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Gravitational waves from coalescing massive
black holes in young dense clusters
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Abstract.
HST observations reveal that young massive star clusters form in gas-rich environments like the

Antennæ galaxy which will merge in collisional processes toform larger structures. These clusters
amalgamate and if some of these clusters harbour a massive black hole in their centres, they can
become a strong source of gravitational waves when they coalesce. In order to understand the
dynamical processes that are into play in such a scenario, one has to carefully study the evolution of
the merger of two of such young massive star clusters and morespecifically their respective massive
black holes. This will be a promising source of gravitational waves for both, LISA and the proposed
Big Bang Observer (BBO), whose first purpose is to search for an inflation-generated gravitational
waves background in the frequency range of 10−1−1 Hz. We used high-resolution direct summation
N−body simulations to study the orbital evolution of two colliding globular clusters with different
initial conditions. Even if the final eccentricity is almostnegligible when entering the bandwidth, it
will suffice to provide us with detailed information about these astrophysical events.

MOTIVATION

Nowadays it is well established that massive stellar clusters form in interacting galax-
ies. High-resolution Hubble Space Telescope Observationsof the Antennæ [1, 2] or
Stephan’s Quintet [3] show that hundreds of young massive star clusters are lurking in
the star forming regions and that they are clustered into larger clusters of a∼ few 100 pc.
The images also reveal that only a few of these clusters are reddened, thus suggesting that
the gas has been already removed in most of them. Since they harbour∼ 105 stars within
∼ 1− few parsecs and are older than 5 Myr, they are most likely to bebound clusters. Su-
pernova explosions originating from stars with a mass larger than 8M⊙ only contribute
to the total cluster mass -which for∼ 107−105 stars is aboutMcl ∼ 107−105M⊙- in
about∼ 10%. Stars more massive than 2M⊙ contribute in only∼ 25% to the total, so
that the clusters are very likely to be bound.

The so-calledclusters complexeshave been employed in the literature as a possibility
to build compact dwarf galaxies as a result of the amalgamation of their smaller clusters
constituents [4, 5] in collisional processes. On the other hand, it has been studied by
different authors how in such a young dense cluster collisional processes among the
heaviest stars that segregate to the centre because of dynamical friction might lead
to the formation of a very massive star [6, 7, 8, 9]. Such star will become unstable
and thus possibly create a massive black hole in their centrewith a mass ranging
between 102−104M⊙ -which therefore receives the surname ‘intermediate-mass’ black
hole (IMBH)-. This means that the young dense clusters in thecluster complexes are
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FIGURE 1. Initial set up for a parabolic collision in the centre-of-mass of both clusters

possibly guarding an IMBH in their centres; since the clusters merge with each other,
the respective IMBHs will have, at least, the possibility offorming a bound system.
Whether or not they will merge within a Hubble time and what the implications for
LISA and the BBO would be, is something to be analysed numerically.

HOW TO MERGE TWO YOUNG DENSE CLUSTERS

The clusters were set on to a parabolic orbit so that the minimum distance at which they
pass by isdmin of Fig. (1) if they are considered to be a point particle at that moment. In
the centre of mass reference frame of both clusters, as shownin the figure, we have that
x1 = λ2d, x2 = −λ1 d, v1 = λ2vrel andv2 = −λ1 vrel; wherevrel is the relative velocity
of the clusters,x1,2 their positions (if we regard them to be a point mass, or to their
centres) andλ1,2 = m1,2/(m1+m2)

From the reduced particle standpoint, we have to determined and vrel when the
separation isd (which is given as an initial condition). Since the reduced mass is
µ = m1m2/(m1+m2), for a parabolic orbit we have that the energy at the pericentre
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We resort finally to the definition of parabola to obtain the required expressions forx
andy, 2dmin−x = d, so thatx = d−2dmin andy =

√
d2−x2.

For the model presented in this work, we chose a system withdmin = 2 pc, correspond-
ing to a relative velocity at pericentre of 23.3 km/s. The clusters will always merge and
form a larger cluster, because they are initially set in a parabolic orbit. The number of
stars used for each cluster isN⋆ = 6.3×104, the masses of they set to 6.3×104M⊙ and
we used for the initial distribution a King model of concentrationW0 = 7 (cluster 1) and
W0 = 6 (cluster 2). The central velocity dispersions were set toσcore1= 8.41 km/s and
σcore2= 8.29 km/s (hereafter the subscripts 1 and 2 stand for the cluster 1 and 2), with
core radii ofRcore1= 0.203 pc andRcore2= 0.293 pc. Both clusters host additionally an
IMBH of mass 300M⊙ in their centres.

The simulation was performed on a special-purpose hardwareGRAPE-6A single PCI
card with a peak performance of 130 Gflops [10], roughly equivalent to 100 single
PCs, with the direct-summation NBODY4 code of Aarseth [11].This choice was made
for the sake of the accuracy of the study of the orbital parameters evolution of the
binary of IMBHs; for this numerical tool includes both theKS regularisationandchain
regularisation, which means that when two or more particles are tightly bound to each
other or the separation among them becomes very small duringa hyperbolic encounter,
the system becomes a candidate to be regularised in order to avoid problematical small
individual time steps. The basis of direct NBODY4 codes relies on an improved Hermit
integrator scheme [12] for which we need not only the accelerations but also their
time derivative. The computational effort translates intoaccuracy and this way we can
reliably follow track of the orbital evolution of every single particle in our system. Other
alternative codes that add a softening to the gravitationalforces (i.e. substituting the 1/r2

factor with 1/(r2 + ε2), wherer is the radius andε the softening parameter) in order to
avoid them to become too large are to be discarded if we want tobefittingly make a
highly accurate estimate of the orbital evolution of the IMBHs system (for at a certain
point in the evolution of the binary the separation∼ ε) which is the final purpose of our
numerical study.

DYNAMICS AND GEOMETRY OF THE SYSTEM

In Fig. (2) we show nine snapshots of the merger of the two clusters and the position
of the IMBHs marked with a black dot. The nine snapshots show the evolution of the
clusters merger forT = 0, 54, 66, 76, 110, 128, 146, 152 and 192UTNB N−body time
units, which correspondingly areT = 0,2.77, 3.19, 4.62, 5.37, 6.13, 6.38 and 8.06
Myrs. We can clearly observe an exchange of stars between theclusters already after
the first cluster interaction (the corresponding “red” stars do not show up in the “blue”
cluster because the blue colour overwrites the red). As shown in Fig. (3), the binary
of intermediate-mass black holes hardens steadily. We obtain theclassicalvalue of the
hardening constant H≃ 16 [13, 14].

In Fig. (4) we show the evolution of the triaxiality of the cluster formed as a result
of the merger of the two cluster for our fiducial model. In the figure, a, b and c –with
a> b> c ab definitio– are the semi-major axes of the ellipsoid of inertia, determined by



FIGURE 2. Projection in the X-Y plan of the trajectory of every single particle in the process of merger
of the two young dense clusters. See text for further details

FIGURE 3. Evolution of the semi-major axis of the massive black hole binary

four different mass fractions of the stars which were distributed according to the amount
of gravitational energy. This means that the lower the mass fraction is, the closer we are
to the centre of the resulted merged system. We can clearly see that the system resulting
of a realistic parabolic cluster merger has a shorter axis and two approximately equal
longer axes, but larger than the third one,a∼ b > c, which means that it is manifestly
oblate and not prolate. We can also observe that the binary ofIMBHs makes the system
more spherical in the centre than at larger distances, whereit is flatter. This is so because
the flattening depends on the gravitational and centrifugalforces of the cluster, its size,



FIGURE 4. Triaxiality of the resulting merged cluster for different mass fractions (left panel) and for
the mass fraction 0.5 (right panel)

rotation and density of stars. For the case of two galactic nuclei harbouring massive black
holes, this would translate into a clear danger of hang-up ofthe binary or stalling; i.e.
there would not be enough stars to strongly interact with thebinary of massive black
holes because the loss-cone -a phase space region where stars can interact with the
central object/s in one crossing time, [15, 16, 17]- would remain depleted because of
the lack of centrophilic orbits in an axially symmetric potential. In the case studied here,
though, this is not the case, because the ratio of relaxational to dynamical timescales is
small due to the lower number of stars in the system.

IMPLICATIONS FOR LISA AND THE BBO: GENERAL
DISCUSSION ON NBODY4 PROSPECTS FOR

LOWER-FREQUENCY GRAVITATIONAL-WAVES
ASTROPHYSICS

After a strong dynamical evolution with the surrounding stars of the merged cluster
in which the IMBHs are embedded, the evolution is dominated by gravitational wave
emission during the last 108 yrs. The evolution from the moment the binary is bound
takes∼ 160 Myrs and enters the LISA bandwidth (i.e. has an orbital period of less than
104 sec) on an almost circular orbit (for a more detailed description of the final stage of
the evolution see [18]). For the work presented here we performed also a parallel test
simulation including the possibility that stars are tidally disrupted by the IMBHs binary
if they enter the tidal disruption radius of one of the IMBHs but these effects are almost
insignificant in terms of the description of the parameter space of the IMBH binary and
thus negligible for the main purpose of this study. In any case, the “final” eccentricity
of the binary (the eccentricity it achieves by entering the LISA band) is almost zero;
i.e. the binary has almost totally circularised. We can expect an event rate of between



four and five of these events per year for LISA [18]. As for the detectability of the
gravitational waves emitted by the IMBH binary as it inspirals and merges, in [18] we
show the amplitude ratio assuming a coherent integration (matched filtering) over the
observation time. For both observatories, LISA and the BBO,only the n = 2 harmonic
of the quadrupolar emission is clearly detectable during the last few years of inspiral at
1 Gpc, since it is dominant for low eccentricity binaries; some higher (odd) harmonics
depend on the mass ratio and are zero for equal mass (for zero eccentricity orbits). The
eccentricity is so low (10−3) that the source should be closer than∼ 50−100 Mpc to be
detectable.

For the data analysis of these sources, it is very important to know the phase of the
gravitational wave; a missmatch even in one single cycle canreduce the signal to noise
ratio (SNR). In practice, since we do not know the parametersof the gravitational wave
signal, we will search over a large parameter space (including the masses of the objects,
the eccentricity etc) and the template with largest SNR willbe chosen. The highest SNR
will be achieved by resorting to templates with parameters close to the actual ones.
However, there are some correlations between the parameters, so that one can compute
the level of correlation and the error bar on the parameter determination. For strong
signals with long duration within the detector band, we needto know the waveform
(more specifically the phase) very accurately. The eccentricity affects the phase as well
as the amplitude. Since the analysis is very sensitive to even a tiny change in phase, we
can expect that one will be able to subtract the necessary information of the waveforms
of the event to identify it, due to the induced detectable phase shift of the residual
eccentricity (Bernard Schutz personal communication).

The space-borne LISA mission will fly in∼ 10 yrs and critical design choices affect-
ing the ability to detect this kind of events will have to be made soon. It is of big im-
portance to produce robust estimates for the rates and typical orbital parameters of these
and other events interesting for the detection of gravitational waves (extreme mass-ratio
inspirals, for instance) in order to develop a detection template family. This detection
template family consists of a bank of waveforms. It is relatively fast to generate wave-
forms depending on the initial conditions and mass ratio, but not fast enough if one
wants to have a bank of them. If we want to rigorously explore the parameter space of
these events, we need realistic Astrophysical estimates ofthe eccentricity, mass ratio etc
at the beginning of the final merger, “one step before” the objects enter the LISA band.
An assumption for the initial parameter space is necessary in order to develop wave-
form banks. For instance, in the case of an inspiral search, we know that majority -if
not all- of binaries entering the bandwidth of ground-baseddetectors like LIGO will be
circular. This allows us to significantly simplify the studyof the parameter space. Sim-
ilarly, in the case of space-born detectors like LISA, we need to better understand what
we will observe and so focus our efforts on the part of the parameter space that from
which we expect the largest contribution, even if our final aim is to cover the whole pa-
rameter space. For this, an Astrophysical understanding ofthe scenario is of paramount
importance. The high-accuracy, Astrophysical numerical simulations performed with a
direct-summation NBODY4 will shed light on many of these aspects by studying realis-
tic astrophysical scenarios with relativistic corrections, which have been added recently,
and arbitrary geometries [19, 11]. The biggest impact on data analysis is a realistic esti-
mation of the event rate above a fixed SNR and possibly also as afunction of the SNR



itself. The models one can develop with these numerical tools have no precedents be-
cause of the inclusion of non-symmetry, rotation and relativistic corrections. A realistic
estimation of the parameter space is crucial for the data analysis of LISA gravitational
waves. A too small event rate and signals with smaller SNR will require a method sim-
ilar to ground based gravitational waves analysis. This will imply the need for digging
out of signals from the noise with only a few overlapping signals in the data stream. On
the other hand, in the case of having a large even rate, many overlapped signals would
probably require different data analysis algorithms to make a parameter estimation.
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