(JL) be a constant 
from Lemma 2.1, 

_Q _ :. In 1.4 
v - l' 

4In 1-C 

The bound to w implies 
(1- Cr" ~ n-2"ln 1': C /ln1.4 ~ n-e/ 2 • 

It is sufficient to prove that for arbitrary assignment (1' of boolean values to all Ei,; such that 
either (i, j) is left to ~tI or (i, j) is right to ~tI and i < v + z, the prob ability that ~tI is activated, 
conditioned on (1', is at least n-e/ 2 for large n. 

Choose a fixed assignment (1', and denote by ~ the event that Si,j = Rv,l for all j such that 
(i,j) E ~tI. It is dear that Prob(Av) = 1, Prob(Av+1) ~ p(1- p). Now we give an upper bound 
to Prob(~ I ~-1 A (1') for each v + 2 :::; i :::; v + z. We will denote R,; + ... + R,k by S;,k. Note 
that Sl,; < j /2 implies Si,; = O. 

Suppose first i :s; v + w, and denote a = 4>(i - v - 1), ß = 4>(i - v). It follows from Lemma 2.1 
that 

which implies Si,l 

Sl,a :::; (1 + JL)pa. 

Prob(Sl,; :::; (1 + JL)pj for each j :::; a) ~ 1 - C, 

. .. - Si,a with prob ability at least 1 - C, moreover we can suppose that 
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Using Lemma 2.1 aga.in, we can prove that, with probability at least 1 - C, saH.; :5 (j - a)­
(1 - J.t)p(j - a) for each a < j < ß. In such a case 

SI'; :5 (1 + J.t)pa + (j - a) - (1- J.t)p(j - a) :5 ~ + (1 + J.t)pa - a + (1- J.t)pa + j(~ - p(l- J.t)) :5 

j . 3 j 
:5 2 - (1 - 2p)a + 4a (1 - 2p(1 - J.t)) < 2' 

and therefore Si.; = O. Thus, we have proved Prob(~ I ~-1 "0') ~ 1- 2C. 
The situation is more complicated for v + w < i :5 v + z. In this case put a = 1jJ(i - v-I) -1, 

ß = 1jJ(i - v), '1 = lj>(i - v-I) -1,8 = lj>(i - v), '" = '1 + a(l- 2p). Lemma 2.1 implies that 

Prob(Sl.a ,:5 a - (1 - J.t)pa) ~ 1 - C-a
, 

Prob(SaH,; :5 (1 + J.t)p(j - a) for each ß < j < '1) > 1- c-(ß-a) ~ 1- C-a , 

Prob(s'Y+1'; :5 (j - '1) - (1 - J.t)p(j - '1) for each j = "', ... , 8)) ~ 1- C-(If.-'Y) = 1- C-(1-2p)a. 

Hall the abore statements are satisfied, then for ß < j < '1 
. . 

SI'; < Sl.a + SaH.; < (a - (1- J.t)pa) + (1 + J.t)p{j - a) < % + a(l- 2p) - %(1- 2p(1 + J.t)) :5 

j ß j j 
< 2 + a(l - 2p) - 2"(1 - 2p(1 + J.t)) < 2 + a(l - 2p) - a(l + 71)(1 - 2p(1 + J.t)) < 2' 

if '1 < j < '" then 

. . 
:5 (a - (1 - J.t)pa) + (1 + J.t)p('1- a) + (j - '1) :5 % + a(l - 2p) - '1(1 - (1 + J.t)p) + % < 

j '1 a j 3a '1 
:5 2 + a(l - 2p) - '1(1 - (1 + JL)p) + 2 + 2"(1 - 2p) :5 2 + 2(1 - 2p) - 2(1 - 2p(1 + JL)) < 

j 3a 4a j 
< 2 + 2(1- 2p) - 2(1- 2p(1 + J.t)) < 2' 

and fina.lly if '" < j < 8 then 
. . 

SI.; < (a-(l-JL)pa)+(l+JL)pb-a)+(j-'1)-(l-JL)p(j-'1) :5 %-b-a )(1-2p)+%(1-2p(1-JL)) :5 

j ( ) ) 8( j 71 j :5 2 - '1- a (1- 2p + 2 1- 2p(1- JL)) < 2 - (1- 2)'1(1- 2p) + (1-71)'1(1- 2p(1- JL)) < 2' 

6 



which implies ~ with probability at least 1 - 3C-(1-2p)a. 

Since probabilities Prob(~I~_l /\ 0') depend on different columns oiE, they are independent, 
and the prob ability that the switch is activated is equal to their product, and therefore it is at least 

% 

(1 - 2C)1O II (1 - 3C-(1-2P)1,b(i») = n((l - 2CYD) = n(n-e / 2). 
i=lO .,. 

It follows immediately that 

Lemma 2.5 The probability that there is an activated switch with the base greater or equal to n/2 
is at least 

1 - exp( _n(n1-e:)). 

Proof: Consider switches with bases Vo = fn/21, Vo + z, Vo + 2z, Vo + 3z, . ... Their number is at 
least (n -1- z)/2z = n(n/Inn). Since they are disjoint, probabilities that they are not activated 
are independent, and therefore the probability that no one is activated is at most 

(1 - n-e/ 2)O(n/lnn) :::; exp( -n -e/2)O(n/lnn) = exp( -ne n1- e/ 2 / In n)) = exp( -ne n1- e)) . 

.,. 
Lemmas 2.2 and 2.5 imply that 

Theorem 2.6 Let d be a constant. Theprobability that the temporary-majority algorithm gives 
correct result when run for at most nd steps is 

1 
"2(1 + exp( _n(n1- e

))) 

for arbitrary constant e > O. 

Proof: Choose first randomly entries Ei" of the matrix E with i 2: n/2. It follows from Lemma 2.5 
that it is very likely that there is an activated switch }JtI, v 2: n/2. If a switch }JtI is activated, 
all values ~,j and Si" "right" to the switchare uniquely determined by R",l' which in turn is 
determined by the value Rrn /21,l. 

Now the theorem follows from Lemma 2.2 . .,. 
The pictures in the end of the paper shows broadcasts in a network with N = 500 nodes and 

randomly generated faults with different probabilities p. Each picture is a visual representation 
of a square boolean matrix of order 500. A black (white, resp.) dot in the i-th column from left 
and j-th row from the bottom means that the j-th bit received by the node .Ni is 1 (0, resp.). It 
can be clearly seen that if first bits received by some node are incorrect, the fault is unlikely to be 
corrected. 
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3 Linear algorithms 

In this paragraph we will also study a delay of a network. We say that a network works with delay 
at most D, if any node Ni receives the last bit from Ni-I before (ti + D)-th step, where ti is the 
step when the node Ni received the first bit. 

Definition 3.1 We write ~(N, T, D, P) if there exists a network with N + 1 nodes, broadcast time 
T, delay D I probability of a single fault 7r ,and the probability that the global result of the broadcast 
is incorrect less than P. 

Lemma 3.2 ~(1, 1, 1, 7r). 

Proof: is obvious .• 
The next two lemmas show how to build larger networks with good properties from smaller ones. 

Lemma 3.3 Suppose ~(N, T, D, P). If i is a natural number, then ~(Ni, Ti, D, R), where R = 
1- (1- p)l. . 

Proof: The network is aserial composition of i copies of the network realizing ~(N, T, D, P). 
Nodes of the composed network are 0,1, ... , Ni, the protocol is defined inductively as folIows: the 
vertex Ni, i = 0, ... ,i-I, receives a bit of information at the beginning of Ti-th step, and transmits 
it to the vertex N(i + 1) using protocol ~(N, T, D, P). The bit is ava.ilable at N(i + 1) in the 
beginning of the step Ti + T = T(i + 1). The prob ability that alllbasic transmissions according 
to the protocol ~(N, T, D, prar~ correct is at least (1 - Pt • 

Lemma 3.4 Suppose ~(N, T, D, R). If k is a natural number, then ~(N, T + D(k -1), Dk, S), 
where 

Proof: Send the input bit k times through the network using the protocol ~(N, T, D, P). These 
broadcasts can follow each other after D steps. Therefore all k copies of the input bit are transmitted 
in time T+ (k - I)D and with delay kD. The global result is the majority bit among k bits received 
by the terminal node (breaking ties arbitrarily). S is clearly the prob ability that the number of 
correct bits received by the terminal node is smaller of equal to k/2 .• 

Combining the two previous lemmas we can obtain 
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Lemma 3.5 Suppose Aw(N, CN, D, R). If k, l are natural numbers, then A'1r(Nl, CN(1 + (k -
1)/l), Dk, S), where 

S = I: (~) E(1 - R)Ic-i. 
i?Ic/2 ~ 

Proof: Follows immediately from the fact that the delay can not be sm aller than the broadcast 
time .• 

N ext two simple technical lemmas give bounds to probabilities that occure in Lemma 3.3 and 
Lemma 3.4. 

Lemma 3.6 

Proof: 

for 16P < 1. • 

Lemma 3.7 

Proof: Denote 

Since 

for i ~ k/2, 

(1 - P) r rhs 1 ~ ~ for 16P < 1. 

I: (k) (~)i (!)Ic-i < ~2-1c/2 for k ~ 44. 
i?Ic/2 i 8 8 - 16 

~ = (~) (~) i (~) Ic-i . 

~+1 k - i ~ ~ 1 1 -=---<---<-
~ i+1i - ~+17 7 

I: ~ ~ 2aflc/21 < 
i?Ic/2 

< _ . 21c - - < - . 21c _ = _ 4. _ = _ _ . _2-1c/2 < _2-1c/ 2 7 (1) flc/21 (7) llc/2J 7 ( 7 )1c/2 7 ( 7 )1c/2 7 (8)-1c/2 1 1 
- 6 8 8 - 6 64 6 64 6 7 16 - 16 

for k ~ 44 .• 
As a corollary we obtain 
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Lemma 3.8 1f Arr(N, T, D, P), P =:; 1/16, l =:; (16P)-l, k > 44, then 

( ( 
k - 1) . 2-1c

/
2 

) 
Arr Nl,Tl 1+-· -l- ,Dk'16 . 

Proof: See previous lemmas with l = Il;p 1· .. . 
There are many possible variations 0 parameters l, k of the preceeding lemma, that give a linear 

time algorithm. One of them is used toprove the next theorem: 

Theorem 3.9 Let 0 < 1t' < 1/2, e > 0 be constants. There ezists a constant C such that 
Arr(N,CN,ClogRlogl+e N,R) for each natural N and R > 2-n1

--. 

Proof: Let ~, > 0 be a constant. Put Q = .y2, define 

>'o(z) = Z, >'j(z) = Q).;_l(:Z:) for i > O. 

Let s be the largest integer such that >'4 ( s) =:; N. Put 

Li = >'4 ( i) for i = 1,2, ... , Ki = >'3 ( i + 1) for i = 1, 2, ... , 

l;. = rLil for i = 1, ... ,s, l. = rN(ll ... l·-l)-ll, 

k;, = max(44, rKi l) for i = 1, ... ,s - 2, 

k.-1 = max<r2log2 Nl, 44), k. = max<r2log2 Rl, 44), 

. No = 1, To = 1, Do = 1, Po = 1t', 

Ni+! = Nil;., Ti+! = Ti4(1 + k;,/ l;.), Di+l = Dik;" Pi+! = Q-lcs /16. 

Note that k;, =:; K i + 1 for 5 <i =:; s - 2, N =:; N •. 
It follows from the preceeding lemmas that Arr(Ni , Ti, Di , Pi) for i - 1, ... , s. H i is sufliciently 

large, then 2i
/ 4 (i + 1) < Qi, 

and therefore 

.-2 ( k;, _ 1) 00 (K') (00 K') g 1 + ~ =:; g exp 4~ < exp t; l;.~ < 00, 
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and finally 

k.-1 < O(log N) = 0(1), 
l.-l - logQ N 

k 0(N1-~) 
...!. < = O(N--8)l l < 0(N-~)Q~(1)+ .. +~3(.-1) < 
l - N(l l · )-1 1 . .. .-1 - -

• 1 . .. .-1 

:::; 0(N--8)Q-8~(·)/2 = 0(N-~)(A4(S))~/2 :::; 0(N-~)~/2 = 0(1), 

which together implies a linear time bound. 
Since 2A2(i -1) < A2(i) for i 2: 6, 

A2(1) + ... + A2(S - 1) :::; 7A2(S - 1) = 7QQ'-1 = 7QQ'Q-l = 7 (QQ') Q-l :::; eQQ', 

for sufficiently large s and therefore 

K1 ... K.-2 = Q~2(2) ... Q~2(.-1) = Q~2(2)+··+~2(.-1) :::; 

< Qe~2(.) = {A3(S)Y = (logQ A4(S)Y = (logQ NY = (2 log 2 NY:::; 2 log 2 N, 

which gives the delay bound. .. . 
The bound O(log1+e N) to the delay time, proved in Theorem 3.9, can be improved, but it is 

not dear wheather there are algorithms combining the optimal (i.e. linear) broadcast time with the 
optimal (i.e. logarithmic) delay time, or what is the best value of the time-delay product. 
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Finally we give some examples of networks obtained using Lemma 3.8 in the case 7r = 0.1 and 
N ;::: 1000000. All of them are obtained by repeating the construction described by Lemma 3.3 and 
Lemma 3.4 four times with parameters ~, '-i, i= 1,2,3,4. We denote the length, time, delay, and 
prob ability of incorrect broadcast by N, T = C N, D, P respectively. 

The following examples show how small can be the error prob ability for T =::; 9000000 and how 
small can be the timefor P < 10-6 . 

N C D P k1 LI ~ L2 k3 L3 k4 L4 

1000000 8.999774 320411 0.52 . 10-436 7 1 7 32 13 50 503 625 
1000512 8.319200 59325 0.32.10-1 5 1 7 12 15 54 113 1544 

The broadcast time of these networks is much better than that of the classical network with 
similar prob ability of the global errOI, see the next table for 7r = 0.1: 

N C D P 
100 19 19 < 10-3 

100 31 31 < 10-6 

100 45 45 < 10-9 

100 57 57 < 10-12 

10000 27 27 < 10-3 

10000 41 41 < 10-6 

10000 53 53 < 10-9 

10000 67 67 < 10-12 

1000000 35 35 < 10-3 

1000000 49 49 < 10-6 

1000000 63 63 < 10-9 

1000000 67 67 < 10-12 

A disadvantage of linear time networks is their larger delay when compared to the classical 
networks. In some cases it would be us'eful to use networks that are a tradeoff between time and 
delay requirements, see next examples with N > 1000000 and error probability less than 10-6 : 

N C D P k1 LI ~ L2 k3 L3 

1000019 9.984499 5733 0.58.10-6 7 1 21 47 39 21277 
1000000 10.938564 1197 0.92.10-6 7 1 19 32 9 31250 
1000035 11.978659 693 0.88.10-6 7 1 33 45 3 22223 
1000012 12.923554 483 0.28.10-6 7 1 23 26 3 38462 
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4 Conclusions 

We have proved that one bit broadcast can be done in linear time in a linear network with constant 
prob ability of (reversible and independent) errors. This compares favorably with O(log N) time 
of previous algorithms. Moreover, oÜI algorithms are very reliable; the prob ability of an incorrect 
broadcast can be almost exponentially small, while keeping the linear time bound. 

A disadvantage of our algorithms is their greater delay compared to an O(log N) delay of the 
classical algorithms. We have proved that it is possible to broadcast in linear time with O(logl+t: N) 
delay for each positive constant e. Though this bound can be improved, it is not clear, whether the 
optimal O( N log N) bound to the product of time and delay can be achieved. 

In many cases we need to send a longer sequence of bits. H the time and delay of the network are 
T, D, resp., then k bits can be sent in time T+(k-l)D, which is equal to O(N +klogl+t: N) for our 
networks, 0 (( N + k) log N) for the classical network. Since it is not di:f6.cult to prove G(log N) lower 
bound for the delay, it follows that the classical algorithm is optimal for k = G(N). However, if 
k = O(Nflogl+t: N), our algorithm is optimal up to a multiplicative constant, because it still needs 
linear time. Therefore for smaller k and sufficiently large N, our algorithm completes a broadcast of 
all k bits before the terminal node of tlie classical network receives the first bit. The assymptotically 
optimal algorithm is not knownonly for slightly sublinear k, e.g. k = N flog N. 

. Our algorithm can be used in practical situations. They are especially suitable fcr extremely 
reliable longer networks that have to transmit a short allert message in the shortest possible time. 
H the error prob ability of any node-to-node transmission is e.g. 10%, we can send a message over a 
network with N = 1,000,000 nodes in time 9N, and prob ability of an error less than 10-436

, while 
the classical network needs 35N steps for reliability only 99.9%. 
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