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Abstract: Consider a globally hyperbolic cosmological spacetime. Topologically, the
spacetime is then a compact 3-manifold in cartesian product with an interval. Assuming
that there is an expanding direction, is there any relation between the topology of the
3-manifold and the asymptotics? In fact, there is a result by Michael Anderson, where he
obtains relations between the long-time evolution in General Relativity and the geome-
trization of 3-manifolds. In order to obtain conclusions however, he makes assumptions
concerning the rate of decay of the curvature as proper time tends to infinity. It is thus of
interest to find out if such curvature decay conditions are always fulfilled. We consider
here the Gowdy spacetimes, for which we prove that the decay condition holds. How-
ever, we observe that for general Bianchi VIII spacetimes, the curvature decay condition
does not hold, but that some aspects of the expected asymptotic behaviour are still true.

1. Introduction

The objects of study in this paper are cosmological spacetimes. We shall assume them to
be globally hyperbolic, so that topologically, they are of the form I × M , where M is a
compact 3-manifold. We shall also only consider spacetimes which have one expanding
direction, i.e. there is one time direction in which spacetime is causally geodesically
complete. The question is then, what is the relationship between the asymptotic behav-
iour and the topology of the compact Cauchy surfaces? Anderson, Fischer and Moncrief
have written several papers on the subject, see [2] and [7] and the references cited therein.
In the current paper, we are concerned with questions raised in [2] regarding the rela-
tionship between the asymptotics and geometrization. The special case of interest here
is when one has a globally hyperbolic vacuum spacetime foliated by compact constant
mean curvature (CMC) hypersurfaces, though in the case of Gowdy, we shall also be
interested in another geometrically defined foliation. We shall assume that σ(�) ≤ 0
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for any CMC hypersurface (for a definition of the σ -constant of a compact 3-manifold,
see [1]) or, in other words, that � does not admit a metric of positive scalar curvature,
see [2]. Furthermore, we shall assume that the range of the mean curvatures attained
in the foliation exhausts the interval (−∞, 0) and that the spacetime is future causally
geodesically complete. In fact, we shall only be interested in the expanding direction, so
it is enough if the foliation exhausts the interval [H0, 0) for some H0 < 0, and sometimes
future causal geodesic completeness will be a consequence of other assumptions. In this
setting we wish to consider the behaviour of the geometry induced on the leaves of the
foliation as proper time tends to infinity. Let us recall some definitions from [2].

Definition 1. Let � be a closed, oriented and connected 3-manifold, satisfying σ(�) ≤
0. A weak geometrization of � is a decomposition of �,

� = H ∪ G, (1)

where H is a finite collection of complete connected hyperbolic manifolds of finite vol-
ume embedded in � and G is a finite collection of connected graph manifolds embedded
in �. The union is along a finite collection of embedded tori T = ∪Ti , T = ∂H = ∂G.
A strong geometrization of � is a weak geometrization as above, for which each torus
Ti in T is incompressible in �, i.e. the inclusion of Ti into � induces an injection of
fundamental groups.

For more details concerning the terminology, we refer to [2] and the references cited
therein. Graph manifolds are built by gluing together Seifert fibred spaces along toral
boundary components. Since we shall only be concerned with Seifert fibred 3-manifolds
in this paper, the details of these constructions are not of any greater importance here.
Let us however define the concept Seifert fibred space.

Definition 2. A 3-manifold is said to be a Seifert fibred space if it satisfies the following
two conditions:

1. It can be written as a disjoint union of circles.
2. Each circle fibre has an open neighbourhood U satisfying:

– U can be written as a disjoint union of circle fibres,
– U is isomorphic either to a solid torus or a cylinder where the ends have been

identified after a rotation by a rational angle.

When we say that U is isomorphic to a solid torus, we mean that U is diffeomorphic to
a solid torus and that the circle fibres of U are mapped to the natural circle fibres of the
solid torus under the diffeomorphism.

Note that there are different definitions of Seifert fibred spaces in the literature. In par-
ticular, our definition coincides with the original definition by Seifert but not with that
of Scott [14].

Since the geometry on the leaves of the foliation becomes more and more flat, it is
natural to rescale the metric in some way. Following [2], we shall use the proper time
distance to a fixed Cauchy surface in order to do so. Let � be a fixed Cauchy surface
and define, for an arbitrary spacetime point p,

t̂ (p) = sup
γ

∫ 1

0
[−〈γ ′, γ ′〉]1/2ds,
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where the supremum is taken over timelike curves γ with γ (0) ∈ � and γ (1) = p and
〈·, ·〉 denotes inner product with respect to the spacetime metric. We also define

t̂ (�′) = sup
p∈�′

t̂ (p)

for a Cauchy surface �′. Let the leaves of the foliation be indexed by a parameter s. In
the case of a CMC foliation, the parameter can be chosen to be the mean curvature of
the corresponding leaf, and in the case of Gowdy, the parameter will be the so called
areal time coordinate. We are interested in the interval [s0, smax), where s0 corresponds
to some arbitrary initial hypersurface (filling the role of � above) and smax corresponds
to infinite expansion, i.e. smax = 0 in the CMC case and smax = ∞ in the case of the
areal time coordinate in Gowdy. Let ĝs be the Riemannian metric induced on the leaf
�s by the spacetime metric and define

gs = t̂−2(�s)ĝs .

The following weak asymptotics problem was raised in [2]. Suppose that � is a closed,
oriented, connected 3-manifold with σ(�) ≤ 0. Suppose further that the vacuum space-
time is future causally geodesically complete and that the CMC foliation exhausts the
future development. Then for any sequence si → smax, the slices (�si , gsi ) have a sub-
sequence asymptotic to a weak geometrization of �. More precisely, there should be a
division of � as in (1) and on the region H , the metrics gsi should converge to complete
hyperbolic metrics of finite volume, while on G, the metrics collapse the graph manifold
with bounded curvature. When we say that a region collapses we mean that the injectivity
radius of that region converges to zero. If a region collapses even though the curvature
remains bounded, we shall say that it collapses in the sense of Cheeger-Gromov.

This conjecture should be compared with the work of Andersson and Moncrief [3],
Choquet-Bruhat and Moncrief [4] and Fischer and Moncrief [7]. In [3], the authors
considered the future development of perturbations of spatially compact variants of
the k = −1 Friedmann-Robertson-Walker vacuum spacetime. They proved that the
future development is covered by CMC hypersurfaces exhausting the maximal range,
and that it is future causally geodesically complete. Furthermore, the rescaled metric
on the spatial hypersurfaces was shown to converge to the hyperbolic one. In [4], the
authors considered Cauchy surfaces that have the topology of a trivial circle bundle
over a higher genus surface and they restricted their attention to small, polarized, U(1)-
symmetric data. They proved that the future development is foliated by CMC hyper-
surfaces exhausting the maximal range. Furthermore, they stated that causal geodesic
completeness should hold, though they did not prove it. However, this was shown for a
larger class of spacetimes in [5], a paper which extends the results of [4] to the non-polar-
ized case, using the results of [6]. Finally, they showed that the Cauchy surfaces should
undergo a Cheeger-Gromov type collapse. In [7], some known spatially homogeneous
examples were studied and the expected behaviour was confirmed. Note that in all the
cases mentioned above, either H = ∅ or G = ∅ in the division (1). The reason for this
is the fact that all results, as far as we are aware, can be divided into the category of small
data results and the category of results for a situation in which there is symmetry. The
small data category may seem to be more general, but since it presupposes the existence
of a symmetric solution around which to perturb, it is not more general in terms of spatial
topology. In other words, all results known require the spatial manifold to allow a highly
symmetric metric, and this reduces the number of allowed spatial topologies.
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In [2], the following statement was proved. Consider a spacetime which is the maximal
development of vacuum initial data, with σ(�) ≤ 0, where � is the initial hypersur-
face, and assume that it is foliated to the future by CMC hypersurfaces exhausting the
maximum range. Assume furthermore that the curvature satisfies

|R|(p) + t̂ (p)|∇R|(p) ≤ C

t̂2(p)
, (2)

where |R|2 is defined as the sum of the squares of the components of the Riemann
curvature tensor with respect to an orthonormal frame, where the timelike unit vector in
the frame is the future oriented normal to the foliation (the definition of |∇R|2 is simi-
lar). Then the spacetime is future causally geodesically complete and, for any sequence
si → smax, the slices (�si , gsi ) have a subsequence asymptotic to a weak geometrization.

Due to this theorem, it is of interest to analyze how curvature decays in expanding
cosmological spacetimes. In the following, we shall only consider whether the estimate

|R|(p) ≤ C

t̂2(p)
, (3)

holds or not. In the case of Gowdy, it turns out that such an estimate holds, at least relative
to the foliation defined by the areal time coordinate. In the case of locally rotationally
symmetric Bianchi VIII, the estimate also holds, but it turns out that for general Bianchi
VIII it does not. In that case t̂ (p) ln t̂ (p)|R|(p) converges to a positive number as p

tends to a point in the infinite future. In fact, in the case of general Bianchi VIII, one
does not get a better estimate even if one considers the Kretschmann scalar

κ = Rαβγ δR
αβγ δ. (4)

It is then of interest to consider the Ricci curvature of gsi . It turns out that in general,
the Ricci curvature does not have any better decay, but that there is a time sequence
such that one does get the expected decay. This time sequence corresponds to the metric
being locally rotationally symmetric. Concerning the topology, we have the following
results. In the case of Gowdy, the topology is T 3, and after rescaling the 3-tori collapse
along 2-tori. In the Bianchi VIII case, the topology is that of a non-trivial circle bundle
over a higher genus surface. After rescaling one obtains the conclusion that the length
of the circle fibers converges to zero.

1.1. Gowdy spacetimes. The Gowdy spacetimes is a class of vacuum spacetimes with
a two dimensional group of isometries. Of the spatial topologies compatible with the
symmetry requirements, only T 3 is expected to be compatible with infinite expansion.
For this reason, we shall only be interested in such a spatial topology in this paper. There
are natural conditions defining the Gowdy spacetimes, see [12] and references therein,
but we shall not write them down here. For the purposes of the present paper, a Gowdy
T 3 spacetime is defined as a Lorentz manifold R+ × T 3, where R+ = (0, ∞), with
metric

g = t−1/2eλ/2(−dt2 + dθ2) + t[eP dσ 2 + 2eP Qdσdδ + (eP Q2 + e−P )dδ2], (5)
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where P , Q and λ only depend on t and θ , satisfying Einstein’s vacuum equations. In
terms of P , Q and λ, the equations are

Ptt + 1

t
Pt − Pθθ − e2P (Q2

t − Q2
θ ) = 0, (6)

Qtt + 1

t
Qt − Qθθ + 2(PtQt − PθQθ) = 0, (7)

and

λt = t[P 2
t + P 2

θ + e2P (Q2
t + Q2

θ )], (8)

λθ = 2t (PθPt + e2P QθQt). (9)

The time coordinate t appearing in (5) is called the areal time coordinate. The reason for
this is that the area of the two torus given by fixing t and θ is t . On the other hand, the
trace of the second fundamental form need not be constant on the hypersurfaces of con-
stant t . One might then naively expect this to approximately be the case asymptotically.
However, there are metrics of the form (5) such that there is a time sequence tk → ∞
with the property that the quotient of the maximum and the minimum of |trktk | tends to
infinity, where ktk is the second fundamental form of the hypersurface defined by t = tk .
We refer the reader to [13] for a proof of this fact. Thus there is certainly a difference
between the CMC foliation and the areal time coordinate foliation. Since most of the
analysis concerning Gowdy spacetimes has been carried out in the areal time coordinate
and since this coordinate has a natural geometric definition, we shall however only con-
sider this choice here. In the end we are interested in getting estimates for the curvature.
In [12], we analyzed the asymptotics of solutions to (6)–(7). However, the analysis was
not complete. In particular, [12] only contains estimates of the first derivatives of P and
Q, and this is not sufficient for computing curvature. The first step is to remedy this
situation.

Theorem 1. Consider a solution to (6)–(7). Then

‖(∂k
θ ∂tP )2 + (∂k+1

θ P )2 + e2P [(∂k
θ ∂tQ)2 + (∂k+1

θ Q)2]‖C0(S1,R) ≤ Ck

(ln t)2k

t
(10)

for t ≥ 2 and k ≥ 0.

Remark 1. The above estimates together with Eqs. (6)–(7) yield estimates for the higher
order derivatives involving an arbitrary number of time derivatives. In the polarized case,
i.e. when Q = 0, there is an improved estimate. In fact, one does not need the logarithms.
To see this, note that the case k = 0 of (10) was proved in [12] and that in the polarized
case, the equation remains the same under differentiation with respect to θ .

The proof is to be found at the beginning of Sect. 2. Define the proper time distance
between the hypersurfaces defined by t0 and t to be τ(t0, t), cf. (18). Then the decay
estimate for the curvature is as follows.

Theorem 2. Consider a metric of the form (5), where P , Q and λ satisfy (6)–(9). Assume
furthermore that P and Q are not both independent of θ for all t . Then for every t0 > 0,
there is a positive constant C(t0) and a T (t0) such that for t ≥ T (t0),

|R|(t) ≤ C(t0)τ
−2(t0, t), (11)

where |R| is defined with respect to the areal time coordinate foliation.
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Remark 2. When considering metrics of the form (5), the spatially homogeneous solutions
have a special type of behaviour. In particular, if there is some spatial variation, λ tends
to infinity linearly, but if there is no spatial variation, λ tends to infinity logarithmically,
cf. [12]. Since P cannot grow faster than logarithmically and Q cannot grow faster than
polynomially, cf. [12], it is clear that in the spatially inhomogeneous case, the factor in
front of −dt2 + dθ2 tends to infinity exponentially whereas all the other factors tend
to infinity at worst polynomially. In other words, all the expansion is in the factor in
front of −dt2 + dθ2. In the spatially homogeneous case, there is however no such clear
distinction between the different factors, since λ tends to infinity logarithmically. For
this reason we focus on the spatially inhomogeneous case and leave the homogeneous
case to the reader.

The proof is to be found at the end of Sect. 2. Finally, let us say something about the
rescaled Riemannian metric on the hypersurfaces of constant areal time. The proof is
also to be found at the end of Sect. 2.

Proposition 1. Consider a metric of the form (5), where P , Q and λ satisfy (6)–(9).
Assume furthermore that P and Q are not both independent of θ for all t . Let ĝt be
the Riemannian metric induced on the hypersurface of constant areal time t , and let
gt = ĝt /τ

2(t0, t). Then gt is a metric on T 3, which can be written

gt = f1(t, θ)dθ2 + f2(t, θ)dδ2 + f3(t, θ)dδdσ + f4(t, θ)dσ 2.

The family f1(t, ·) of functions is bounded in C1 and from below by a positive constant,
for t ≥ t0 + 1. For i ≥ 2, k ≥ 0 and t ≥ t0 + 1, we have the following estimate,

‖fi(t, ·)‖Ck ≤ Ck

{ln[1 + τ(t0, t)]}αk

τ 2(t0, t)
,

where αk and Ck are positive constants.

Remark 3. By the conclusions of the proposition and theArzela-Ascoli theorem, there is,
for any time sequence tk → ∞, a subsequence such that f1(tk, ·) converges to a positive
continuous function (the limit function will of course be Lipschitz). Furthermore, it is
clear that the metric collapses in the two-torus direction defined by δ and σ . Finally, if
it were possible to improve the estimate (10) in such a way that the logarithms do not
occur, f1(t, ·) would be bounded in any Ck norm for t ≥ t0 + 1. In particular, in the
polarized Gowdy case, we have such bounds.

1.2. Bianchi VIII. For proofs of the statements made below, we refer the reader to [11]
and the references cited therein. We define Bianchi VIII spacetimes in terms of initial
data. Bianchi VIII initial data are given by (G, g, k), where G is a Lie group of Bianchi
type VIII (to be defined below), g is a left invariant metric, k is a left invariant symmetric
two tensor and g and k satisfy the constraint equations. In practice, G can be assumed
to be the universal covering group of Sl(2, R). However, in general, a Lie group G is
said to be of Bianchi type VIII if it has a basis e′

i of the Lie algebra satisfying

[e′
i , e

′
j ] = γ k

ij e
′
k,

with γ k
ij = εij ln

lk , where εij l is antisymmetric in all its indices, ε123 = 1, and nlk is
diagonal with diagonal components ni such that n1 < 0 and n2, n3 > 0. Given initial
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data, there is a basis e′
i satisfying the conditions of the previous sentence such that g is

orthonormal with respect to this basis and k is diagonal. We call such a basis a canonical
basis. Such bases are not unique, but it turns out that e′

1 is well defined up to a sign. Let
ki = k(e′

i , e
′
i ). Then the initial data are said to be of NUT type if k2 = k3 and n2 = n3.

Given initial data, one can construct a globally hyperbolic Lorentz manifold (I ×G, ḡ),
where I is an open interval and ḡ is of the form

ḡ = −dt2 +
3∑

i=1

a2
i (t)ξ

i ⊗ ξ i, (12)

where the ξ i are the duals of e′
i , a canonical basis, and ai(0) = 1. Finally Ric[ḡ] = 0

and the Riemannian metric and the second fundamental form induced on � = {0} × G

by ḡ are given by g and k, after identifying G with � in the obvious way. The devel-
opment is future causally geodesically complete and independent of the canonical basis
chosen. If the data are not of NUT type, the development is C2-inextendible, in fact, the
Kretschmann scalar (4) is unbounded to the past, cf. [8]. Finally, if the data are of NUT
type, a2(t) = a3(t) for all t .

We can, without loss of generality, assume G to be S̃l(2, R), the universal covering
group of Sl(2, R). Since S̃l(2, R) is diffeomorphic to R

3, it is of interest to know when
the geometry allows compactifications of the spatial hypersurfaces. In [11] we showed
that if � is a free and properly discontinuous subgroup of the isometry group of the initial
data (G, g, k), then {Id}×� is a free and properly discontinuous subgroup of the isometry
group of the development. By taking the quotient, we thus get developments such that the
corresponding CMC hypersurfaces have topology G/�. Furthermore, the compact man-
ifold G/� must be Seifert fibred and e′

1 corresponds to the Seifert fibre direction. We also
proved thata1 = l0+O(t−1) in the NUT case anda1(t) = c0(ln t)1/2[1+O(ln ln t/ ln t)]
in the non-NUT case. Furthermore ai(t)/t → αi > 0 for i = 2, 3. Thus, after rescaling,
the Seifert fibred spaces collapse as expected. Note that for each p > 1, there is a sub-
group �p of S̃l(2, R) such that the quotient of S̃l(2, R) by �p (when �p is viewed as a
group of isometries by acting on the left) is diffeomorphic to the unit tangent bundle of
a compact orientable surface of genus p with respect to some hyperbolic metric. Thus
all initial data allow infinitely many different compactifications. However, the following
holds.

Theorem 3. Consider a Bianchi VIII spacetime. If it is of NUT type, there are constants
c0, c1 > 0 and a T > 0, such that

c0t
−3 ≤ |R|(t) ≤ c1t

−3

for all t ≥ T . If it is of non-NUT type, there is a constant c0 > 0 such that

lim
t→∞ t ln t |R|(t) = c0.

Furthermore, there are constants ci > 0 and sequences ti,k → ∞, i = 1, 2, such that

lim
k→∞

t2
i,k(ln ti,k)

2κ(ti,k) = (−1)ici ,

where κ is defined in (4).
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The proofs of this result and the next are to be found in Sect. 3.
One can then ask the question if the Ricci curvature of the spatial hypersurfaces

behaves better. This turns out not to be the case in general, but there is in fact a time
sequence along which it behaves well.

Proposition 2. Consider a Bianchi VIII spacetime which is not of NUT type. Then there
are time sequences ti,k → ∞, i = 1, 2, and positive constants ci such that

lim
k→∞

t2
1,k(ln t1,k)

2(RijR
ij )(t1,k) = c1, t4

2,k(RijR
ij )(t2,k) ≤ c2,

where the last inequality is valid for all k, and Rij (t) denotes the Ricci tensor of the
spatial hypersurface of homogeneity defined by t , with metric induced by ḡ.

Remark 4. The time sequence t2,k corresponds to the induced Riemannian metric being
locally rotationally symmetric. Due to the existence of the sequence t1,k , the conjecture
embodied in the weak asymptotics problem is not correct.

2. Curvature Estimates for Gowdy

The expanding direction of Gowdy spacetimes was considered in [12]. The leading order
behaviour for the functions P , Q and λ was sorted out and (10) was proved to hold for
k = 0. In this paper, we are interested in the behaviour of curvature quantities, and thus
we need to concern ourselves with the asymptotic behaviour of higher order derivatives.

Proof (Theorem 1). By [12], we know that the conclusion holds for k = 0. Define

Ak,± = t

2
[(∂k

θ ∂tP ± ∂k+1
θ P )2 + e2P (∂k

θ ∂tQ ± ∂k+1
θ Q)2],

Ek(t) =
∑
±

‖Ak,±(t, ·)‖C0(S1,R).

Let us make the inductive assumption that

E
1/2
m (t) ≤ Cm(ln t)m

for m = 0, ..., k − 1 and t ≥ 2. Observe that since (10) holds for k = 0, this holds for
k = 1. Compute, for k ≥ 1,

(∂t ∓ ∂θ )Ak,± = I1,k,± + I2,k,±, (13)

where

I1,k,± = 1

2
{−(∂k

θ Pt )
2 + (∂k

θ Pθ )
2 + e2P [−(∂k

θ Qt )
2 + (∂k

θ Qθ)]}
−te2P (Pt ± Pθ)[(∂

k
θ Qt )

2 − (∂k
θ Qθ)

2]

+te2P (Qt ± Qθ)[(∂
k
θ Qt ∓ ∂k

θ Qθ)(∂
k
θ Pt ± ∂k

θ Pθ )

−(∂k
θ Qt ± ∂k

θ Qθ)(∂
k
θ Pt ∓ ∂k

θ Pθ )],
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and

I2,k,± = t{∂k
θ [e2P (Q2

t − Q2
θ )] − 2e2P (Qt∂

k
θ Qt − Qθ∂

k
θ Qθ)}(∂k

θ Pt ± ∂k
θ Pθ )

−2te2P
k−1∑
j=1

(
k

j

)
[∂j

θ Pt∂
k−j
θ Qt − ∂

j
θ Pθ∂

k−j
θ Qθ ](∂k

θ Qt ± ∂k
θ Qθ).

Fix θ and define γ±(u) = (u, θ ± u). For f : R+ × S1 → R, let f± = f ◦ γ±. Note
that

∂uf± = [(∂t ± ∂θ )f ]±.

Compute

Ak,±[γ∓(u)] = Ak,±[γ∓(u0)] +
∫ u

u0

[(∂t ∓ ∂θ )Ak,±]∓(t)dt. (14)

Note that we have (13) and that each of the terms in I1,k,± ◦ γ∓ can be written, disre-
garding numerical factors, as a sum of terms of the form

f1∓f2∓∂uf3∓.

Here, the possibilities for f1 are

1, e2P , ue2P (Pu ± Pθ), ue2P (Qu ± Qθ), (15)

the corresponding estimates for |f1| and |∂uf1∓| being, respectively,

1, Ce2P , Cu1/2e2P , Cu1/2eP and 0, Cu−1/2e2P∓ , Ce2P∓ , CeP∓ ,

where we have used (6)–(7) and the fact that (10) holds for k = 0. The possibilities for
f2 are

(∂u ± ∂θ )∂
k
θ P, (∂u ± ∂θ )∂

k
θ Q, (16)

the corresponding estimates for |f2| and |∂uf2∓| being, respectively

u−1/2E
1/2
k , u−1/2e−P E

1/2
k and u−1E

1/2
k + (ln u)k

u
, e−P∓

[
u−1E

1/2
k + (ln u)k

u

]
,

(17)

up to numerical factors. The reason for the latter is that

∂u[(∂u ± ∂θ )∂
k
θ P ]∓ = [∂k

θ (Puu − Pθθ )]∓ =
{
− 1

u
∂k
θ Pt + ∂k

θ [e2P (Q2
t − Q2

θ )]

}
∓

.

The first term on the right hand side satisfies a better estimate than the second to last
expression in (17), and the terms resulting from the second term when at least one deriv-
ative hits the factor e2P are also better. What remains to be considered are terms of the
form

[e2P (∂
j1
θ Qt∂

j2
θ Qt − ∂

j1
θ Qθ∂

j2
θ Qθ )]∓,
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where j1 + j2 = k. These terms can be estimated by the second to last expression in
(17) due to the induction hypothesis. The argument for the second possibility for f2 is
similar. The possibilities for f3 are ∂k

θ P, ∂k
θ Q, and the corresponding estimates for |f3|

are

(ln u)k−1

u1/2 , e−P (ln u)k−1

u1/2

due to the induction hypothesis (note that k ≥ 1). Consider
∫ u

u0

I1,k,± ◦ γ∓(t)dt.

Up to numerical factors, this integral can be written as a sum of terms of the form
∫ u

u0

f1∓f2∓∂tf3∓dt = [f1∓f2∓f3∓]uu0
−

∫ u

u0

[∂tf1∓f2∓f3∓ + f1∓∂tf2∓f3∓]dt.

Note that not all combinations occur and that when taking the products, all factors of
eP in the estimates cancel. Using the definition of I1,k,± and the estimates written down
above, we get

∣∣∣∣
∫ u

u0

I1,k,± ◦ γ∓(t)dt

∣∣∣∣ ≤ C + C
(ln u)k−1

u1/2 E
1/2
k (u)

+C

∫ u

u0

[
(ln t)k−1

t
E

1/2
k (t) + (ln t)2k−1

t

]
dt.

Let us turn to I2,k,±. Up to numerical factors, the first term can be written as a sum of
terms of the form

t∂
j1
θ P · · · ∂jl

θ P e2P (∂
m1
θ Qt∂

m2
θ Qt − ∂

m1
θ Qθ∂

m2
θ Qθ )(∂

k
θ Pt ± ∂k

θ Pθ ),

where ji ≥ 1, mi ≤ k − 1 and j1 + · · · + jl + m1 + m2 = k. Using the induction
hypothesis, this can be estimated by

C
(ln t)k−l

t (l+1)/2
E

1/2
k (t).

If l ≥ 1, this estimate is as good as what we already have, so let us consider terms of the
form

te2P (∂
m1
θ Qt∂

m2
θ Qt − ∂

m1
θ Qθ∂

m2
θ Qθ )(∂

k
θ Pt ± ∂k

θ Pθ ),

where m1 + m2 = k but mi ≤ k − 1. Note that

∂
m1
θ Qt∂

m2
θ Qt − ∂

m1
θ Qθ∂

m2
θ Qθ = 1

2
[(∂m1

θ Qt ± ∂
m1
θ Qθ )(∂

m2
θ Qt ∓ ∂

m2
θ Qθ )

+(∂
m1
θ Qt ∓ ∂

m1
θ Qθ )(∂

m2
θ Qt ± ∂

m2
θ Qθ )].

In other words, we need only concern ourselves with terms of the form

te2P (∂
m1
θ Qt ± ∂

m1
θ Qθ )(∂

m2
θ Qt ∓ ∂

m2
θ Qθ )(∂

k
θ Pt ± ∂k

θ Pθ ).
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We can then argue as before, with f1 = te2P (∂
m1
θ Qt ± ∂

m1
θ Qθ ), f2 = (∂k

θ Pt ± ∂k
θ Pθ )

and f3 = ∂
m2
θ Q. Note that since m1 + m2 = k and mi ≤ k − 1, we have mi ≥ 1. The

arguments for the remaining terms in I2,k,± are similar, and by (13) we get

∫ u

u0

[(∂t ∓ ∂θ )Ak,±]∓(t)dt ≤ C + C
(ln u)k−1

u1/2 E
1/2
k (u)

+C

∫ u

u0

[
(ln t)k−1

t
E

1/2
k (t) + (ln t)2k−1

t

]
dt.

Taking the supremum of the right hand side in (14), we thus get

Ak,±[γ∓(u)] ≤ ‖Ak,±(u0, ·)‖C0(S1,R) + C + C
(ln u)k−1

u1/2 E
1/2
k (u)

+C

∫ u

u0

[
(ln t)k−1

t
E

1/2
k (t) + (ln t)2k−1

t

]
dt.

Taking the supremum of the left hand side (note that there is a θ hidden in γ±) and
adding the two estimates, we get

Ek(u) ≤ C + C
(ln u)k−1

u1/2 E
1/2
k (u)

+C

∫ u

u0

[
(ln t)k−1

t
E

1/2
k (t) + (ln t)2k−1

t

]
dt.

Note that

C
(ln u)k−1

u1/2 E
1/2
k (u) ≤ 1

2
C2 (ln u)2k−2

u
+ 1

2
Ek(u).

Defining

Êk(u) = Ek(u) + (ln u)2k,

we thus get the estimate

Êk(u) ≤ C + C

∫ u

u0

[
(ln t)k−1

t
E

1/2
k (t) + (ln t)2k−1

t

]
dt

≤ C + C

∫ u

u0

(ln t)k−1

t
Ê

1/2
k (t)dt.

By a Grönwall’s lemma type argument, we conclude that

Êk(u) ≤ Ck(ln u)2k

for u ≥ u0. This completes the induction proof. ��
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Before we come to the curvature estimate, let us define

τ(t, t0) = sup
γ

∫ t

t0

[−〈γ ′(s), γ ′(s)〉]1/2ds, (18)

where the supremum is taken over smooth timelike curves γ (s) = [s, x(s)], where x

takes values on T 3. Note that for an arbitrary smooth timelike curve joining the hyper-
surface corresponding to t0 with the hypersurface corresponding to t , one can change
the parameterization so that it is of the above mentioned form.

Proposition 3. Consider a metric of the form (5), where P , Q and λ satisfy (6)–(9).
Assume furthermore that P and Q are not both independent of θ for all t . Given t0 > 0
there are positive constants c(t0) and C(t0) such that for t ≥ t0 + 1,

c(t0)t
−1/4e〈λ〉(t)/4 ≤ τ(t, t0) ≤ C(t0)t

−1/4e〈λ〉(t)/4. (19)

Proof. Note that since (10) holds for k = 0, |λθ | is bounded to the future, and conse-
quently,

|λ(t, θ) − 〈λ〉(t)| ≤ C(t0) (20)

for t ≥ t0. Let us estimate

t1/4e−〈λ〉(t)/4
∫ t

t0

[−〈γ ′(s), γ ′(s)〉]1/2ds

≤
∫ t

t0

(
t

s

)1/4

exp{[λ(s, θ(s)) − 〈λ〉(t)]/4}ds

≤ C(t0)

∫ t

t0

(
t

s

)1/4

exp{[〈λ〉(s) − 〈λ〉(t)]/4}ds.

However, by Theorem 1.6 of [12] we have

|〈λt 〉(t) − c0| ≤ C(t0)t
−1 (21)

for t ≥ t0, where c0 > 0, assuming the solution is not independent of θ . Thus

〈λ〉(s) − 〈λ〉(t) ≤ −c0(t − s) + C(t0) ln
t

s
.

We conclude that

t1/4e−〈λ〉(t)/4
∫ t

t0

[−〈γ ′(s), γ ′(s)〉]1/2ds

≤ C(t0)

∫ t

t0

(
t

s

)α(t0)

exp[−c0(t − s)/4]ds

= C(t0)

∫ 1

t0/t

u−α(t0) exp[−c0t (1 − u)/4]tdu.
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If t ≤ 2t0, this integral is bounded. If t ≥ 2t0 we can divide the integral into two parts.
Let us estimate∫ 1

1/2
u−α(t0) exp[−c0t (1 − u)/4]tdu ≤ 2α(t0)

∫ 1

1/2
exp[−c0t (1 − u)/4]tdu

≤ 4

c0
2α(t0).

We also have∫ 1/2

t0/t

u−α(t0) exp[−c0t (1 − u)/4]tdu ≤ 4

c0

(
t

t0

)α(t0)

exp[−c0t/8]

which is bounded by a constant depending on t0. Note that the constants involved in the
arguments above are independent of the curve γ . Thus

τ(t, t0) ≤ C(t0)t
−1/4e〈λ〉(t)/4.

In order to get the opposite inequality, consider the curve γ (s) = (s, x0), where x0 is a
fixed point on T 3. We get

t1/4e−〈λ〉(t)/4
∫ t

t0

[−〈γ ′(s), γ ′(s)〉]1/2ds =
∫ t

t0

(
t

s

)1/4

exp{[λ(s, θ0) − 〈λ〉(t)]/4}ds

≥ c(t0)

∫ t

t0

exp{[〈λ〉(s) − 〈λ〉(t)]/4}ds,

where c(t0) is a positive constant. Assuming t ≥ t0 + 1, we can use (21) to prove that∫ t

t0

exp{[〈λ〉(s) − 〈λ〉(t)]/4}ds ≥
∫ t

t−1/2
exp{[〈λ〉(s) − 〈λ〉(t)]/4}ds

≥ c(t0) > 0.

The proposition follows. ��
Proof (Theorem 2). Note that there is no loss of generality in choosing the vectors
orthogonal to e0 to be

e1 = t1/4e−λ/4∂θ , e2 = t−1/2e−P/2∂σ , e3 = t−1/2eP/2(−Q∂σ + ∂δ).

It will be convenient to introduce the notation φ = t1/4e−λ/4. Note that

c(t0) ≤ φ(t, θ)τ (t0, t) ≤ C(t0) (22)

for t ≥ t0 + 1 and θ ∈ S1 due to (20) and (19). Let �α
βγ eα = ∇eβ eγ . Then

〈Reµeν eα, eβ〉 = eν(�
δ
µα)ηδβ − eµ(�δ

να)ηδβ + �δ
µα�κ

νδηκβ − �δ
να�κ

µδηκβ

+ηδβγ κ
µν�

δ
κα,

where η is the Minkowski metric and where [eα, eβ ] = γ κ
αβeκ defines γ κ

µν . The above
formulas indicate what sign conventions we are using. One can check that all the terms
except eν(�

δ
µα)ηδβ − eµ(�δ

να)ηδβ can be estimated by φ2. Furthermore, due to the esti-
mate (10), one sees that the only problem consists in second derivatives of λ. However,
one can check that these derivatives only occur in the combination λtt − λθθ which is
O(t−1/2) due to (10) and the equations. This proves that |R| ≤ Cφ2, which together
with (22) proves (11). ��
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Proof (Proposition 1). Let f1 = φ−2τ−2(t0, t), using the notation of the previous proof.
Due to (22), we conclude that f1(τ, ·) is bounded from above and from below by positive
constants. Since λθ is bounded, due to (10) for k = 0, ∂θf1 is bounded. The conclusions
concerning f1 follow. Note that if we had an estimate of the form (10) without the log-
arithms, ∂k

θ λ would be bounded to the future for any k ≥ 1, and consequently f1(t, ·)
would be bounded in any Ck norm for t ≥ t0 + 1. Due to the results of [12], P does not
grow faster than logarithmically and Q does not go to infinity faster than polynomially.
Combining this information with (10), we conclude that ∂k

θ P converges to zero for any
k ≥ 1 and that ∂k

θ Q does not grow faster than polynomially. Due to (19) and the fact
that 〈λ〉 = c0t + O(ln t), where c0 > 0, cf. (21), we conclude that for large t , t and
ln[1 + τ(t0, t)] are equivalent. Adding these pieces together, we get the conclusions of
the proposition. ��

3. Bianchi VIII

In this section we prove Theorem 3 and Proposition 2. The results necessary in order
to carry out the computations are all taken from [11]. However, we refer the reader to
[10] and the appendices of [9] for more details on curvature computations in the current
setting.

Proof (Theorem 3). Let e0 = ∂t and ei = (ai)
−1e′

i (no summation) for i = 1, 2, 3, with
terminology as in Subsect. 1.2. Let Greek indices range from 0 to 3 and Latin indices
from 1 to 3. Define [eα, eβ ] = γ δ

αβeδ . Due to the form (12) and the fact that e′
i is a

canonical basis, we have γ 0
ij = γ 0

0i = 0. Furthermore, we can define n, θ and k by

γ k
ij = εij ln

lk, γ i
0j = −θij and k(ei, ej ) = 〈∇ei

e0, ej 〉.

Then nlk is diagonal, and the diagonal components will be denoted by ni . Furthermore
θij is diagonal, and coincides with −k(ei, ej ). In what follows, we shall raise and lower
Latin indices with δij , and we shall consequently not be very careful when it comes
to indices being upstairs or downstairs. Let θ denote the trace of θij and let σij be the
traceless part. Since θ is never zero in the case of Bianchi VIII, cf. Lemma 21.5 of [9],
we can define

�ij = σij

θ
, Ni = ni

θ
, �+ = 3

2
(�22 + �33), �− =

√
3

2
(�22 − �33).

The relevant curvature quantities can be written

κ = Rαβγ δR
αβγ δ = 8(EijE

ij − HijH
ij ), |R|2 = 8(EijE

ij + HijH
ij ),

where

Eij = 1

3
θσij −

(
σ k

i σkj − 1

3
σklσ

klδij

)
+ sij ,

Hij = −3σk
(inj)k + nklσ

klδij + 1

2
tr(n)σij ,

sij = bij − 1

3
tr(b)δij ,

bij = 2n k
i nkj − tr(n)nij ,
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cf. p. 19 and p. 40 of [15]. Note that Eij and Hij define diagonal traceless matrices. In
order to relate these expressions to the variables defined above, it will be convenient to
define H̃i = Hii/θ

2, Ẽi = Eii/θ
2. Then

H̃1 = N1�+ + 1√
3
(N2 − N3)�−,

H̃2 = −1

2
N2(�+ +

√
3�−) + 1

2
(N3 − N1)

(
�+ − 1√

3
�−

)
,

Ẽ2 − Ẽ3 = 2

3
√

3
�−(1 − 2�+) + (N2 − N3)(N2 + N3 − N1),

Ẽ2 + Ẽ3 = 2

9
�+(1 + �+) − 2

9
�2

− − 2

3
N2

1 + 1

3
(N2 − N3)

2 + 1

3
N1(N2 + N3).

Note that all other components of Ẽi and H̃i can be computed from this due to the fact
that Eij and Hij both define traceless matrices.

Let us consider the case when the initial data are of NUT type. The relevant state-
ments concerning the asymptotics are then to be found on pp. 1955–1956 of [11]. In this
case �− = 0, N2 = N3 and∣∣∣∣�+ − 1

2

∣∣∣∣ +
∣∣∣∣(N1N2)(τ ) + 1

4

∣∣∣∣ +
∣∣∣N2e

−3τ/2 − cN

∣∣∣ ≤ Ce−3τ/2

for some positive constants cN and C and for τ ≥ 0. Furthermore, there are positive
constants cθ , C such that ∣∣∣∣ 1

θ(τ )
− cθ e

3τ/2
∣∣∣∣ ≤ C

for τ ≥ 0. Finally, t and τ are related through

|t (τ ) − 2cθ e
3τ/2| ≤ C(1 + τ)

for all τ ≥ 0. We conclude that H̃i and Ẽi are all O(e−3τ/2) = O(θ). We conclude that
|R|2 = O(θ6) = O(t−6). This proves the upper bound in the theorem. In order to prove
the lower bound, we need only observe that

lim
t→∞ tH̃1 = − cθ

4cN

�= 0.

Let us consider the general case. The necessary information is contained in Proposition
6, Corollary 7 and Corollary 8 of [11]. Note that in these results,

h := �2
− + 3

4
(N2 − N3)

2, v := −N1(N2 + N3) − 1

2
, u := �+ − 1

2
.

We have

�2
− + 3

4
(N2 − N3)

2 = 1

4τ
+ O

(
ln τ

τ 2

)
, �+ = 1

2
+ O(τ−1) (23)

and

N1(N2 + N3) = −1

2
+ O(τ−2).
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By (82) of [11], we also have

N2 = cNτ−3/4e3τ/2
[

1 + O

(
ln τ

τ

)]
(24)

for some positive constant cN . In combination with the above equations, this proves that
N1 converges to zero exponentially. In view of the above equations, we have

H̃1 = O(τ−1),

H̃2 = −1

2
N2(�+ +

√
3�−) + 1

2
N2

(
�+ − 1√

3
�−

)
+ O(τ−1/2)

= − 2√
3
N2�− + O(τ−1/2),

Ẽ2 − Ẽ3 = 2N2(N2 − N3) + O(τ−1),

Ẽ2 + Ẽ3 = O(τ−1),

Thus

θ−4|R|2 = 8

[
3

2
(Ẽ2 + Ẽ3)

2 + 1

2
(Ẽ2 − Ẽ3)

2 + H̃ 2
1 + H̃ 2

2 + (H̃1 + H̃2)
2
]

= 8[2N2
2 (N2 − N3)

2 + 8

3
N2

2 �2
− + N2O(τ−1)]

= 64

3
N2

2 [�2
− + 3

4
(N2 − N3)

2 + N−1
2 O(τ−1)].

Taking (23) into account, we conclude that

lim
τ→∞ τN−2

2 θ−4|R|2 = 16

3
. (25)

On p. 1972 of [11], it is shown that there is a positive constant αθ such that

1

θ
= αθ

τ 1/4 e3τ/2
[

1 + O

(
ln τ

τ

)]
, t = 2αθ

τ 1/4 e3τ/2
[

1 + O

(
ln τ

τ

)]
.

Combining this with (24), we conclude that there are positive constants ci , i = 1, 2, 3,
such that

lim
τ→∞ t−2(τ )τN2

2 (τ ) = c1, lim
τ→∞ t (τ )θ(τ ) = c2, lim

τ→∞ τ [ln t (τ )]−1 = c3.

Combining this with (25), we conclude that there is a positive constant c0 such that

lim
t→∞ t ln t |R|(t) = c0.

Since there are sequences τi,k → ∞, i = 1, 2, such that �−(τ1,k) = 0 and (N2 −
N3)(τ2,k) = 0, cf. [11], the conclusions concerning the Kretschmann scalar follow by
similar arguments. ��
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Proof (Proposition 2). Let Ric denote the Ricci curvature of a spatial hypersurface of
homogeneity. One can compute that

Ric(ei, ej ) = 2nikn
k
j − tr(n)nij − nklnklδij + 1

2
[tr(n)]2δij ,

with terminology as in the proof of Theorem 3. Let Ri = Ric(ei, ei). We get

θ−2R1 = 1

2
N2

1 − 1

2
(N2 − N3)

2, θ−2R2 = 1

2
N2

2 − 1

2
(N1 − N3)

2

and similarly for R3. We see that θ−2R1 tends to zero and that

θ−2R2 = 1

2
(N2 + N3)(N2 − N3) − 1

2
N2

1 + N1N3.

The statement concerning R3 is similar. Note that there are time sequences τi,k → ∞,
i = 1, 2, such that

lim
k→∞

(N2 − N3)(τ1,k)τ
1/2
1,k = c0,

for some positive constant c0, and such that (N2 − N3)(τ2,k) = 0. Once one has made
the above observations, the argument is similar to the end of the proof of Theorem 3.
��
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