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Abstract

We present a density functional theory (DFT) based supercell approach for modeling small polarons
with proper account for the long-range elastic response of the material. Our analysis of the supercell
dependence of the polaron properties (e.g., atomic structure, binding energy, and the polaron level)
reveals long-range electrostatic effects and the electron—phonon (el-ph) interaction as the two main
contributors. We develop a correction scheme for DFT polaron calculations that significantly reduces
the dependence of polaron properties on the DFT exchange-correlation functional and the size of the
supercell in the limit of strong el—ph coupling. Using our correction approach, we present accurate all-
electron full-potential DFT results for small polarons in rocksalt MgO and rutile TiO,.

1. Introduction

The electron—phonon (el-ph) interaction is fundamental to materials. It mediates, for example, the excitation of
phonons in response to electronic excitations, which is especially pronounced in polar materials. These phonon
excitations can stabilize a lattice distortion around a single excess charge (electron or hole). The excess charge
and its accompanying lattice distortion are then referred to as a quasiparticle or more specifically as polaron. The
formation and migration of polarons determine the properties of functional materials, such as their catalytic
[1,2] and photovoltaic [3] behavior. The direct observation of polarons in experiments, e.g. with electron-
paramagnetic resonance [4], UV/IR spectroscopy [5], or scanning tunneling microscopy or spectroscopy [6] is
difficult, and computational studies are required to interpret the experimental data correctly. In this work, we
develop a new method that addresses challenges faced in computational modeling of small polarons in materials
with strong el-ph coupling, in particular in oxides, with density functional theory (DFT).

Polarons can be classified by their size as quantified by the extent of their total wave function (electrons and
ions). Large polarons are delocalized over several unit cells and usually appear, if the el-ph interaction is weak.
Such polarons were first investigated by Frohlich [7], who identified the Frohlich coupling constant agggpich [7]
as good indicator for the el-ph interaction strength. In contrast, small polarons are mainly localized on one
atomic site and form when the el-ph interaction is strong. Intermediate polarons [5] cover the size range in
between. Pioneering work on small polarons was performed by Holstein [8], but taking only short-range
interactions into account. Oxides fall into the intermediate to strong coupling regime, i.e., Qtprghiich > 1. For
instance, for MgO g ghiich 18 4.4 and for rutile TiO, 2.2. We therefore expect small polaron formation in both of
these oxides. However, since MgO and TiO, are strongly ionic, the distortion of the ionic lattice can be long-
ranged in violation of the polaron classification scheme. Such polarons in which the excess charge is localized,
but the lattice distortion effects long-ranged, are referred to as small Frohlich polarons. Figure 1 illustrates the
strong localization of the hole polaron in MgO and electron polaron in TiO,, obtained using the DFT approach
described below.
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Figure 1. The Kohn—Sham eigenstate densities (black solid lines) along the c-axis for (a) the hole polaron in MgO and (b) the electron
polaron in TiO,. The blue dashed lines represent the envelope p;(r) of the densities. The obtained polaron radiusis 1.3 A and

2.1 A for MgO and TiO,, respectively. For details see appendix A. The isosurfaces shown in the insets encompass 0.95 of the polaron
density. Red nodes represent oxygen, green magnesium, and silver titanium atoms. The geometries are optimized with the Sadigh et al
approach [9] using the PBE functional.

To describe small Frohlich polarons accurately in computational materials modeling, both long- and short-
range interactions have to be treated appropriately. How to accomplish this task in DFT calculations that employ
supercells, whose extend is typically smaller than the ionic lattice distortions, is the subject of this paper. Since
small polarons can be regarded as a special type of a point defect, our study is also useful for point defect
calculations of this type, which have so far eluded a reliable theoretical treatment.

The paper is structured as follows. In section 2 we derive the electrostatic and the el-ph contributions to the
elastic long-range response of a material to alocalized excess charge. We will then use this derivation to develop a
correction scheme that removes artificial interactions from the supercell approach to obtain polaron properties
in the dilute limit. In light of our new understanding, we analyze shortcomings of previous polaron approaches
in section 3. In section 4, we demonstrate the efficiency of our approach for hole polarons in MgO and electron
polarons in rutile TiO,.

2. Elastic long-range behavior

DFT in combination with the supercell approach has become the method of choice for the ab inito calculation of
point defects in solids. However, the supercell approach suffers from finite-size effects, especially for charged
defects. These finite-size effects include the interaction of the excess charge with its periodic images, with the
compensating constant background charge introduced to keep the unit cell neutral, and with the periodic
constraint on the atomic relaxation. To overcome these finite-size limitations, two strategies are commonly
used: (a) extending the supercell and extrapolating to the dilute limit based on a scaling law, or (b) applying an

a posteriori correction. For (a) only general knowledge about the size dependence is necessary. For example, the
formation energy of a charged defect in the bulk as a function of the supercell size L (L = Q'/?, where Q is the
supercell volume) can be written as an inverse powerlaw:

1 1
E(L) = E(c0) + \ + a5 (D

where E (00) is the formation energy in the dilute limit. This scaling law was derived by Makov and Payne [10].
The disadvantage of this procedure is that at least three supercell calculations of increasing size are needed to fit
E (00) in equation (1), which is computationally very demanding, especially if atomic relaxations are included’.

Conversely, approach (b) requires an appropriate physical model for the long-range interactions in the solid.
If only the electronic response to the excess charge is considered, its long-range contribution to the energy is
described by a term proportional to 1/¢,,r (e.g. [12]). However, if the ionic response cannot be neglected, the
problem becomes challenging, and so far this case has not been solved. It has been suggested that the long-range
elastic contribution is similar to the electronic one, but with the high-frequency dielectric constant e, replaced
by the static one €, i.e., the long-range potential behaves classically like 1/€or. However, corrections based on

> Alternatively, it is possible to embed the central region in the pristine crystal via a Green’s function approach (see e.g. [11]).
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this assumption generally overestimate E (00), especially for vacancies. This overestimation has two reasons.
First, the aforementioned long-range behavior is a crude approximation, neglecting all details of the underlying
phonon structure. Second, short-range screening can be much more efficient due to the strong coupling of the
excess charge to localized phonon modes close to the defect. As a result, long-range screening will be different
from ~1/¢yr. The approach we present here for modeling polarons is therefore not directly applicable to defects
that induce strong lattice distortions (e.g. vacancies). The modeling of such defects will be addressed in a
subsequent publication. In the following we analyze the screening effects for the small polaron in detail and show
that only in the strong-coupling limit of the el-ph interaction the substitution of ., with €y is a good
approximation.

We start by splitting the long-range elastic potential® V¥ into the el-ph interaction Velf_ph and electrostatic

potential V¥ _:
VIt = Vel + Vel phe €)

VI is generated by the charge density p, (r) of the localized excess charge. The Fourier transform of VI _, is

then given by:

Pa (k)

Ir _
Vel—st(k) =2m kTé'OCk

, 3

where p, (k) is the Fourier transform of p,(r).

To obtain a corresponding expression for V¢I"P" we first have to introduce additional assumptions. First, we
will focus on ionic crystals. Second, we only consider the interaction of an electron with a single phonon ata
time, neglecting higher-order contributions. Third, we assume that the adiabatic approximation (factorization
of the electron and phonon wave functions) and strong el-ph coupling limit (ogspich 2 4) are applicable. With
these assumptions the long-range part of V¢"PP reduces to [13]:

1
Vel (k) = =3 ——

Ir
o e (K1) 04 (K). (4)

The potential in equation (4) is attractive, lending further stabilization to the polaron. An analytic expression for
gellr_Ph, the el-ph matrix elements, was recently derived by Verdi and Guistino[14]:

( i )”2 k"Z}e, (k)

gellr_ph(ku) = idmey , (5)

—~\ 2NM, w,, ke k
where v/1abels the phonon mode, w,, is the corresponding phonon frequency of ion x with mass M,.. Z* is the
Born effective charge tensor and e,;,, (k) are the phonon eigenvectors of the dynamical matrix.

Equations (4) and (5) describe the scattering of all phonon modes with p;. Thus, the long-range behavior of
the el-ph interaction depends on the phonon structure across the entire phonon Brillouin zone, and the elastic
behavior is not captured by the classical 1/¢,r limit. If we only consider the interaction of p, with a single
dispersion-less longitudinal-optical mode wy o, we recover the limit of the Frohlich el-ph interaction in the

strong-coupling limit. With the Frohlich matrix element (for the anisotropic case we refer to [15]):

1/2
1 1
F(k) = ie| 2m/wro| —— — 6
g (k) 1e[ T LO(kT(:’OCk kaok)] (6)

we obtain the potential:

- Pa(k) 4o Pa(k)

VI (k)= —2 )
apn (k) K e, k K eok

)

A similar expression for the electron—lattice interaction potential was previously derived by Pekar [16], assuming
that the lattice polarization can described classically. Upon substituting equations (7) and (3) into (2), we finally
arrive at the classical limit of a screened potential for alocalized charged distribution in an anisotropic medium:

pa(k)
Kleok

Vir(k) = 2w ®)
The el-ph potential given by equation (7) is an upper bound and, consequently, equation (8) is also an upper
bound. This explains why any correction based on equation (8) overestimates the actual limit. We find that,
despite the approximations we made, V¥ (k) in equation (8) is still appropriate for polarons in the intermediate
coupling regime (1 < apnich S 4). Vice versa, our derivation illustrates ways to improve the long-range model
for polarons and charged point defects, if needed, since all assumptions are clearly defined.

In this work by elastic potential we mean the sum of the Hartree potential of the excess charge and the potential from the ionic response to
this charge.
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Based on the knowledge of the long-range behavior, the errors due to finte size of the supercell can be
corrected using a posteriori methods, such as the method of Freysoldt et al [ 12]. For technical details we refer to
[12, 17]. Generalizing the Freysoldt method to an arbitrary interaction potential V (r) and anisotropic media (in
the standard approach of Freysoldtetal, V (r) = 1/¢,.r), the correction for the interaction energy is obtained as
the difference between the energy of the artificial lattice of charged defects, Ej,, and the energy of an isolated
defect, E;q:

Ecorr(©2) = Ep () — Eigo
1 1
= o2 V©a6) — o [V, ddk ©)

G=0

where V can be Velf_ph, V.., or the sum of both, and g, (k) is the Fourier transform of the excess charge
distribution, and q is the total charge. A summary of the Freysoldt et al correction scheme including the meaning
of the alignment terms gAYV can be found in the appendix C. Taking into account gAV, the corrected energy is

obtained as:
E(OO) = E(Q) - Ecorr(Q) + qAV (10)

Having derived the correction for the elastic contribution, we can apply it to the polaron problem and investigate
the effects of the two parts in equation (2) separately.

3. The polaron in a supercell

3.1. The charged supercell
An important property of a polaron is its binding energy

Ef,q = EPRon(N = 1) — EP*I(N F 1), (11)

where the energies have not been corrected for finite-size effects, yet. The plus in Eg;, 4 corresponds to electron
removal (hole polaron), while the minus sign corresponds to electron addition (electron polaron). EP°*°" is the
total energy of the distorted system (polaron geometry), E"*" the total energy of the undistorted system. The
number of electrons in the system are given in parenthesis, with N corresponding always to the neutral system. A
negative E;: , indicates an energy gain and a stable (self-trapped) polaron.

In the following we focus on the hole polaron for brevity, since only small adjustments of the formalism are
needed for the electron polaron case. The simplest way to calculate the polaron binding energy is
straightforward: in equation (11) E” olaron (N 1) is computed with DFT and full structure relaxation in the
charged supercell. To ease the system out of possible high symmetry configurations an initial symmetry-
breaking distortion might have to be applied. Finite-size effects are expected to be small, since the elastic long-
range interaction falls off with 1/¢yrand the static dielectric constant €, is usually large (2 10) for ionic crystals
(however, as demonstrated and explained below, the dependence of the polaron binding energy defined by
equation (11) on the approximations in the exchange-correlation functional is strong). The supercell
dependence of Etj,q for MgO is shown in figure 2, panel (a), where we used HSE06 hybrid functional [18, 19]
with the fraction of exact exchange o = 1 (denoted HSE06(cx = 1); see section 4 for more computational
details). We find a small hole polaron mainly localized at the central oxygen atom. The displacements of the
nearest neighbors are of the order of 0.1 A and decaying fast away from the center. The shape of the excess
charge density distribution is p-like. For sufficiently large supercells, when the long-range regime is valid, the
dependence of the binding energy on the supercell size L becomes 1/¢,L. From the slope of E 4(1/L)at 1/

L = 0weobtain ¢y = 10.32, in good agreement with the experimental static dielectric constant for MgO
€ = 9.8.

’ Next, we calculate the correction for the artificial electrostatic interaction due to the periodic arrangement of
the holes and their interaction with the constant background, using equation (9) with the potential 1/¢,,r. To
model the excess charge density p, (r) needed here and for following finite-size corrections, we fit the envelope of
the KS eigenstate density (decays exponentially for a localized state) with an exponential function
Prodel = A exp(—|r — rp|/v), where A is a normalization constant, ry is the center of the polaron, and y the
fitting parameter corresponding to the polaron radius (see appendix A). Additionally, we calculated the
alignment term AVin equation (10) between the charged, neutral, and model (i.e., including the model excess
charge density compensated by a constant background charge) systems following the approach outlined in [17].
After this correction, according to equation (2) the remaining contribution is due to the long-range el—
phinteraction. This contribution is shown by the blue line in figure 2, panel (a). The line is almost perfectly
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Figure 2. (a) Supercell dependence of the polaron binding energy and exchange-correlation error for HSE(aw = 1). The atomic
positions are fully relaxed for each supercell size by optimizing the geometry of the charged cell. (b) Dependence of the polaron
binding energies on the fraction of exact exchange. The fixed geometry of the 3 x 3x 3 supercell from figure 1, panel (a) is used and
binding energies for different fraction of exact exchange are calculated.

straight, and the slope is equal to e ./ — ¢, ' = 0.32, where ¢, = 10.32 is taken from the fit of |, 4 presented
above, and ¢,, = 2.4 is obtained from an independent calculation’. This analysis explains the role of different
long-range interactions in equation (2) in the supercell dependence of polaron properties.

Thus, the approximations in equation (7) work well for MgO, which is expected since it has only one
longitudinal optical phonon mode, strong el-ph coupling, and is an isotropic material. However, we find that
the polaron binding energy defined by equation (11) is extremely sensitive to the approximations in the
exchange-correlation functional. Figure 2, panel (b), shows the dependence of the binding energy on the fraction
of exact exchange « in the HSE06 functional. Within a small range £0.05 of v around the standard value (0.25)
the binding energy changes by about 0.5 eV. This leads to a qualitative change in small polaron stability, from a
stable self-trapped polaron (negative binding energy) to an unstable small polaron (positive binding energy).
This strong functional dependence makes even a qualitative assessment of the existence of a self-trapped
polarons impossible. Several approaches have been suggested in the literature for determining the correct or at
least optimal value of o [20-26]. Here we focus on restoring the IP theorem [22] as a consistent DFT-based
solution of the problem.

In (exact) DFT within the scope of Kohn—Sham (KS) scheme the vertical ionization potential IP should be
equal to the negative of the highest occupied KS state energy ey, in the system:

IP = E(N — 1) — E(N) = —epo(N), (12)

where E(N — 1) and E(N) are total energies of the ionized and neutral system, respectively. In this work we refer
to this relation as IP theorem, but it is also know as HOMO-I condition [20] or Generalized Koopmans’ theorem
[22], and is directly related to the straight-line dependence of the total energy on occupation of the highest-
occupied state [27] or the fact that the position of €}, is independent on its occupation. Equation (12) is always
correct for any extended (delocalized) state, as was already pointed out by Janak (1978) and extended to the case
of the generalized KS scheme by Perdew et al [28]. However, for a given density functional approximation (DFA)
equation (12) does not necessarily hold, if the orbital is localized, unless the satisfaction of the straight-line
condition is explicitly included in the design of the functional. The deviation from the straight line Axc(«) is
described by two contributions to equation (12):

E(N — 1) = E(N) = —&ho(N) + Axc(®), Axc =11 + %, 13)

with the self-interaction error I1 causing a convex curvature of the total energy as a function of occupation, and
the orbital relaxation ¥ a concave curvature. The optimal & =/, minimizing the XC error [21, 29] is then
determined from the condition Axc(crpe) = 0.

The IP theorem (equation (12)) was originally proven for finite systems, and transferring it to a solid with
periodic boundary conditions needs special care. For any finite supercell with volume €2 the energy of the
artificial electrostatic interactions due to the periodic arrangement (Efé;it (€2), obtained using equation (9) with
potential from equation (3)) has to be removed from E(N — 1):

7 The dielectric constant € Was obtained by fitting the formation energy with equation (1) for the unrelaxed doubly charged oxygen vacancy
in MgO for three different supercell sizes.
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E(N — 1) — ESHH(Q) — E(N) = —ano(N) + Axc(a), (14)
since it would only vanish in the limit of an infinite supercell. Combining equations (14) and (11), we get:
Eifnd = Efina + ESot + Axc(), (15)

where ES$! stands for the artificial electrostatic interaction energy for the distorted geometry, since for the

perfect geometry it is zero. The quantity
Efng = AEPORrn — E, (16)

is calculated using only neutral unit cells, with the energy of distortion from perfect to polaronic geometry
AEpolaron — ppolaron(N1y _ Eperf (N') and the polaron level energy with respect to the VBM

Eo = el (N) — 54T (N). According to equation (15), when Ayc(av) is zero, EJ), 4 represents the polaron
binding energy corrected for the artificial electrostatic interaction.

The use of equation (14) to determine the optimal fraction of exact exchange a,, implies a fixed external
potential of nuclei. However, the IP theorem is expected to be valid for a range of ionic displacements, as long as
the leading orbital character of the adiabatic ground state does not change. This is the case for the polaronic state,
whose character is tied to the character of the corresponding band edge. The fact that Ay is independent of the
supercell size (see figure 2(a)) supports this hypothesis, since Axc would be sensitive to changes in the shape.

E2..q is shown in figure 2, panel (a), as red line (top-most line), where the optimized polaron geometry of the
charged supercell is used. Note that, despite including only quantities calculated using neutral unit cells, E®. 4
has a strong dependence on the unit cell size. As discussed below, this dependence is due to the interaction of the
ionic relaxations in different unit cells. Taking the difference between the blue and the red lines, we find that the
exchange-correlation error Ay is practically independent on the unit cell size (green line in figure 2, panel (a)),
starting from the smallest supercell with 64 atoms we have considered. This implies that Axc(«) in equation (14)
could be calculated even in the smallest supercell in order to estimate av = avp; and then reused for any larger
supercell. For obtaining the optimized o = cvopc we have to remove E. () from the binding energy Eyf 4 and
determine the intersection with EZ; 4. The result is shown in figure 2, panel (b), and we obtain Qopt = 0.48.
Since the dependence on o is not linear, at least three different values of o have to be calculated to estimate oy
Additionally for each value of « the dielectric constant e, has to be calculated. Thus, the simulation of the
polaron in a charged supercell is computationally demanding, since it is extremely sensitive to the underlying
functional. In the next subsection we demonstrate an approach to overcome this problem.

3.2. The neutral supercell

As mentioned above, E., 4 in equation (15) is equal to the polaron binding energy corrected for the artificial
electrostatic interaction, only when Ayc () vanishes. However, similar to previous work [9, 30] we find that
EP._ 4 is far less sensitive to the underlying functional than E! ;, as can be seen for MgO in figure 2, panel (b). The
same is true for TiO,, but the remaining dependence is larger than for MgO (see figure 3). This has an interesting
implication: E;, 4 is the polaron binding energy with most of the exchange-correlation error removed. The
reason for the insensitivity of E\ 4 on the functional remains unclear [9], but it seems to benefit from the
character of the closed electron shells.

As a consequence, even with PBE we find a stable self-trapped hole polaron in MgO, which is not the case
when charged supercells are used. Also, we find that the polaron level with respect to the band edge (E,),
calculated using a neutral supercell, is insensitive to the functional, as can be seen in figure 4(a). A stronger
functional dependence of E, is expected when the character of the polaronic state or states of the band edges are
sensitive to the functional.

Using E., 4 for calculating polaron binding energies has been first implicitly introduced by Zawadski et al
[30]. The independence of E., 4 on the functional has been discussed by Sadigh et al [9]. In their work, Sadigh
et al have also suggested a way to obtain forces for a polaronic distortion directly using EZ, 4 potential-energy
surface (PES). This facilitates the calculation of accurate elastic response to the excess charge at the level of a
hybrid functional, but at the cost of a PBE calculation.

Thus, using the EZ;, 4 PES instead of charged supercells allows us to significantly reduce the functional
dependence. Naively, one may expect that the supercell dependence is also reduced, since only neutral supercell
calculations are performed. However, this is not the case. As can be seen from figure 2, panel (a), the dependence
of E:, 4 on the supercell size is much stronger than in the case of charged supercells. This dependence is due to
the artificial interaction between ionic relaxation fields in different supercells. Indeed, the Ej 4 — E&% and
E2. 4 supercell dependence are practically identical and correspond to the long-range part of the el—
ph interaction potential given by equation (7) in the strong el-ph coupling limit. This understanding allows us to
introduce an a posteriori correction Ef(l,'r‘r’h calculated using equation (9) with V = Ve]f_Ph of equation (7), which
removes the dependence of E}, 4 on the supercell size. To remove the artificial interaction terms, we use the
approach of Freysoldt et al [12, 17], but for a different long-range potential, namely the one given by

6
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Figure 3. The polaron binding energy Efing (equation (16)), the polaron KS level E, with respect to band edge, and the relaxation
energy AEPOon for MgO (left panel) and rutile TiO, (right panel). The x axis is given in units of the cubic root of the unit cell volume
€. The PBE polaron binding energies corrected for the finite-size effects are shown by square symbols. The solid lines show linear
least-squares fit for different energy components and DFT approximations. For all supercells the atoms are relaxed according to the
approach described in the text.

(b)
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Figure 4. (a) The dependence of the hole polaron level calculated in the charged (blue line) and in the neutral (blackline) 3 x 3 x 3
supercell of MgO. N corresponds to the number of electrons in the neutral system. Clearly, the black line tracks the VBM for the entire
range of v, and therefore gives a better description of the polaron level than in the explicitly charged system. (b) The polaron binding
energies B 4 obtained with the DFT supercell approach, in comparison with different solutions of Frhlich’s Hamiltonian. The pairs
of points connected by the dashed lines represent the DFT results in the dilute limit for the small polaron in MgO and TiO,.

equation (7). This new correction scheme relies on the assumption of a strong el-ph coupling, but, as
demonstrated below, works reasonably well also for intermediate coupling regimes.

The polaron level E, also depends on the supercell size. Because of special properties of the small polaron in
the adiabatic strong-coupling limit, it is possible to relate the polaron binding energy to the polaron level, in
accordance with Pekar’s 1:2:3:4 theorem [31] . It follows from the theorem that (see details in appendix B):

Eo(c0) = Eo(Q) + 2 - ESEM (). (17)

Thus, the correction to Ey(£2) in a finite supercell is expected to be about twice as large as for the polaron binding
energy calculated using neutral supercells. Indeed, this is what we observe for MgO (see figure 3, panel (a)),
where the absolute value of the Eo(L) slope is almost exactly twice of the absolute value of the E., 4 slope. For
TiO,, the relation between the Ey(L) and E_, 4 dependencies deviates from the one derived from Pekar’s model
(see figure 3, panel (b)) due to a weaker el-ph coupling, as discussed in detail in section 4.
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In summary, we find that in this approach the dependence on the exchange-correlation approximation is
drastically reduced, but the finite-size effects are significantly more pronounced. However, these effects, caused
by the el-ph long-range potential (equation (7)), can be corrected using the approach of Freysoldt et al, but with
the potential Velf_Ph. This makes possible using moderately sized supercells and semi-local functionals to predict
polaron properties, as demonstrated in the next section.

4. Polarons in rocksalt MgO and rutile TiO,

Building on the findings and understanding obtained in the previous sections, we formulate our approach for a
reliable calculation of polaron properties:

(i) We obtain the atomic structure of the polaron using the PBE functional (corresponding to HSE06(cv = 0)),
where the forces for the atomic relaxation being evaluated according to the approach of Sadigh et al [9].

(if) HSE06(cv = 1) calculations (as a limiting case) are performed for the fixed geometries obtained with PBE.
This allows the estimation of the functional dependence for the systems.

(iii) The polaron binding energies are calculated using equation (15). The finite-size correction for the binding
energy is calculated using equation (9) with the potential from equation (7). The correction for the polaron
level is calculated as twice the correction for the binding energy.

The different sign of the correction for the hole polaron versus the electron polaron (compare panels (a) and (b)
in figure 3) is explained by the fact that the equation for the electron affinity has to be used for the electron
instead of the ionization potential for the hole.

We use the hybrid-functional implementation [32] in the all-electron full-potential electronic-structure
package FHI-aims [33—35]. The evaluation of forces and total energies are computed with FHI-aims using the
default light settings, to obtain consistent results for all unit cell sizes. As is shown in the supplementary
information (SI) is available online at stacks.iop.org/NJP/20/033023 /mmedia, using default tight settings,
which are the recommended settings for well-converged calculations, does not affect the results for the smallest
supercell. As a demonstration, we apply our new approach to polarons in MgO and rutile TiO,. For the cubic
8-atom MgO unit cell we use alattice constant ofa = 4.211 A obtained with HSE06 (o = 0.25),and a
I-centered 8 x 8 x 8k-grid. The number of k-points for each direction is scaled down linearly for larger
supercell sizes. For the tetragonal 6-atom TiO, unit cell we use a = 4.64 A andc = 2.97 A obtained with the
PBE functionalanda9 x 9 x 15k-grid. Due to one more degree of freedom the positions of the atoms are
optimized, too, using the PBE functional (for details see SI).

The results for a hole polaron in MgO and an electron polaron in rutile TiO, are shown in figure 3. For every
supercell size we allow all atoms to relax to obtain the full elastic contribution within the cell. The corrected E; 4
values for each supercell are shown for PBE. For the Freysoldt et al correction we used the radii obtained by
fitting the KS eigenstate densities as it is demonstrated in figure 1 for the 3 x 3 x 3 MgO, panel (a) and
3 X 3 x 5TiO, supercell, panel (b). The variation of the polaron radius is only small with the fraction of exact
exchange (see SI) and is not affecting the contribution of the Freysoldt et al correction. Clearly, the supercell size
dependence of E_ 4 for both MgO and TiO, agrees very well with the behavior corresponding to the el—ph long-
range contribution described by equation (7). As mentioned above, the Frolich coupling constant avgghiich 1S
equal to 4.4 for MgO and 2.2 for TiO,. Thus, MgO is better described by Pekar’s potential equation (7), and the
size-corrected binding energy practically coincides with the binding energy obtained from a linear extrapolation
to the dilute limit. For TiO,, the corrected energy deviates (surprisingly only slightly) from the extrapolated one
(within 0.05 eV), reflecting approximations in Pekar’s model. Also, the functional dependence of the energies is
stronger for TiO,, indicating a larger contribution of the short-range effects to the binding energy. Additionally,
we observe that the atomic structure is sensitive to the functional as well demonstrating limitations of obtaining
polaron atomic geometries with only the PBE functional, even on the PES corresponding to EZ, 4, which is much
less sensitive to the approximations in the functional than the PES of a charged supercell. This sensitivity is
connected to delocalization errors and missing static correlation originated in the d-orbitals. However, the
changes in the geometry as a function of « are still small, and we use the configurations of the perfect system
obtained with PBE. We find final polaron binding energies in the dilute limit —0.38... — 0.58 eV for MgO and
—0.14... — 0.41 eV for TiO,, where the range indicates changes in « from 0 to 1. For the polaron level with
respect to the band edge we find 1.42...1.74 eV for MgO and —0.86... —1.44 eV for TiO,. These results remain
both qualitatively and quantitatively consistent across a broad range of functionals generated by varying the
fraction of exact exchange. This consistency is remarkable when compared to previous theoretical studies,
especially for TiO,, since it was either shown that the small polaron formation is expected only for a certain range
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of a parameter, e.g. for DFT4U [6, 36] or HSE(«) [37], or it was demonstrated only for a specific value of a
parameter, e.g. for HSE(aw = 0.25) [38]. Additionally, it is interesting to note that contrarily to anatase TiO,
[39,40] small electron polarons do form in rutile (see figure 1(b)). However, we could not find a stable small hole
polaron in rutile.

One of the advantages of our DFT approach for calculating polaron properties over Frohlich’s Hamiltonian
is that the ionic lattice is considered explicitly in our polaron model. Such a description is particularly
appropriate for small polarons that are of interest here. The DFT approach is based on the adiabatic (Born—
Oppenheimer) approximation. As such, in the strong-coupling limit, it physically corresponds to Pekar’s
polaron model, the adiabatic static description of polarons, where the polarization of the lattice is treated
classically. Figure 4, panel (b) shows a comparison of the DFT results for MgO and TiO, with Pekar’s model and
other approximate solutions of Frohlich’s Hamiltonian. Pekar’s model predicts smaller (in absolute values)
polaron binding energies compared to DFT. Considering that in Pekar’s model (as well as in Frohlich’s
Hamiltonian) the electron (or hole) only interacts with a single phonon mode, it is not surprising that Pekar’s
solution only provides an upper limit to the polaron binding energy. The el-ph interaction for the small polaron
includes couplings to almost all the phonon modes throughout the Brillouin zone, leading to a further
stabilization of the polaron in our simulations. The DFT results are close to Feynman’s approximate solution of
the Frohlich Hamiltonian [41]. However, Feynman’s model includes quantum fluctuations and non-adiabatic
effects [42], not accounted for in our DFT approach. Thus, on the one hand the comparison between Pekar’s and
Feynman’s approximate solution shows the significance of possible non-adiabatic effects for polarons in oxides.
On the other hand, by comparing Pekar’s solution with our DFT results the importance of the proper
microscopic treatment of the lattice polarization is illustrated.

To make a connection to experimentally accessible quantities, in particular photoluminescence (PL)
measurements, accurately predicting the position of the polaron level is important. Since the quantities obtained
with the neutral PES EZ, 4 are weakly dependent on the underlying functional, the fraction of exact exchange o
can be used to tune the gap E,,, to recover the experimental band gap. The main PL peak due to the small
polaron formation can be expected at:

PL = Eg, — |Eql. (18)

For MgO the experimental band gap was measured to 7.8-7.9 eV [43], which can be simulated by a fraction

a = 0.4.Based on our HSE06(cx = 0.4) calculations, the PL peak should be at 6.3 4 0.1 eV. Cathodolumines-
cence experiments [50] assign a peak at 6.9 eV to a self-trapped exciton, but is not clear whether the signal is due
to excitons (or polarons) in the bulk or trapped at surface defects. For TiO, a fraction &« = 0.2 is needed in order
to reproduce the experimental band gap of 3.0 eV [44], and the corresponding PL peak is predicted to be at

2.1 £ 0.1 eV. This is in good agreement with experimental findings of PL = 2.34 eV for rutile powders [45] or
direct measurements of the polaron level E, = 0.7 £ 0.1 eV with scanning tunneling spectroscopy [6]. It should
be noted that the latter measurements likely refer to subsurface oxygen vacancies, and hence the agreement with
our results may be fortuitous. We note that the results provided here only represent an upper limit for the
polaron level or lower limit for the PL peak, since neither finite-temperature nor non-adiabatic effects are taken
into account.

5. Conclusions

In this work, we developed a new approach for first-principles modeling of small polarons in materials using
DFT supercell calculations. Because on the one hand, the standard charged supercell approach allows us to
obtain polaron properties in the dilute limit (for moderately large finite supercells and values of ¢, finite-size
errors can be even neglected), but the results strongly depend on the underlying exchange-correlation
functional. On the other hand, the approach of Sadigh et al [ 9] significantly reduces the dependence on the
functional, but, as we demonstrate, introduces a strong dependence on the supercell size. We show that the large
finite-size errors in the latter approach are due to constraints imposed on the elastic response to the excess charge
by the periodic boundary conditions, and suggest a way to correct the errors for finite supercells. The correction
relies on the validity of Pekar’s model [16] for the long-range response, based on approximations corresponding
to the adiabatic strong (in Frohlich’s sense) el-ph coupling limit. As a result, our approach allows us to obtain
polaron properties in the dilute limit and at the same time reduce the exchange-correlation errors, so that even
semi-local functionals can be used to reliably estimate polaron level, binding energy, and atomic structure. For
more accurate modeling of polaron effects on PL in materials, the use of hybrid-density functionals or methods
beyond DFT, such as the GWapproach [46—48], is still necessary.

We apply the developed approach to small polarons in MgO and rutile TiO,. We find that the hole polaron
in MgO indeed behaves as Pekar’s polaron at the long-range, as expected based on the large value of Frohlich’s
constant. For electron polarons in TiO,, our approach also works surprisingly well, considering the weaker el—
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ph coupling in this material. Our all-electron full-potential results support the existence of a small electron
polaron in rutile TiO, in agreement with previous work [6, 37].
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Appendix A. Pekar’s polaron and its relation to KS eigenstates

The objective of the appendix is to show how analytical polaron models are connected to the actual many-body
problem treated with DFT. Especially, the relation of the polaron wave function to the highest occupied (ho) or
lowest unoccupied (lu) KS state is discussed below.

Pekar’s polaron model [16] can be derived from the Frohlich Hamiltonian [7] in the adiabatic static strong
coupling limit, as was shown for example by Devreese [13] (see also citation in it for original works). In this limit,
assuming adiabatic separation of ionic and electronic degrees of freedom, the el-ph interaction has the form:

/|2
Vel ph(r) - 7_‘['(1)(1')' &’ (Al)

I‘—I‘

which is the classical response of a polar dielectric to an extended charge distribution. The inverse dielectric
constant k! = ¢! — €' describes the polarization of the rigid ions in the medium by the electron or hole. For
simplicity, here we assume an isotropic medium (the dielectric response is described by a single constant). Let us
regard equation (A.1) as a perturbation of the perfect system H,.f—i.e. the single-electron Hamiltonian, where
the electron has been placed at the bottom of the conduction band minimum (CBm) ¢, with energy ecpp, of

the non-interacting system (this is the scenario for the electron polaron):

Hperf¢c]3m = 5CBm¢CBm- (A.2)

Following the Kohn-Luttinger perturbation theory [49] the solution of:

(Hperf + Vel—ph)\:[/ =EV (A.3)
in first order is given by:
E = ecpm + Eos
V= ¢cpm P (A4)

where Eyand ® are obtained from the solution of the effective Hamiltonian of the charge with an effective mass
m™* [49] (without taking into account polaronic effects):

(Hyin,eft + Vel-ph)® = Eo @,

- —f 12D 45, ’)CD( )= E,®(r), (A.5)

[r — /|

with the effective mass m" from the CBm. With equation (A.5) we recover the original problem of Pekar’s
polaron and Ej, is the energy of the bound (polaron) state relative to the conduction-band edge for the case of an
electron polaron.

Equation (A.5) does not contain microscopic details. However, it can be regarded as describing asymptotic
el-ph interaction far away from the localized part of the excess electron charge distribution and, thus, ®(r) is the
asymptotic solution of equation (A.5). According to equation (A.4), ®(r) represents the envelop of the original
electronic state ¢cpm and is expected to decay exponentially with distance. The electron KS eigenstate (bDFT
corresponding to g, (N) in the DFT calculation at the distorted (polaron) geometry is the polaron wave function
W. Thus, the envelop of quFT shows the localization of p,(r) needed for the correction scheme equation (9) in
order to fit p,, (r). An example of p,(r) calculated with DFT and the fitted envelope p,,(r) is shown in figures 1(a)
and (b) for MgO and TiO,, respectively.
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Appendix B. Pekar’s 1:2:3:4 theorem

For arbitrary coupling constants in the Frohlich Hamiltonian:
Heghtich = Huinyert + Hph + Velphs (B.1)

with the Hamiltonian of the phonons Hy, it has been shown [31] that there exist fixed ratios of the effective
kinetic energy Ejin fr, lattice distortion (phonon field) energy AEPRrn the polaron state energy Ey, and the el—
phinteraction energy E_pp:

Einefr : AEPORION : _E —Eeph = 1:n(ap) : 3: 4, (B.2)

where 77 depends on the value of Frolich coupling constant o In the limit of strong el-ph coupling (ap — ©0),
the polaron energy is dictated by the polarization of the lattice, and 7 approaches 2. From this it follows:

1
Epind = Exinjetr + AEPOR™Y 4 Eo i = Eyin et + EEel-ph: (B.3)

Eo = Exineft + Eel-ph- (B.4)

Equations (B.3) and (B.4) clearly show the dependence of the binding energy and the polaron level on the energy
of the el-ph interaction. The latter energy is the one that remains to be corrected for the artificial supercell
interactions, and thus the correction for the polaron level has to be twice of the correction for the binding energy,
which leads to equation (17).

However, these ratios equation (B.2) are only based on an effective single-particle model (equation (A.5)). In
our microscopic (DFT) model, additional (short-range) contributions to the energy components and deviations
of n < 2lead to violation of the above ratios. In particular for TiO, the ratios are not preserved. However, for
MgO, where the Frohlich constant is 4.4, indicating indeed a strong el—ph coupling, the ratios are close to the
ones found by Pekar, and the polaron level and binding energies calculated from the model are close to the ones
from DFT calculations, as described in the text.

Appendix C. Freysoldt et al correction scheme for finite-size effects in a nutshell

A repeating point in this paper is the correction of finite-size effects for supercell calculations. For completeness
we present the main ideas of the correction scheme proposed by Freysoldt et al[12, 17]. Starting point is the
simulation of a charged point defect in an otherwise pristine crystal causing a localized excess-charge
distribution p,. Itis assumed that for a sufficient large supercell the quantum nature of the defect is simulated
properly and only long-ranged interactions do affect the defect potential in neighboring cells. If the long-range
potential possess a Fourier-transformation, e.g. as shown here for Velf « (equation (3)) and Velf_ph (equation (7)),
then, it is possible to correct the biased energies a posteriori. For this, to have simple evaluable sums and integrals
Freysoldt et al suggest to model p, with a simple isotropic function p,,, such as an exponential or a Gaussian (the
fitting of p,; by p,,, is demonstrated in appendix A). The actual detailed excess-charge distribution is not necessary
to know and would change the correction only negligibly. (As Freysoldt ef al in their original paper note it is not
even important to imitate the proper localization of p,;as long as the distribution is well-localized within the
supercell.) With this, it is possible to evaluate the lattice sum of the long-range potential (i.e. the potential energy
due to their periodic arrangement):

Bus = & Y2 V"(6)q,(6) (€1
G=0
(for the detailed nomenclature see main text), where V (G) is the Fourier-transform of the long-range potential,
and the sum runs over all reciprocal lattice vectors |G| < G The cut-off G, has to be chosen carefully to
ensure convergence of the sum. Equation (C.1) is the artificial energy, which has to be removed from the
regarded energy (e.g. the polaron binding energy or level). What is missing is the long-range energy of the
isolated defect. This is easily calculated by:

1
EiSD:—ka k)dk c2
oo JV#am (C2)
and the total correction is given by E o,y = Ept — Ejso- To obtain the desired energy in its dilute E, limit the
correction E.q, (£2) has to be removed from the energy E(£2) calculated in the supercell of size €2:

Ewo = E(Q)) — Ecore(2) + qAV. (C.3)

The last term gA Vs the so-called alignment term and has to be considered for the following reasons: first,
usually E(2) is calculated with respect to a reference system, often the pristine bulk system. Due to defect or the
charge there might be difference in the potentials for the defect system and the pristine system even far away
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from the defect center. This difference can be obtained by aligning the electrostatic potentials (or Hartree
potentials). Second, the absolute position of the long-range potential calculated from p,,, might not be equal to
the one from the original p,. This difference must be aligned, too. Hence, in general the term gAV should
include these two contributions.
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