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Component-by-component construction of low-discrepancy
point sets of small size

Benjamin Doerr, Michael Gnewuch, Peter Kritzer and
Friedrich Pillichshammer

Abstract. We investigate the problem of constructing small point sets with low star discrepancy
in the s-dimensional unit cube. The size of the point set shall always be polynomial in the
dimension s. Our particular focus is on extending the dimension of a given low-discrepancy
point set.

This results in a deterministic algorithm that constructsN -point sets with small discrepancy
in a component-by-component fashion. The algorithm also provides the exact star discrepancy
of the output set. Its run-time considerably improves on the run-times of the currently known
deterministic algorithms that generate low-discrepancy point sets of comparable quality.

We also study infinite sequences of points with infinitely many components such that all
initial subsegments projected down to all finite dimensions have low discrepancy. To this end,
we introduce the inverse of the star discrepancy of such a sequence, and derive upper bounds
for it as well as for the star discrepancy of the projections of finite subsequences with explicitly
given constants. In particular, we establish the existence of sequences whose inverse of the star
discrepancy depends linearly on the dimension.

Keywords. Star discrepancy, multivariate integration, derandomization.
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1. Introduction

In numerical integration, point sets with good distribution properties are of great inter-
est. One way of measuring the quality of distribution of a setPs = {p0,p1, . . . ,pN−1}
of N points in the s-dimensional unit cube [0, 1)s, is to consider its star discrepancy,
defined by

D∗N (Ps) = sup
x∈[0,1]s

|∆s(x,Ps)| .

Here the discrepancy function ∆s of the point set Ps is given, for x = (x1, . . . , xs), by

∆s(x,Ps) = λs([0,x))− 1
N

N−1∑
j=0

1[0,x)(pj),
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where λs is the s-dimensional Lebesgue measure and 1[0,x) is the characteristic func-
tion of the s-dimensional half-open box [0,x) = [0, x1)× · · · × [0, xs).

Another useful quantity in the context of numerical integration is the so-called in-
verse of the star discrepancy,

N∗(ε, s) = min{N : ∃Ps ⊂ [0, 1)s such that |Ps| = N ∧D∗N (Ps) ≤ ε},

where |Ps| denotes the cardinality of the set Ps. For certain classes of functions, point
sets with small star discrepancy yield cubature formulas with a small error of multi-
variate integration. This is for example illustrated by the well-known Koksma–Hlawka
inequality (see [12], but also [15, 17]). If we approximate the integral

∫
[0,1]s f(x) dx

by a quasi-Monte Carlo algorithm 1
N

∑N−1
i=0 f(pi), where p0, . . . ,pN−1 ∈ Ps, then

the Koksma–Hlawka inequality states that∣∣∣∣∣
∫

[0,1]s
f(x) dx− 1

N

N−1∑
i=0

f(pi)

∣∣∣∣∣ ≤ V (f)D∗N (Ps),

where V (f) is the variation of f in the sense of Hardy and Krause (see, e.g., [17]).
This implies that, for any function with bounded variation V (f), a point set with low
star discrepancy yields a low integration error for a quasi-Monte Carlo rule using this
point set as integration nodes.

However, it is a challenging problem to find point sets with good upper bounds
on the star discrepancy. There are many constructions of point sets with low star
discrepancy, for example those proposed by Niederreiter (so called (t,m, s)-nets and
(t, s)-sequences, see [16]). Most of the known bounds on the star discrepancy of a
(t,m, s)-net Ps are of the form

D∗N (Ps) ≤ Cs
(logN)s

N
or D∗N (Ps) ≤ Cs

(logN)s−1

N
,

where Cs is a constant depending on the dimension, see [14, 16, 17]. These bounds
are excellent with respect to the order of magnitude in N . The drawback of such
bounds, however, is that the term (logN)s becomes large when s is very high and that
in general the constants Cs are not small enough to compensate this effect. Therefore,
the size of the node set for numerical integration needs to be extremely large if one
wants to obtain good bounds on the integration error. In fact it has to be at least
exponentially in s, since the function N 7→ log(N)s/N increases for N ≤ es.

Since, during the last years, it has become a major issue to consider numerical
integration in particularly high dimensions (e.g., in financial applications, where s
might be in the hundreds or thousands), it is of growing interest to find bounds on the
star discrepancy displaying a better dependence on the dimension s.

This problem was successfully attacked by Heinrich et al. in [10], who showed the
existence of a point set Ps in [0, 1)s such that

D∗N (Ps) ≤ C
√
s/N, (1.1)
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where C is a positive constant not depending on s and N . However, the proof of this
result is non-constructive, and, furthermore, good bounds for the constant have not
been published yet. In another paper [5] the existence of point sets Ps satisfying

D∗N (Ps) ≤ C ′
√
s/N

√
logN, (1.2)

where C ′ > 0 is a known small constant and independent of s and N , was proved.
This result is obtained by making use of the concept of so-called δ-covers (see below
for a precise definition) and by Hoeffding’s inequality. A slightly better result, namely
D∗N (Ps) ≤ C ′′

√
s/N

√
log(1 +N/s), was proved in a similar manner in [7]. Like

the result of Heinrich et al., the results in [5, 7] are at first based on a probabilistic
argument and therefore seem to be non-constructive. On the other hand, in [5] also
a deterministic construction of point sets satisfying (1.2) by the means of a deran-
domized version of Hoeffding’s inequality was given. However, the run-time of this
algorithm is high, to be more precise, it is exponential in the dimension s.

An algorithm using a different derandomization technique was presented in the re-
cent paper [4]. It also generates an N -point set in dimension s satisfying the bound
(1.2), but its run-time improves considerably over the algorithm from [5]. Neverthe-
less, it is still exponential in s.

The above-mentioned probabilistic bounds were developed further in [1] to allow
infinite sequences of points in infinite dimension. For an infinite sequence P of points
in [0, 1)N, let us denote by Ps the sequence of the s-dimensional projections of the
points from P , and by PN,s the first N points of Ps. Then in [1] the following results
were shown:

There exists an unknown constant C such that for every strictly increasing sequence
(Nm)m∈N in N there is an infinite sequence P satisfying, for all m, s ∈ N,

D∗Nm
(PNm,s) ≤ C

√
s/Nm

√
log(m+ 1).

Furthermore, there exists an explicitly given constant C ′ such that for every strictly
increasing sequence (Nm)m∈N in N there is an infinite sequence P satisfying, for all
m, s ∈ N,

D∗Nm
(PNm,s) ≤ C ′

√(
m+ s+ s log

(
1 +

s
√
Nm

m+ s

))
/Nm.

Thus, the results in [1] are both extensible in the dimension and in the number of
points, which is particularly useful.

Our results

In this paper, we first present another result for infinite sequences P in [0, 1)N. At the
first glance it looks like a modest improvement of [1, Corollary 3], but it establishes

Brought to you by | Max Planck eBooks
Authenticated

Download Date | 7/3/18 12:01 PM



132 B. Doerr, M. Gnewuch, P. Kritzer and F. Pillichshammer

the existence of infinite sequences P in [0, 1)N having the following property: To
guarantee D∗N (PN,s) ≤ ε for a given ε, we only have to take N ≥ cεs, where cε is
a constant depending only on ε. Note that this result cannot be deduced directly from
the results in [1]. It is known from [10, 11] that we have to take at least N ≥ c′εs if ε is
sufficiently small. (Here c′ε depends again only on ε.) In this sense our result shows that
the statement “the inverse of the star discrepancy depends linearly on the dimension”
(which is the title of the paper [10]) extends to the projections of infinite sequences in
[0, 1)N. To be more precise, let us introduce the inverse of the star discrepancy of an
infinite sequence P ,

N∗P(ε, s) := min{N : ∀M ≥ N : D∗M (PM,s) ≤ ε}.
Then there exist sequences P such that

N∗P(ε, s) ≤ O(sε−2 log(1 + ε−1)). (1.3)

In fact, if we endow the set [0, 1)N with the canonical probability measure λN =
⊗∞i=1λ1 and allow the implicit constant in the big-O-notation to depend on the par-
ticular sequence P , then inequality (1.3) holds almost surely for a random sequence
P , see Corollary 2.4. In Theorem 2.3 we provide bounds of the form (1.3) with explic-
itly given constants and estimates for the measure of the sets of sequences satisfying
such bounds.

It would be of great interest to construct infinite sequences whose star discrep-
ancy satisfies bounds as stated above. In this paper we construct, in a component-
by-component algorithm (i.e., one component is constructed at a time), finite se-
quences P in [0, 1)N that satisfy similar bounds. For a given N -point set Ps−1 =
{y0, . . . ,yN−1} ⊂ [0, 1)s−1 we deduce from concentration of measure results that we
can find X0, . . . , XN−1 ∈ [0, 1) such that the extended set

Ps = {(y0, X0), . . . , (yN−1, XN−1)} ⊂ [0, 1)s

satisfies

D∗N (Ps) ≤ O

(√
s

N
log
(

1 +
N

s

))
+D∗N (Ps−1).

We are able to derandomize the probabilistic argument to generate recursively (com-
ponent by component) N -point sets Ps satisfying

D∗N (Ps) ≤ O

(√
s3

N
log
(

1 +
N

s

))
.

This bound is obviously weaker than the bounds in (1.1) and (1.2), but the run-time of
our derandomized algorithm improves considerably on the run-times of the algorithms
in [4, 5] generating point sets satisfying (1.2). In Section 5 we compare the run-times
of the algorithms to each other and relate the problem of constructing low-discrepancy
samples of small size to the problem of approximating the star discrepancy of a given
point set.
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2. Infinite dimensional infinite sequences

At the beginning of this section we introduce two main tools that will also be useful
in the following sections. The first is the concept of so-called δ-covers, as used in
[4, 5, 7]. A δ-cover is defined as follows.

Definition 2.1. A finite set Γ ⊂ [0, 1]s is called a δ-cover of [0, 1]s if for every x =
(x1, . . . , xs) ∈ [0, 1]s there are γ1 = (γ(1)

1 , . . . , γ
(s)
1 ),γ2 = (γ(1)

2 , . . . , γ
(s)
2 ) ∈ Γ∪ {0}

with λs([0,γ2))− λs([0,γ1)) ≤ δ and γ(i)
1 ≤ xi ≤ γ

(i)
2 for all 1 ≤ i ≤ s.

One can use δ-covers to approximate the star discrepancy of a given set up to some
admissible error δ by a quantity whose calculation involves only a finite number of test
boxes.

Lemma 2.2. Let Γ be a δ-cover of [0, 1]s. Then for any N -point set Ps ⊂ [0, 1)s we
have

D∗N (Ps) ≤ DΓ
N (Ps) + δ, where DΓ

N (Ps) = max
x∈Γ
|∆s(x,Ps)| .

The proof is straightforward and can, e.g., be found in [5, Lemma 3.1].
Furthermore, we are going to make use of a large deviation bound from probabil-

ity theory called Hoeffding’s inequality (see [13] or [18, p. 58], [19, p. 191]). Let
A1, . . . , Ar be independent random variables with E(Ai) = 0 and ui ≤ Ai ≤ vi for
all i ∈ {1, . . . , r}. Then Hoeffding’s inequality states that

P [|A1 + · · ·+Ar| ≥ rη] ≤ 2 · e−2r2η2/
∑r

i=1(vi−ui)2
(2.1)

for any η > 0.
In this section we improve certain aspects of the results in [1]. Let ζ denote the

Riemann zeta function, i.e., ζ(γ) =
∑∞

m=1 m
−γ . As mentioned in the introduction,

we denote, for an infinite sequence P of points in [0, 1)N, by Ps the sequence of s-
dimensional projections of the points from P , and by PN,s the first N points of Ps.

Theorem 2.3. Let P = (pN )N∈N be a sequence of independent random variables,
each of them uniformly distributed with respect to the (infinite) product measure λN :=
⊗∞N=1λ1 on [0, 1)N. Let (Nm)m∈N be a strictly increasing sequence in N, and let
A ∈ (1,∞). Let γ > ζ−1(2). Then each of the following two events holds with
probability at least 1− (ζ(γ)− 1)2.

(i) For all m, s ∈ N, with ρ = ρ(Nm, s) := 6e(max{1, Nm/(2 log(6e)s)})1/2,

D∗Nm
(PNm,s) ≤

(
2
Nm

(
s log(ρ) + γ(log(1 +m) + log(1 + s)) + log(2)

))1/2

.

(2.2)
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(ii) For all ε ∈ (0, 1],

N∗P(ε, s) ≤
⌈

2A2ε−2
(
s
(

log(1 + 2Aε−1) + log(2e)
)
+

+γ
(

log
(

2 +
log(ε−1)
log(A)

)
+ log(1 + s)

)
+ log(1 + 2A2ε−2) + log(2)

)⌉
.

(2.3)

Proof. Let θ ∈ [0, 1). Due to Lemma 2.2 we have P [D∗N (PN,s) ≤ 2δ] > θ if the
inequality P

[
DΓ
N (PN,s) ≤ δ

]
> θ holds for some δ-cover Γ of [0, 1]s. For each s ∈

N let p(s)
N denote the projection of pN onto its first s components. If we define for

x ∈ [0, 1]s and i ∈ N the random variable ξx(p(s)
i ) = λs([0,x)) − 1[0,x)(p

(s)
i ), then

the range of ξx(p(s)
i ) is contained in an interval of length one and the expectation

E[ξx(p(s)
i )] is zero. Thus Hoeffding’s inequality implies

P[|∆s(x,PN,s)| > δ] = P

[∣∣∣∣∣ 1
N

N∑
i=1

ξx(p(s)
i )

∣∣∣∣∣ > δ

]
≤ 2e−2δ2N .

This results in

P
[
DΓ
N (PN,s) ≤ δ

]
≥ 1−

∑
x∈Γ

P

[∣∣∣∣∣ 1
N

N∑
i=1

ξx(p(s)
i )

∣∣∣∣∣ > δ

]
> 1− 2|Γ|e−2δ2N .

(In the latter estimate we get “>”, since we have necessarily 1 := (1, . . . , 1) ∈ Γ

and |∆s(1, P )| = 0 for all finite sets P ⊂ [0, 1)s.) Hence P [D∗N (PN,s) ≤ 2δ] > θ is
satisfied if

2δ2N ≥ log |Γ|+ log
(

2
1− θ

)
(2.4)

holds. In [7, Theorem 1.15] a δ-cover Γ was constructed satisfying

|Γ| ≤ 2s
ss

s!
(δ−1 + 1)s ≤ (2e)s(δ−1 + 1)s. (2.5)

If we choose this δ-cover and restrict ourselves to δ ∈ (0, 1/2], then it is easily verified
that

δ :=
1√
2N

(
s log(ρ) + log

(
2

1− θ

))1/2

(2.6)

satisfies (2.4). Thus

D∗N (PN,s) ≤
(

2
N

(
s log(ρ) + log

(
2

1− θ

)))1/2

with probability at least θ.
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Now let (Nm)m∈N be a strictly increasing sequence in N and define, for γ > 1,

θ = θ(m, s, γ) = 1−
(
(1 +m)(1 + s)

)−γ
. (2.7)

The probability that there exists a pair (m, s) ∈ N2 such that

D∗Nm
(PNm,s) >

(
2
Nm

(
s log(ρ) + log

(
2

1− θ(m, s, γ)

)))1/2

is bounded from above by

∞∑
m,s=1

(1− θ(m, s, γ)) =

( ∞∑
m=1

(1 +m)−γ
)( ∞∑

s=1

(1 + s)−γ
)

= (ζ(γ)− 1)2.

Since the Riemann zeta function is strictly decreasing, the latter expression is strictly
less than one if γ is strictly larger than ζ−1(2). This proves (2.2).

One might be tempted to use inequality (2.2) directly with the sequence (Nm)m∈N
= (N)N∈N to derive a bound like (2.3) for N∗P(ε, s). But this is not easily done, since
it is hard to solve the resulting inequality with respect to N . For that reason we again
use (2.4) to derive statement (ii) of the theorem.

Let us put ε := 2δ. We know that each N with

N ≥ 2ε−2
(
s
(
log
(
1 + 2ε−1)+ log(2e)

)
+ log

(
2

1− θ

))
implies P [D∗N (PN,s) ≤ ε] > θ, see (2.4) and (2.5). Now put εm := A−m and

θ′ = θ′(m, s, γ) = 1− ((1 +m)(1 + s))−γ

1 + 2ε−2
m

.

For fixed m and s put

Nm,s :=
⌈

2ε−2
m

(
s
(
log(1 + 2ε−1

m ) + log(2e)
)

+ log
(

2
1− θ′(m, s, γ)

))⌉
.

For all N ≥ Nm,s choose ϑ(N) such that

N = 2ε−2
m

(
s
(
log(1 + 2ε−1

m ) + log(2e)
)

+ log
(

2
1− ϑ(N)

))
,

that is,

ϑ(N) = 1− 2 exp
(
−1

2
ε2
mN

)(
(2e)(1 + 2ε−1

m )
)s ≥ θ′(m, s, γ).
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Hence the probability that there exists an N ≥ Nm,s such that D∗N (PN,s) > εm is
bounded from above by

∞∑
N=Nm,s

(1− ϑ(N)) = 2
(
(2e)(1 + 2ε−1

m )
)s ∞∑

N=Nm,s

exp
(
−1

2
ε2
mN

)

≤ 2
(
(2e)(1 + 2ε−1

m )
)s(exp

(
−1

2
ε2
mNm,s

)
+
∫ ∞
Nm,s

exp
(
−1

2
ε2
mx

)
dx

)

= 2
(
(2e)(1 + 2ε−1

m )
)s(1 + 2ε−2

m ) exp
(
−1

2
ε2
mNm,s

)
≤ (1 + 2ε−2

m )(1− θ′(m, s, γ)) = ((1 +m)(1 + s))−γ .

Thus the probability that there exists a pair (m, s) ∈ N2 such that N∗P(εm, s) > Nm,s

is again bounded by (ζ(γ) − 1)2. If γ > ζ−1(2), there exists an infinite sequence
P such that N∗P(εm, s) is majorized by Nm,s for all m, s. Furthermore, we see that
for ε ∈ [A−m, A1−m) the simple estimate N∗P(ε, s) ≤ N∗P(εm, s) implies (2.3). This
completes the proof of Theorem 2.3. 2

Theorem 2.3 immediately implies the following corollary.

Corollary 2.4. For an infinite sequence P in [0, 1)N the following holds with probabil-
ity one: There exist constants CP , C ′P such that

D∗N (PN,s) ≤ CP
(
s

N
log
(

1 +
N

s

))1/2

and N∗P(ε, s) ≤ C ′Psε−2 log
(
1 + ε−1)

for all N, s ∈ N and all ε ∈ (0, 1].

3. Extensions in the dimension

Now we will try to relate the star discrepancies of an arbitrary (s − 1)-dimensional
point set and a suitably chosen s-dimensional extension of it. To be more precise, let
Ps−1 = {y0, . . . ,yN−1} ⊂ [0, 1)s−1 be a point set with star discrepancy D∗N (Ps−1).
Let m ≥ 2 be an integer, and let

G = G(m) :=
{

1
2m

,
3

2m
, . . . ,

2m− 1
2m

}
.

For a0, . . . , aN−1 ∈ G we consider the point set given by

Ps = Ps(a0, . . . , aN−1) = {(yi, ai) : 0 ≤ i < N} . (3.1)

The following theorem shows that there is always a choice of a0, . . . , aN−1 ∈ G(m)
such that we can bound the star discrepancy of Ps as constructed in (3.1) in terms of
m, N , and the star discrepancy of Ps−1.
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CBC construction of low-discrepancy sets 137

Theorem 3.1. Let m ≥ 2 be an integer and let 0 ≤ θ < 1 be a real. Assume that
a0, . . . , aN−1 are chosen independently and uniformly distributed from the set G(m).
Then with probability greater than θ we have for all N ∈ N

D∗N (Ps) ≤
√

2√
N

(
s log(ρ(N, s)) + log

(
2

1− θ

))1/2

+
1

2m
+D∗N (Ps−1),

where ρ = ρ(N, s) := 6e(max{1, N/(2 log(6e)s)})1/2.

Proof. For x = (x1, . . . , xs) ∈ [0, 1)s, y = (y1, . . . , ys−1) ∈ Ps−1 and a ∈ G let

ξx (y, a) = λs([0,x))− 1[0,x) (y, a) .

Assume that A is chosen according to a uniform distribution from the set G. Then we
have

E [ξx ((y, A))] =
s∏
d=1

xd −
s−1∏
d=1

1[0,xd)(yd)E
[
1[0,xs) (A)

]
.

As

E
[
1[0,xs) (A)

]
=

1
m

∑
a∈G

1[0,xs) (a) =
dmxs − 1/2e

m
=

{
≤ xs + 1/(2m),
≥ xs − 1/(2m),

it follows that

xs

(
s−1∏
d=1

xd −
s−1∏
d=1

1[0,xd)(yd)

)
− 1

2m
≤ E [ξx (y, A)]

≤ xs

(
s−1∏
d=1

xd −
s−1∏
d=1

1[0,xd)(yd)

)
+

1
2m

.

If A0, . . . , AN−1 are chosen independently and if Ps = Ps(A0, . . . , AN−1), then we
obtain

xs∆s−1((x1, . . . , xs−1),Ps−1)−
1

2m
≤ E [∆s(x,Ps)]

≤ xs∆s−1((x1, . . . , xs−1),Ps−1) +
1

2m
,

where the expectation is taken with respect to A0, . . . , AN−1. Therefore we get

|E [∆s(x,Ps)]| ≤
1

2m
+ |xs∆s−1((x1, . . . , xs−1),Ps−1)| ≤

1
2m

+D∗N (Ps−1). (3.2)

Let now 0 < δ ≤ 1/2. Assume that

|∆s(x,Ps)| ≥ D∗N (Ps−1) +
1

2m
+ δ.
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This implies |∆s(x,Ps)− E [∆s(x,Ps)]| ≥ δ or equivalently∣∣∣∣∣
N−1∑
i=0

(ξx (yi, Ai)− E [ξx (yi, Ai)])

∣∣∣∣∣ ≥ δN.
We can apply Hoeffding’s inequality to obtain

P
[
|∆s(x,Ps)| ≥ D∗N (Ps−1) +

1
2m

+ δ

]

≤ P

[∣∣∣∣∣
N−1∑
i=0

(ξx(yi, Ai)− E[ξx(yi, Ai)])

∣∣∣∣∣ ≥ δN
]
≤ 2e−2δ2N .

Similar to the proof of Theorem 2.3 we get, for a δ-cover Γ of [0, 1]s,

P
[
D∗N (Ps) ≤ 2δ +

1
2m

+D∗N (Ps−1)
]
≥ P

[
DΓ
N (Ps) ≤ δ +

1
2m

+D∗N (Ps−1)
]

> 1− 2|Γ|e−2δ2N .

The latter term is greater than or equal to θ if

2δ2N ≥ log |Γ|+ log
(

2
1− θ

)
. (3.3)

From [7, Theorem 1.15] we get |Γ| ≤ (2e)s(δ−1 + 1)s, hence any solution of

δ2 ≥ 1
2N

(
s log

(
3eδ−1)+ log

(
2

1− θ

))
(3.4)

satisfies (3.3). Put now

δ = δ(N, s) :=
1√
2N

(
s log (ρ) + log

(
2

1− θ

))1/2

. (3.5)

It is easy to check that this δ satisfies (3.4). 2

The result in Theorem 3.1 gives us the opportunity to construct point sets with
low star discrepancy in a component-by-component fashion. The following corollary
shows an upper bound on the discrepancy of such a point set. Note that this bound
displays a worse dependence on the dimension s. The advantage of the construction is
that the points lie on a relatively small mesh (with not necessarily the same resolution
in each dimension). This allows a cheaper computation of the precise discrepancy
(see Equation (4.1) in Section 4) and also a more efficient derandomization (see the
remainder of Section 4).
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CBC construction of low-discrepancy sets 139

Corollary 3.2. For any N ≥ 1 and any sequence (md)d≥1 of positive integers there
exists a point set P = {x0, . . . ,xN−1} ⊂ [0, 1)N with

xi =
(

2i+ 1
2N

,
2ai,1 + 1

2m1
,

2ai,2 + 1
2m2

, . . .

)
where ai,d ∈ {0, . . . ,md − 1} for all d ≥ 1 and 0 ≤ i < N such that for all s ≥ 1
for the point set Ps, consisting of the projections of the points from P to the first s
components, we have

D∗N (Ps) ≤
√

2√
N

(s− 1) (s log (ρ(N, s)) + log(2))1/2 +
1
2

s−1∑
d=1

1
md

+
1

2N
, (3.6)

where ρ(N, s) is as in Theorem 3.1.

Proof. It is easy to check that D∗N (P1) = 1/(2N) (see [17, Theorem 2.6]). Due to
Theorem 3.1, we can recursively choose sets {x0,d, . . . , xN−1,d} such that

D∗N (Pd) ≤
√

2√
N

d∑
j=2

(j log(ρ(N, j)) + log(2))1/2 +
1
2

d−1∑
j=1

1
mj

+
1

2N

holds for all d = 2, . . . , s. Simple calculus shows that s log(ρ(N, s)) ≥ d log(ρ(N, d))
for d ≤ s. 2

4. A construction algorithm

One may use Theorem 3.1 and Corollary 3.2 to construct low-discrepancy point sets
via a derandomized algorithm similar to what has been done in [5]. Here, we would
like to use a slightly different algorithm, since the sets we want to construct are con-
tained in a grid whose cardinality is of the same order as the smallest δ-cover con-
structed in [7]; instead of only approximating the discrepancy of such a set up to some
admissible error δ with the help of a δ-cover, we can calculate its discrepancy exactly
with at most the same effort. We make use of the following simple observation:

Let Ps = {p0,p1, . . . ,pN−1} ⊂ [0, 1)s with pi = (pi,1, . . . , pi,s). Define for
d = 1, . . . , s

Γd(Ps) := {p0,d, . . . , pN−1,d} and Γd(Ps) := Γd(Ps) ∪ {1}.

Furthermore, set

Γ(Ps) := Γ1(Ps)× · · · × Γs(Ps) and Γ(Ps) := Γ1(Ps)× · · · × Γs(Ps).
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It is easy to see that

D∗N (Ps) = max

{
max

x∈Γ(Ps)

(
1
N

N−1∑
i=0

1[0,x](pi)− λs([0,x))

)
,

max
x∈Γ(Ps)

(
λs([0,x))− 1

N

N−1∑
i=0

1[0,x)(pi)

)}
.

(4.1)

Observe that for general (more precisely: almost all) N -point sets Ps the evaluation of
the right hand side of (4.1) involves Θ((N+1)s) test boxes, while the approximation of
their discrepancy up to δ chosen as in (3.5) via a δ-cover as constructed in [7, Theorem
1.15] requires at most

O

(
(2e)s

(√
2N
s

(
log
(

1 +
N

s

))−1/2

+ 1

)s)
(4.2)

test boxes. (In [8] a smaller δ-cover has been constructed in dimension s = 2. There it
is conjectured that the methods can be extended to arbitrary s and would give δ-covers
of size 2δ−s + Os(δ−s+1), which would be considerably smaller than the δ-covers
constructed in [7].) However, in the derandomized construction we have in mind we
will confine ourselves to sets Ps having the property that the cardinality of Γ(Ps) and
Γ(Ps) is at most of the order of (4.2). To describe our approach in detail, we have to
introduce further notation. Let m1,m2, . . . ,ms ∈ N, and, for d = 1, . . . , s, let

Gd := G(md) =
{

1
2md

,
3

2md
, . . . ,

2md − 1
2md

}
and G̃d := (Gd∪{1})\

{
1

2md

}
.

Furthermore, put

Gs := G1 × · · · ×Gs and G̃s := G̃1 × · · · × G̃s.

Let Ps−1 = {y0,y1, . . . ,yN−1} be a subset of Gs−1. For X0, . . . , XN−1 ∈ Gs we
consider the point set

Ps = Ps(X0, . . . , XN−1) = {(yi, Xi) : 0 ≤ i < N}. (4.3)

To avoid having to distinguish between open and closed test boxes and to reduce the
number of events we have to control in our random experiment, we reformulate (4.1).
It is easy to verify

D∗N (Ps) = max

{
max
x∈Gs

(
1
N

N−1∑
i=0

1[0,x]((yi, Xi))− λs([0,x))

)
,

max
x∈G̃s

(
λs([0,x))− 1

N

N−1∑
i=0

1[0,x)((yi, Xi))

)
,

1
2ms

, D∗N (Ps−1)

}
.

(4.4)
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For d = 1, . . . , s, put

G∗d :=
{

1
md

,
2
md

, . . . ,
md − 1
md

, 1
}
.

Additionally, put
G∗s := G∗1 × · · · ×G∗s.

For x ∈ Gs we then find a uniquely determined t ∈ G∗s such that

|[0,x] ∩ S| = |[0, t) ∩ S| for all S ⊆ Gs;

put Φ([0,x]) := t. For x̃ ∈ G̃s we find furthermore a uniquely determined t̃ ∈ G∗s
such that

|[0, x̃) ∩ S| = |[0, t̃) ∩ S| for all S ⊆ Gs;

put Φ([0, x̃)) := t̃. This gives us a mapping Φ from the set

B := {[0,x] : x ∈ Gs} ∪ {[0, x̃) : x̃ ∈ G̃s}

onto G∗s . Now let n := |G∗s | =
∏s
d=1 md, and let t1, . . . , tn be an enumeration of G∗s .

For i = 1, . . . , n, y ∈ Ps−1, and a randomly chosen X ∈ Gs let

ξi(y, X) = 1[0,ti)(y, X)− λs([0, ti)).

Then

Ξi(y, X) := ξi(y, X)− E[ξi(y, X)] = 1[0,ti)(y, X)− ti,s 1[0,t′i)
(y), (4.5)

where we used the convention to denote the projection of an s-dimensional vector t
onto its first s− 1 components by t′. We use the corresponding convention for subsets
of [0, 1]s. Let B ∈ B and ti = Φ(B). Denote by B(s) the projection of B to the s-th
component. Then

1
N

N−1∑
j=0

1B((yj , Xj))− λs(B) =
1
N

N−1∑
j=0

1[0,ti)((yj , Xj))− λ1(B(s))λs−1(B′)

=
1
N

N−1∑
j=0

Ξi(yj , Xj) + ti,s

 1
N

N−1∑
j=0

1[0,t′i)
(yj)− λs−1(B′)

+

+ λs−1(B′)(ti,s − λ1(B(s))).

Due to 1[0,t′i)
(yj) = 1B′(yj) for 0 ≤ j < N and |ti,s − λ1(B(s))| ≤ 1/(2ms) we

obtain from (4.4)

D∗N (Ps) ≤
1
N

max
1≤i≤n

∣∣∣∣∣∣
N−1∑
j=0

Ξi(yj , Xj)

∣∣∣∣∣∣+D∗N (Ps−1) +
1

2ms
. (4.6)
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From Hoeffding’s inequality we get

P

 max
1≤i≤n

∣∣∣∣∣∣
N−1∑
j=0

Ξi(yj , Xj)

∣∣∣∣∣∣ ≥ δN
 ≤ 2ne−2δ2N . (4.7)

This results in

P
[
D∗N (Ps) ≤ δ +D∗N (Ps−1) +

1
2ms

]
≥ 1− 2ne−2δ2N .

Now the latter term is greater than or equal to θ if

2δ2N ≥ log(n) + log
(

2
1− θ

)
. (4.8)

The choice

δ :=
1√
2N

(
s∑
d=1

log(md) + log
(

2
1− θ

))1/2

(4.9)

gives us the following theorem.

Theorem 4.1. Let θ ∈ [0, 1). Assume that X0, . . . , XN−1 are chosen independently
and uniformly distributed from Gs. Then with probability ≥ θ we have

D∗N (Ps) ≤
1√
2N

(
s∑
d=1

log(md) + log
(

2
1− θ

))1/2

+
1

2ms
+D∗N (Ps−1).

Let us now choose

md = md(N, θ) =

⌈√
N√
2

(
d log

(
ρ′(N, d)

)
+ log

(
2

1− θ

))−1/2
⌉

(4.10)

for d = 1, . . . , s, where

ρ′(N, d) = 2
√

e (max{1, N/(2 log(2
√

e)d)})1/2. (4.11)

An elementary analysis shows m1 ≥ m2 ≥ · · · ≥ ms. Now we can estimate n in
terms of N, s and θ:

n =
s∏
d=1

md ≤
s∏
d=1

(√
N√
2d

(
log
(
ρ′(N, d)

)
+

1
d

log
(

2
1− θ

))−1/2

+ 1

)

=
(
ss

s!

)1/2 s∏
d=1

(√
N√
2s

(
log
(
ρ′(N, d)

)
+

1
d

log
(

2
1− θ

))−1/2

+

√
d√
s

)

< (2πs)−1/4 es/2

(√
N√
2s

(
log
(
ρ′(N, s)

)
+

1
s

log
(

2
1− θ

))−1/2

+ 1

)s
.
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Then the particular choice

δ :=
1√
2N

(
s log(ρ′(N, s)) + log

(
2

1− θ

))1/2

(4.12)

and (4.8) imply the following version of Theorem 4.1.

Theorem 4.2. Let the conditions of Theorem 4.1 hold. Then, with the choice of
m1, . . . ,ms and ρ′(N, s) as in (4.10) and (4.11), we obtain with probability > θ

D∗N (Ps) ≤
√

2s√
N

(
log
(
ρ′(N, s)

)
+

1
s

log
(

2
1− θ

))1/2

+D∗N (Ps−1). (4.13)

One can prove the following corollary in a similar manner to Corollary 3.2.

Corollary 4.3. For any N ≥ 1 and the sequence (md)d≥1 of positive integers defined
as above, there exists a point set P = {p0, . . . ,pN−1} ⊂ [0, 1)N with

pi =
(

2ai,1 + 1
2m1

,
2ai,2 + 1

2m2
, . . .

)
,

where ai,d ∈ {0, . . . ,md − 1} for all d ≥ 1 and 0 ≤ i < N such that for all s ≥ 1
for the point set Ps, consisting of the projections of the points from P to the first s
components, we have

D∗N (Ps) ≤
√

2 s3/2
√
N

(
log
(
ρ′(N, s)

)
+

1
s

log(2)
)1/2

. (4.14)

We now derandomize the above construction, that is, we transform it into a deter-
ministic algorithm that computes point sets having a discrepancy similar to the one
which the randomized algorithm has with positive probability. In order to be able to
use existing derandomizations, we reformulate our problem of “adding one dimen-
sion” as a rounding problem with hard constraints.

We briefly recall our problem: Let Ps−1 = {y0, . . . ,yN−1} ⊆ Gs−1 with small
star discrepancy D∗N (Ps−1). We aim at finding X0, . . . , XN−1 ∈ Gs such that Ps =
{(yj , Xj) : 0 ≤ j < N} has small discrepancy. For convenience, let us write
m = ms.

Our problem becomes a rounding problem as follows. Let X be the set of all fam-
ilies (xjk)j=0,...,N−1;k=1,...,m such that xjk ∈ [0, 1] for all j and k and

∑m
k=1 xjk = 1

for all j. Let t1, . . . , tn be the enumeration of G∗s chosen above. Define a linear func-
tion A : RNm → Rn by

A(x)i =
N−1∑
j=0

m∑
k=1

xjk1[0,ti)(yj , k̂) for x = (x01, . . . , x(N−1)m) and i = 1, . . . , n,

where we used the shorthand k̂ = 2k−1
2m .
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If x ∈ X is integral put Xj = k̂j for j = 0, 1, . . . , N − 1, where kj is the index for
which xjkj

= 1. Then P(x) := {(yj , Xj) : 0 ≤ j < N} is an N–point set in [0, 1]s

and A(x)i is |P(x) ∩ [0, ti)|. If in addition x ∈ X is defined by xjk = 1
m for all j, k,

then we have the following. Let B ∈ B and ti = Φ(B). Then

A(x)i =
N−1∑
j=0

m∑
k=1

1
m

1[0,ti)((yj , k̂)) =
N−1∑
j=0

1[0,t′i)
(yj)

(
m∑
k=1

1
m

1[0,ti,s)(k̂)

)

= ti,s

N−1∑
j=0

1[0,t′i)
(yj) = ti,s

N−1∑
j=0

1B′(yj).

Due to (4.5) we have

A(x)i −A(x)i =
N−1∑
j=0

Ξi(yj , Xj), (4.15)

thus (4.6) implies D∗N (P(x)) ≤ 1
N ‖A(x)−A(x)‖∞+D∗N (Ps−1)+ 1

2m . Hence low-
discrepancy point-sets P(x) correspond to roundings x ∈ X of x with small rounding
error ‖A(x)−A(x)‖∞.

Generating and derandomizing randomized roundings satisfying certain equalities
(“hard constraints”; here

∑m
k=1 xjk = 1 for all j) without violation is highly non-trivial

as recent results show, see e.g. [2, 3, 6]. Fortunately, in the case that the hard constraints
require variable-disjoint sums to equal one, the classical method of Raghavan can be
used. We briefly outline this method.

Let us assume that we have an arbitrary x ∈ X , which we want to round to an
integral x ∈ X such that |(A(x−x))i| is small for all i. The randomized construction
would be to choose for each j independently a kj ∈ [m] at random such that P[kj =
k] = xjk for all j, k. Then for all j we define random variablesXjkj

= 1 andXjk = 0,
k 6= kj . Note that by construction any outcome of X lies in X . Let λ ∈ R such that
P :=

∑
i P[|(A(X − x))i| ≥ λ] < 1 (“small initial failure probability”). Then there

exists an x ∈ X such that |(A(x− x))i| ≤ λ for all i.
We can actually compute such roundings x by derandomizing the probabilistic con-

struction above. Let us confine ourselves to the special case xjk = 1/m for all j, k.
Due to (4.15) and (4.7) the initial failure probability is at most P ≤ 2n exp(−2λ2/N),
which is smaller than one if λ = δN , δ chosen as in (4.12).

For k = 1, . . . ,m, let ek denote the kth m–dimensional unit vector and consider
the conditional probability Pk :=

∑
i P[|(A(X − x))i| ≥ λ|(X01, . . . , X0m) = ek].

Since P =
∑m

k=1
1
mPk, there is a 1 ≤ k∗0 ≤ m such that Pk∗0 ≤ P < 1 (“decreasing

failure probability”). Next, let Pk∗0 k :=
∑

i P[|(A(X − x))i| ≥ λ|(X01, . . . , X0m) =
ek∗0 , (X11, . . . , X1m) = ek]. Again, Pk∗0 =

∑m
k=1

1
mPk∗0 k, and there is a 1 ≤ k∗1 ≤ m

such that Pk∗0 k∗1 ≤ Pk∗0 < 1. Proceeding like this we end up with k∗0 , . . . , k
∗
N−1 such
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that Pk∗0 ,...,k∗N−1
:= P[|(A(X − x))i| ≥ λ|∀ 0 ≤ j < N : (Xj1, . . . , Xjm) = ek∗j ] < 1.

Since Pk∗0 ,...,k∗N−1
involves no randomness (all variables are bound in the conditional

statement), we actually have Pk∗0 ,...,k∗N−1
= 0. We define x as follows: For each

1 ≤ j < N , we set xjk∗j := 1 and xjk := 0 for all other k. This yields an integral
vector x ∈ X such that |(A(x− x))i| ≤ λ for all i.

The only problem with the above derandomization is that we usually cannot com-
pute the conditional probabilities Pk∗0 k∗1 ... in time polynomially bounded in N , m and
n. However, it would suffice if we can compute (in polynomial time) upper bounds
Uk∗0 k

∗
1 ...

for the exact conditional probabilities Pk∗0 k∗1 ... such that the following key prop-
erties are maintained:

• Small initial (estimated) failure probability: U < 1.
• Decreasing (estimated) failure probability: For all 0 ≤ ` < N and k∗0 , . . . , k

∗
`−1

∈ {1, . . . ,m} there is a 1 ≤ k ≤ m such that Uk∗0 k∗1 ...k∗`−1k
≤ Uk∗0 k∗1 ...k∗`−1

.

The quantities Uk∗0 k∗1 ... are called pessimistic estimators for the conditional prob-
abilities Pk∗0 k∗1 .... This notion was introduced by Raghavan [20], who also showed
that such pessimistic estimators exist for the conditional probabilities that occur in our
derandomization. They are the sum of 2n expressions, two for each 1 ≤ i ≤ n, esti-
mating the probability that the box [0, ti) receives too many or too few points. Both
cases lead to similar expressions. Hence we sketch only the one for the case of too
many points. Note that we do not want give a precise description of how to implement
the derandomization, but only prove bounds on the amortized time needed to compute
the estimators.

The probability that the box [0, ti) receives too many points is at most

exp(−ci)
N−1∏
j=0

( m∑
k=1

x̃jk exp(1[0,ti)(yj , k̂)c
′
i)
)
,

where ci and c′i are suitable constants. Here, x̃jk shall always denote the expected
value of the random variable Xjk, if it has not been rounded, and the outcome of the
rounding thereafter. This is the reason why we can compute the pessimistic estimator
efficiently using the previous computation: When determining the rounded value for
some (xj·), we only need to replace the terms involving these variables with the m
possible choices for (xj·). Hence this can be done quite efficiently in time O(nm).
Thus both computing the initial value of the estimator and computing all subsequent
values take time O(nNm).

Note that for the final rounding x, the pessimistic estimator implicitly tells us the
number of points in the box [0, ti): The expression (

∑m
k=1 x̃jk exp(1[0,ti)(yj , k̂)c

′
i) is

exp(c′i), if the jth point is in [0, ti), and one, if not. Hence we can extract the number
of points in each box easily from the computations so far, and thus also compute the
precise discrepancy easily (by computing for each box the deviation of the actual and
the aimed at number of points).
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The constants ci and c′i depend only on the aimed at rounding error λ (in particular,
they do not change during the algorithm). Also, the ci, c′i are such that the resulting
exponential functions can be computed in the RAM model. As a consequence – since
we chose all components of x to be rational numbers – we can compute the initial
value of the pessimistic estimator in time O(nNm) in the RAM model.

Unfortunately, Raghavan’s pessimistic estimators do not admit the Hoeffding bound
given in (2.1), but rather one that, in the setting of (2.1) and ui = 0, vi = 1, implies
that

P [|A1 + · · ·+Ar| ≥ rη] ≤ 2 · e−(1/3)rη2. (4.16)

In consequence, to achieve that the initial estimated failure probability U is less than
one, we have to choose the δ in Equations (4.7) to (4.9) to be

√
6 times larger than

there. Choosing m1 ≥ · · · ≥ ms = m as in (4.10) and θ = 1/2 in the choice of δ (any
small positive constant is fine), this leads to a discrepancy bound analoguous to (4.13)
of

D∗N (Ps) ≤
(√

3 +
1√
2

) √
s√
N

(
log
(
ρ′(N, s)

)
+

1
s

log(4)
)1/2

+D∗N (Ps−1).

(4.17)
Note that this estimate is certainly trivial for s ≥ N/3 (also, in this case we have

m = ms = 1, i.e., our “random experiment” is completely deterministic and X0 =
· · · = XN−1 = 1/2). Hence in the following run-time estimate, we may assume
s ≤ N/3. Then, the run-time of our derandomized algorithm is

O(nNm) = O

 csN
s+3

2

s
s
2 + 3

4 log
(
N
s

) s+1
2

 ,

where c is some constant independent of N and s.
We summarize the discussion above in following theorem.

Theorem 4.4. Let s,N ∈ N. Let θ = 1/2, and m1, . . . ,ms as in (4.10). Let Ps−1 =
{y0, . . . ,yN−1} be a subset of Gs−1. Then there is a deterministic algorithm that
computes in time

O(nNM) = O

 csN
s+3

2

s
s
2 + 3

4 log
(
N
s

) s+1
2

 ,

c a constant independent of N and s, X0, . . . , XN−1 ∈ Gs such that the point set
Ps = {(y0, X0), . . . , (yN−1, XN−1)} satisfies

D∗N (Ps) ≤
(√

3 +
1√
2

) √
s√
N

(
log
(
ρ′(N, s)

)
+

1
s

log (4)
)1/2

+D∗N (Ps−1).

Obviously, we can use the derandomized algorithm from Theorem 4.4 to construct
point setsPs satisfying the discrepancy estimate (4.14) (multiplied by the factor (

√
3+

1√
2
)/
√

2) component by component.

Brought to you by | Max Planck eBooks
Authenticated

Download Date | 7/3/18 12:01 PM



CBC construction of low-discrepancy sets 147

5. Conclusion

We presented a deterministic algorithm that generates in time

O

 csN
s+3

2

s
s
2−

1
4 log

(
N
s

) s+1
2


an N -point set Ps ⊂ [0, 1)s satisfying

D∗N (Ps) ≤ O

(
s3/2

N1/2

(
log
(

1 +
N

s

))1/2
)
. (5.1)

In [4, 5] deterministic algorithms were presented that construct N -point sets Ps ⊂
[0, 1)s satisfying

D∗N (Ps) ≤ O

(
s1/2

N1/2 (log (1 +N))1/2

)
(5.2)

in run-time O(CsN s+2 log(s)s log(N)1−s), C a constant, and O(s log(sN)(σN)s),
σ = σ(s) = Θ(log(s)2/s log log(s)), respectively.

The comparison of the algorithms shows that the discrepancy guaranteed by our new
algorithm has a worse dependence on s than the discrepancy guaranteed by the other
two algorithms. Conversely, the run-time of our new algorithm improves considerably
on the other two algorithms, especially with regard to the dependence on the number
of points N . Another advantage is that the new algorithm calculates along the way the
exact number of points in each box from a distinguished set of half-open boxes. This
allows to easily compute the precise discrepancy of the output set Ps.

We close this paper by relating the problem of constructing low-discrepancy sets of
small size via derandomization to the problem of approximating the discrepancy of a
given set.

Instead of trying to derandomize the random experiment to construct low-discre-
pancy sets, one may think of a semi-construction by performing a random experiment,
calculating the actual discrepancy of the received set, and accept it if bounds like (5.1)
or (5.2) are satisfied or start a new random experiment otherwise. Large deviation
bounds like Hoeffding’s inequality guarantee that with high probability we only have
to perform the random experiment a few times to end up with a low-discrepancy point
set. Besides the need of (true?) random bits, this overlooks the difficulty of calculating
(or approximating) the star discrepancy of a given set.

Indeed, all algorithms that have been presented for this problem so far have a run-
time exponential in s or no run-time guarantee at all, see e.g. [7, 21, 22, 23] and
the literature mentioned therein. In fact, it has been shown recently in [23] that the
decision problem whether an arbitrary point set has discrepancy smaller than ε is (if
suitably posed) NP -complete. This indicates that it may be not possible to perform
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semi-constructions as described above in polynomial time, as long as the possible out-
put sets do not exhibit a special structure that makes the approximation of their star
discrepancy particularly simple.

In the light of these results it is not too surprising that the run-times of the deran-
domized algorithms in this paper and in [4, 5] are exponentially in s, since we cannot
expect to do the (deterministic) derandomized construction with less effort than the
(probabilistic) semi-construction.

References

1. J. Dick, A note on the existence of sequences with small star discrepancy, J. Complexity
23 (2007), pp. 649–652.

2. B. Doerr, Generating randomized roundings with cardinality constraints and derandom-
izations, in B. Durand and W. Thomas (eds), Proceedings of the 23rd Annual Symposium
on Theoretical Aspects of Computer Science (STACS’06), Lecture Notes in Comput. Sci.
3884, pp. 571–583, Springer, Berlin, 2006.

3. B. Doerr, Randomly rounding rationals with cardinality constraints and derandomizations,
in W. Thomas and P. Weil (eds), Proceedings of the 24rd Annual Symposium on Theoret-
ical Aspects of Computer Science (STACS’07), Lecture Notes in Comput. Sci. 4393, pp.
441–452, Springer, Berlin, 2007.

4. B. Doerr and M. Gnewuch, Construction of low-discrepancy point sets of small size
by bracketing covers and dependent randomized rounding, in A. Keller, S. Heinrich,
H. Niederreiter (eds), Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 299–312,
Springer, Berlin, 2008.

5. B. Doerr, M. Gnewuch and A. Srivastav, Bounds and constructions for the star discrepancy
via δ-covers, J. Complexity 21 (2005), pp. 691–709.

6. R. Gandhi, S. Khuller, S. Parthasarathy and A. Srinivasan, Dependent rounding and its
applications to approximation algorithms, J. ACM 53 (2006), pp. 324–360.

7. M. Gnewuch, Bracketing numbers for axis-parallel boxes and applications to geometric
discrepancy, J. Complexity 24 (2008), pp. 154–172.

8. M. Gnewuch, Construction of minimal bracketing covers for rectangles, Berichtsreihe des
Mathematischen Seminars der Universität Kiel, Report 07-14, Kiel, 2007.

9. S. Heinrich, Some open problems concerning the star discrepancy, J. Complexity 19
(2003), pp. 416–419.

10. S. Heinrich, E. Novak, G. W. Wasilkowski and H. Woźniakowski, The inverse of the star
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