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Small molecules offer exciting opportunities for plant science.

So far, bioactive small molecules have been identified as plant

hormones, herbicides, growth regulators, or taken from animal

research. Recently, plant scientists have started to explore

further the chemical space for novel modulators of plant

hormone signalling, and have followed up this work with

exciting discoveries illustrating the potential of small molecules

such as brassinazole and sirtinol. New chemical genetic

screens have been designed to generate chemical tools for the

investigation of membrane trafficking, gravitropism and plant

immunity. Further novel ‘chemetic’ tools to identify targets and

modes of action are currently generated through an intimate

interdisciplinary collaboration between biologists and small

molecule chemists.
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Introduction
Small molecules (<500 Da) are a common good in plants.

In fact, plants thrive because of small molecules. Most

important are the plant hormones auxin, salicylic acid,

cytokinin, gibberellic acid, abscisic acid, brassinosteroid,

jasmonate and ethylene, all of which are small molecules.

Plants also produce a tremendously broad repertoire of

other small molecules, called secondary metabolites [1].

Many of these molecules are produced under stress

conditions, protecting plants against challenges such as

cold, UV light or pathogens, yet the mode of action of

most of these compounds is unknown.

Owing to the key role of plant hormones, the plant

research community has a long history in studying small

molecules on whole organisms. Also, the use of ‘non-self’

bioactive compounds has clearly penetrated plant

research, and these compounds are now widely used to
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study the role of some enzymes or processes. Table 1 and

Figure 1 provide examples of these bioactive compounds.

Most of these bioactive compounds were first described in

animal model systems, and later directly used in plant

research. The effect of these compounds on plants is very

often similar to that described in animal systems, indi-

cating that the targeted proteins are well conserved. This

observation, however, does not always hold true, because

plants also have unique features. Mastoparan, for

example, activates mitogen-activated protein (MAP)

kinases by inhibiting G proteins in animals, but in plants

it activates MAP kinases in the absence of G proteins [2�].
Furthermore, caspase inhibitors (e.g. VAD-cmk) in plants

also inhibit vacuolar processing enzymes, subtilisin-like

serine proteases and, most likely, other unidentified

enzymes [3�,4�].

Screens for herbicides and growth regulators have pro-

vided the plant research community with yet another

series of bioactive compounds. These screens were per-

formed by agrochemical companies but the details of

these screens have not entered the public domain.

Examples are the herbicide isoxaben and the plant pro-

tectant benzothiadiazole (BTH, BIONTM). Isoxaben-

insensitive mutants have provided essential information

on the mechanism of cellulose production [5,6] and BTH

is frequently employed in plant research to induce

systemic acquired resistance [7].

Although it is evident that diverse plant processes can be

manipulated with small molecules, systematic screening

for novel modulators has been limited to only a few

studies in recent years (Table 2). Some of these chemical

genetic screens were followed up by characterization of

chemical-insensitive mutants and identification of the

corresponding genes. More chemical genetics screens

have been initiated in the past year to explore other

plant processes. Here, we summarize the most recent

achievements, their impact on the field and the problems

encountered.

Versatile cytochrome P450 inhibitors
The triazol-type cytochrome P450 inhibitors have offered

tremendous opportunities for research on plant hor-

mones. Originally, triazole-type inhibitors were selected

as effective fungicides and herbicides because they block

the steroid biosynthesis by inhibiting cytochrome P450

monooxygenases. It was later found that the fungicide

uniconazole also inhibits the biosynthesis of the plant

hormone gibberellic acid (Figure 2) [8], and subsequent

research on these triazoles resulted in inhibitors of bras-

sinosteroid biosynthesis and abscisic acid catabolism.
www.sciencedirect.com
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Table 1

Bioactive compounds used in plant research.

Numbera Compound MW (Da) Function/target Refs

Modulators of phosphorylation

– Mastoparan 1478.8 MAP kinase activator [2�]

1 PD98059 372.41 MAP kinase kinase inhibitor [42]

2 K-252a 467.47 Kinase inhibitor [43]

3 Wortmannin 428.43 Kinase inhibitor [44]

4 Cantharidin 168.15 Phosphatase inhibitor [45]

Modulators of proteolysis

5 E-64 357.41 Inhibitor of cysteine proteases [37�]

6 AEBSF 203.23 Inhibitor of serine proteases [46]

– DEVD-fmk 502.48 Inhibitor of caspase-like enzymes [3�]

7 MG132 475.30 Proteasome inhibitor [44]

8 Bestatin 308.17 Inhibitor of aminopeptidases [41]

Modulators of membrane trafficking

9 Latrunculin B 395.51 Inhibitor of actin polymerization [44]

10 N-ethylmaleimide (NEM) 125.13 Inhibitor of exocytosis/actinomyosin complex [47]

11 Verapamil 440.58 Inhibitor of exocytosis, Ca2+ channel blocker [47]

12 Monensin 667.89 Inhibitor of intracellular protein transport [47]

13 Brefeldin A 280.36 Inhibitor of vesicle trafficking [48]

14 Colchicine 399.44 Inhibitor of microtubule assembly [49]

15 Oryzalin 346.36 Inhibitor of tubulin polymerization [44]

16 Leptomycin B 542.75 Inhibitor of nuclear export [50]

Other modulators

17 U73122 464.64 Inhibitor of phosphatidyl inositol phospholipase C [51]

18 Amanitin 918.97 Inhibitor of RNA polymerase II [52]

19 Quinidine 326.43 Inhibitor of root exudation [53]

20 Oligomycin 805.09 Inhibitor of mitochondrial ATP synthase [54]

21 Tunicamycin 830.92 Inhibitor of N-acetylglucosamine transferases [55]

22 Paclobutrazol 293.79 Inhibitor of gibberellin biosynthesis [20�]

23 Naphthylphthalamic acid 291.30 Inhibitor of auxin transport [43]

24 Cerulenin 223.27 Inhibitor of fatty acid synthase [56]

25 Cycloheximide 281.35 Inhibitor of protein synthesis [57]

26 W7 340.87 Inhibitor of calmodulin-dependent proteins [47]

27 Forskolin 410.50 Activator of adenyl cyclase [47]

28 BTH 210.28 Induces systemic acquired resistance [7]

29 Mevinolin, lovastatin 404.54 Inhibitor of the MVA pathway [58]

30 Bafilomycin 622.83 Inhibitor of vacuolar proton-ATPase [59]

31 Isoxaben 332.39 Inhibitor of cellulose biosynthesis [60]

32 Telomestatin 582.50 Inhibitor of telomerase [61]

a Numbers refer to the structures indicated in Figure 1. An extended list of bioactive compounds used in plant research is available at

www.plantchemetics.org.
Brassinosteroid hormones (BRs) are crucial for plant

growth and development. To study the role of this

hormone in the absence of genetic mutations and in

other plant species, Yoshida and co-workers embarked

on a mission to generate specific inhibitors of BR bio-

synthesis based on triazoles. A key enzyme in BR syn-

thesis is the cytochrome P450 monooxygenase DWF4.

Mutations in the Dwf4 gene cause a dwarfing phenotype

that can be rescued by BR treatment [9]. To identify

DWF4 inhibitors, triazole derivatives were synthesized

and tested in phenotypic screens. This resulted in bra-

ssinazole (Brz), which specifically binds to the DWF4

protein and blocks BR biosynthesis, causing a dwarf

phenotype that can be rescued with BRs (Figure 2)

[10,11]. The changes on the transcriptome induced by

Brz are antagonistic to those induced by BR treatment

[12], and cytological effects of Brz were identical to those

in BR biosynthetic mutants [13]. The specificity of Brz is
www.sciencedirect.com
striking considering that there are numerous other cyto-

chrome P450s in plants.

Brz has opened new avenues for research on the role of

BRs because inhibition of BR biosynthesis can be done at

any time point and with any doses of choice, and enables

studies in other plant species. For example, Brz inhibits

the development of secondary xylem in cress plants [14]

and fibre development in cotton [15�]. Brz was also used

in a screen for Brz-insensitive mutants, resulting in the

identification of BRZ1 [16], which turned out to be highly

interesting — it represents a new kind of plant-specific

nuclear transcriptional repressor, thereby explaining the

observed feedback regulation within the BR biosynthetic

pathway [17�]. Quantitative trait locus (QTL) mapping

revealed another Brz-insensitive locus, Brz4, which

remains to be identified [18]. The recent discovery that

a mutation in DWF4 in rice increases grain yield makes it
Current Opinion in Chemical Biology 2007, 11:88–98
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Figure 1

Examples of bioactive small molecules used in plant research. The numbers refer to those listed in Table 1. More examples are presented at

http://www.plantchemetics.org.
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Table 2

Chemical genetic screens discussed herein.

Effect on Organism Library Hit Refs

Biosynthesis of BRs Rice 10 triazoles Brz (Figure 2) [10]

Catabolism of ABA Arabidopsis 9 triazoles Diniconazole (Figure 2) [20�,21�]

Seedling growth defect Arabidopsis 57 biaryls (P)-4k (Figure 3) [22]

Auxin reporter gene Arabidopsis YkB (Figure 3) [24,25]

Auxin reporter gene Arabidopsis 10 000 diverse Compounds (a)–(d) in Figure 3 [26��]

Inhibition of sirtuin Yeast 1600 diverse Sirtinol (Figure 4) [27]

Secretion of vacuolar marker CPY Yeast 4800 diverse Sortin-1 (Figure 5a) [34��]

Gravitropism Arabidopsis 10 000 diverse Compounds in Figure 5b [35��]

Immune response Arabidopsis 120 bioactive Compounds in Figure 5c [36�]
conceivable that BR biosynthesis inhibitors might even

have commercial prospects [19].

But inhibitors of cytochrome P450s had even more to

offer. Cyp707A3 is a cytochrome P450 that hydrolyzes

abscisic acid (ABA), a plant hormone regulating many

developmental processes including the stimulation of

stomatal closure, which protects plants from drought. A

screen of the same triazole library used to identify BR

biosynthesis inhibitors identified uniconazole and dini-

conazole, two potent inhibitors of ABA catabolism

(Figure 2) [20�,21�]. Arabidopsis plants treated with these

compounds showed increased levels of ABA and an
Figure 2

Specific interference of different triazoles with plant hormones. Brassinazole

campestanol, leading to the hormone brassinolide (BR). BR acts through its

factors BZR1 and BES1, resulting in transcription of BR-responsive genes.

pathway leading to gibberellic acid (GA), a plant hormone that regulates tra

cytochrome P450 that hydrolysis abscisic acid (ABA), a hormone regulating

www.sciencedirect.com
increased drought tolerance [20�,21�]. Further studies

with these ABA catabolism inhibitors are a promise for

the near future.

In conclusion, the specificity and versatility of the triazole

compounds is remarkable because these compounds are

very similar but yet specifically modify the levels of three

different plant hormones (GA, BR and ABA) by inhibiting

different cytochrome P450s.

The quest for auxin-signalling inhibitors
The plant hormone auxin has such an important role

throughout the life of a plant that many genes required for
(Brz) inhibits DWF4, a cytochrome P450 that confers initial oxidation of

receptors BRI1 and BAK1, leading to activation of transcription

Paclobutrazole inhibits cytochrome P450s in the biosynthetic

nscription of GA-responsive genes. Diniconazole inhibits Cyp707A3, a

transcription of ABA-responsive genes.

Current Opinion in Chemical Biology 2007, 11:88–98
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Figure 3

Structures of auxin-signalling inhibitors. (P)-4K has an overall effect on germination of Arabidopsis, yokolonide B (YkB) and compounds (a) to (d) inhibit

induction of an auxin-responsive reporter gene in Arabidopsis seedlings.
auxin signalling are difficult to detect by mutagenesis

because their loss causes severe pleiotropic phenotypes.

To bypass this pitfall, researchers harnessed the power of

chemical genetics to identify potent inhibitors of auxin

signalling. In an early study, a compound library of 57

biaryl compounds was screened for those causing pheno-

typic effects on Arabidopsis seed germination [22]. One

compound, (P)-4k (Figure 3), caused stunted develop-

ment of Arabidopsis seedlings and loss of pigmentation.

Although it was speculated that these phenotypes could

result from inhibition of auxin signalling [22,23], more

specific screens had to be designed.

Hayashi et al. [24] performed such a specific screen with

transgenic Arabidopsis plants harbouring an auxin-respon-

sive GUS reporter gene. They screened a natural library

of fermentation products from the soil bacterium Strepto-
myces diastatochromogenes and isolated two spiroketal

macrolides, yokolonide A and B, as potent inhibitors of

auxin response [24,25]. Subsequent studies on yokolo-

nide B (YkB [Figure 3]) revealed that it prevents auxin-

induced degradation of the AUX/IAA transcription factors

without inhibiting proteasome activity, indicating that

YkB targets probably act upstream of the degradation

of AUX/IAA proteins [25]. The widespread application of

YkB, however, is hampered by the fact that it is a complex

natural product that is not readily available.
Current Opinion in Chemical Biology 2007, 11:88–98
The need for more simple bioactive compounds

prompted Armstrong et al. [26��] to perform a forward

chemical screen with a commercially available library of

10 000 chemically diverse compounds. They identified 30

compounds that inhibited the expression of an auxin-

responsive GUS reporter gene in the root elongation

zone. Four of these compounds (Figure 3a–d) were

further characterized because they were structurally

diverse and showed a strong inhibitory capacity in the

micromolar range. Compounds (a), (b) and (c) impaired

auxin-mediated proteolytic degradation of the AUX/IAA

transcription factors, a hallmark for auxin signalling.

Compounds (a) and (b) showed similar phenotypes and

had similar global effects on the transcriptome, but

RT–PCR experiments indicated that these small mol-

ecules also had distinct tissue specific effects. Testing

these compounds on auxin-signalling mutants will be an

obvious next step but this work by Armstrong et al. [26��]
illustrates the potential of chemical screens.

The deceiving action of sirtinol
Sirtinol is certainly the most deceiving small molecule

that has been identified by chemical genetic screens. The

actual screen was performed in yeast, aimed at finding

inhibitors of the sirtuin class of histone deacetylases that

could be used to study the role of sirtuins in other

organisms. Disappointingly, sirtinol (sirtuin-inhibiting
www.sciencedirect.com
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napthol) did not affect histone acetylation or morphology

in mammalian cells, but it strongly affected root and

vascular tissue development in Arabidopsis [27]. This

Arabidopsis phenotype occurs because sirtinol activates

the auxin-signalling pathway [28].

The receptor for auxin was unknown until 2005, so targets

of sirtinol were of high interest before that time. Sir
mutants are sirtinol resistant and sensitive to auxin,

indicating that Sir genes act upstream in auxin signalling.

Zhao et al. [28] first cloned Sir1. This gene encodes a

protein that was annotated as a molybdopterin synthase

sulfurylase, but the authors pointed out that parts of the

SIR1 protein are homologous to an ubiquitin E1 ligase

and a prolyl isomerase [28]. This alternative explanation

was appealing — it suggested a role for SIR1 in targeted

degradation of the AUX/IAA transcription factors during

auxin signalling.

This work was followed up by another publication that

shed a different light on the previously drawn con-

clusions. Dai et al. [29��] discovered that also the Sir3,

Sir4 and Sir5 genes all encode enzymes for the biosyn-

thesis pathway of the molybdopterin cofactor (moco). In
Figure 4

Mode of action of sirtinol. Sirtinol conversion probably involves the convers

naphthoic acid), which is catalyzed by an aldehyde oxidase, requiring a mo

of Sir genes, which were identified from screens for sirtinol insensitivity. HN

acetic acid), which mimics the action of the endogenous auxin IAA (indole-3

SCFTIR1 ubiquitin ligase complex, which targets the AUX/IAA transcriptional

auxin-induced gene induction.

www.sciencedirect.com
addition, other moco biosynthesis mutants appeared to be

sirtinol insensitive [29��]. The role of moco biosynthesis

in auxin signalling was puzzling, but the shocking expla-

nation came from analysis of sirtinol derivatives. The

active moiety of sirtinol is 2-hydroxy-1-naphthoic acid

(HNC), which has a striking structural similarity to the

synthetic auxin NAA (1-naphthaleneacetic acid

[Figure 4]), suggesting that a sirtinol degradation product

acts as an auxin [29��]. The conversion of sirtinol to HNC

is likely to involve the oxidation of an aldehyde inter-

mediate (HNA, 2-hydroxy-1-naphthaldehyde), which

requires an aldehyde oxidase and its cofactor moco

(Figure 4). Thus, Sir genes are required to convert sirtinol

into an auxin, and have no role in auxin signalling itself;

nor do they represent a deacetylase or any other direct

target for sirtinol.

Sirtinol has been useful despite these misleading results.

Some sirtinol-insensitive mutants were also auxin insen-

sitive, and most were caused by mutations in components

of the SCFTIR1 ubiquitin protein ligase [29��], which

appeared to be one of the bona fide auxin receptors

[30�,31�]. One of the sirtinol/auxin-insensitive mutants

carries a mutation in AtCAND, which encodes a protein
ion of HNA (2-hydroxy-1-naphthaldehyde) into HNC (2-hydroxy-1-

lybdopterin cofactor (moco). Moco is synthesized through the action

C is structurally related to the synthetic auxin NAA (1-naphthalene

-acetic acid). IAA, NAA and HNC probably all bind and activate the

repressors for proteasome-dependent degradation, resulting in

Current Opinion in Chemical Biology 2007, 11:88–98
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regulating the assembly and disassembly of the SCF

protein complex [32]. Another sirtinol/auxin-insensitive

mutant carries a mutation in the anticodon of tRNAala,

which probably leads to multiple mutations in many

downstream auxin effectors [33].

Screens for inhibitors of trafficking,
gravitropism and immune responses
Although the initial chemical genetic studies were aimed

to dissect hormone-signalling pathways, publications in the

past year demonstrate that also other processes in plants are

being explored, for example to find modifiers of membrane

trafficking, gravitropism and immune responses.

Endomembrane trafficking in plants appears to be a

complex process of which much remains to be uncovered.
Figure 5

Structures of modulators of (a) membrane trafficking, (b) gravitropism and (

Current Opinion in Chemical Biology 2007, 11:88–98
To develop new tools to study this, the laboratory of

Raikhel [34��] used a yeast-based screen to find com-

pounds that cause secretion of the yeast vacuolar marker

protein carboxypeptidase Y (CPY). Fourteen bioactive

compounds were selected and tested on Arabidopsis seed-

lings. Only sortin-1 and -2 (Figure 5a) caused phenotypes

on plants, manifested by a partially fragmentized vacuolar

membrane and retarded root development. Sortin-2

showed high toxicity in Arabidopsis and tobacco cell

cultures, whereas sortin-1 triggered CPY secretion in

Arabidopsis cell cultures, making sortin-1 a useful tool

for further studies on endomembrane trafficking. Although

this study was aimed at generating chemical tools to study

trafficking in plants, it revealed that small molecule targets

in endomembrane trafficking are different between plants

and yeast.
c) immune responses.

www.sciencedirect.com
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Figure 6

‘Chemetics’ – reverse chemical genetics guided by activity-based

profiling with probe-derived libraries. Activity-dependent probes (e.g.

biotinylated inhibitors, top left) are used to display activity profiles for

entire enzyme classes (left). Profiling in the presence of a probe-derived

chemical library (top) will generate inhibition profiles for every enzyme

(large panel). Screening the same probe-derived chemical library for

phenotypic effects (bottom) results in phenotypic data that can be

compared with the enzyme inhibition profiles. A correlation between the

activity of a particular enzyme and phenotypes (red circles) indicates a

causal relationship between the enzyme activity and the phenotype.
To identify more compounds that interfere in endomem-

brane trafficking in plants, a 10 000-compound library was

screened on Arabidopsis seedlings for an altered gravitrop-

ism response [35��]. Gravitropism is the process whereby

roots grow in the direction of gravity, and it is known that

gravitropism mutants often show altered endomembrane

trafficking [35��]. Of the 34 compounds that affected

gravitropism, four (Figure 5b) also severely changed

the morphology of the endomembrane system, monitored

with a specific vacuolar membrane marker. These com-

pounds differed from those that Armstrong et al. [26��]
identified from the same library when screening for

inhibitors of auxin signalling. One compound, 5403629,

is predicted to act as an auxin; two others, 5271050 and

6220480, affect gravitropic responses and endomembrane

trafficking via non-auxin pathways. Compound 5850247

decreases auxin responsiveness possibly via a mechanism

that also affects membrane transport. Thus, this study

revealed a close link between gravitropism, endomem-

brane trafficking and auxin signalling.

Chemical genetics has also been used to identify small

molecules that interfere in plant immune responses. A

chemical library of 120 preselected bioactive compounds

has been screened for molecules that interfere in the

activation of a reporter gene driven by the ATL2 promoter

[36�]. Endogenous ATL2 is rapidly induced by cellulysin

and flagellin, two different pathogen-associated molecu-

lar patterns (PAMPs) that can elicit the plant defence

response. Oxytriazine induces ATL2 expression in the

absence of PAMPs, whereas four other small molecules

(triclosan, fluazinam, cantharidin and fenpiclonil)

reduced PAMP-induced ATL2 expression (Figure 5c).

These four molecules have different effects on the

release of reactive oxygen species and on the internaliz-

ation of the flagellin receptor, which indicates that these

molecules interfere via different modes of actions. Tri-

closan probably inhibits the MOD1 enoyl ACP reductase,

suggesting a role for lipid signalling in early immune

responses. Although this screen was performed on a small

library enriched for bioactive compounds, this work intro-

duces a powerful procedure to screen larger, unbiased

libraries that can generate additional chemical tools to

study plant immune responses.

Guided reverse chemical genetics (chemetics)
As discussed above, forward chemical genetic screens

(from phenotype — via chemical — to protein) have

the disadvantage that it is a challenge to identify the

mode of action and the targeted proteins. By contrast,

targets of reverse chemical genetic screens (from protein

— via chemicals — to phenotype) are known, but these

screens have not yet been applied in plants. A bottleneck

in reverse chemical genetic screens is that they are usually

performed in vitro and only selected small molecules are

subsequently tested in vivo to investigate any phenotypic

effects by chemically knocking out the target proteins.
www.sciencedirect.com
Obviously, bioavailability and potential ‘off-target’

effects of small molecules considerably influence these

assays. It is therefore preferable to design specific in vivo
assays for the target proteins.

To facilitate in vivo reverse chemical genetics, these

screens can be guided by in vivo activity-based profiling,

a technology that can verify specific inactivation of target

enzymes. Activity-based profiling is based on the use of

labelled, mechanism-based inhibitors that react with

classes of enzymes in an activity-dependent manner. This

technology was successfully applied to display the activi-

ties of multiple papain-like cysteine proteases in plant

extracts [37�]. More probes are available for other enzyme

classes [38,39], and in vivo profiling with these probes is

possible through a two-step labelling procedure [40�]. In

the first step proteins are labelled with a small, tag-free

membrane-permeable probe in vivo. The second step

involves a chemistry reaction (‘click chemistry’) of the

labelled proteome to add a fluorescent or affinity tag onto

the labelled proteins. When combined with phenotypic

assays, in vivo activity-based profiling can be used to screen

probe-derived chemical libraries to make correlations

between phenotypes and enzyme activity (Figure 6).

Conclusion
Chemical genetic screens have generated novel modu-

lators of plant growth, development and defence.

The small molecule screens varied in the diversity, content

and size of the chemical library and the specificity of the

assays. Most of the bioactive molecules were identified

from forward chemical genetic screens, except for the

cytochrome P450 inhibitors, which were identified

from a focussed reverse chemical genetic screen. Sirtinol

was identified by a true reverse chemical genetic

screen, but that was done in yeast. Genetic screening for
Current Opinion in Chemical Biology 2007, 11:88–98
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chemical-insensitive mutants is sometimes also called

chemical genetics [41,28], but this terminology is not

consistent with most of the reports on chemical genetics.

Auxin signalling appears to be a favourite subject for

chemical genetics. This is probably because chemical

genetics is a good approach to study auxin signalling in

the absence of pleiotropic effects often encountered in

auxin-signalling mutants. Assays in the auxin research

field were also already adapted to the use of small molec-

ules. In addition, auxin-mimicking molecules also appear

in other chemical genetic screens, underlining the crucial

role for auxin in multiple plant processes.

Bioactive molecules can cause highly specific effects on

plants. Transcriptome analysis has proven to be a strong

technology to investigate the effects of small molecules,

and also phenotypic comparisons with genetic mutants

have provided valuable information, for example on the

specificity of Brz and sirtinol.

The fate of small molecules in plants is still largely

unknown. It is generally assumed that small molecules

have an easy access through roots. However, some sirtinol

derivatives were effective on seedlings in liquid cell cul-

tures, but not on solid medium [29��], indicating that

bioavailability is higher through other tissues. Apart from

uptake, the conversion of small molecules should also be

considered.

The true challenge for chemical genetic approaches lies

in the identification of the targets. So far, this problem

has mainly been tackled by screening for chemical-

insensitive mutants, but this approach is limited to genes

that are not redundant or lethal. Moreover, genes that

have a role in transport and conversion of bioactive

molecules can also be identified using this approach.

Other approaches to identify targets are offered by yeast

three hybrid technology and affinity purification.

A continuous intimate collaboration between small molec-

ule chemists and plant biologists is essential to further

pursue chemical genetic approaches. The mode of action

and the identification and validation of the targets require

the design of novel synthesized derivatives of bioactive

molecules. Also, an increased diversity of the chemical

libraries and further development of guided reverse chemi-

cal genetics depends on chemistry. Considering the tre-

mendous potential of bioactive small molecules in plants,

these collaborations will prove highly rewarding. There is a

magnitude of stunning bioactive molecules in the unex-

plored chemical space, waiting to be discovered.
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