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Abstract

The purpose of this report is to study the possibility of using simple
beam scattering experiments combined with calorimetric measurements to
check the errors introduced in the numerical simulation of the back-
scattering event by some common simplifying assumptions. The assumptions
examined concern the incidence angle, the exit angle and the energy
distribution of the backscattered particles in connection with the

energy deposited on a wall bombarded by energetic particles.
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1. Introduction

Numerical simulation of plasma-wall interactions plays an important
role in the design of magnetically confined plasma devices. In such cal-
culations it is difficult to make due allowance for the phenomenology of
wall interactions, especially backscattering of particles. The reasons
are the following: In the first place, very few cases have been closely
investigated through experiments, and mostly at energies above 1 keV.

In the second place, even when experimental data were available, the phe-
nomenon involves too many parameters to be correctly simulated in a general
transport code, where wall interactions are only part of the whole simulation.
The normal procedure is then to neglect the influence of some parameters,

such as the incident angle, to neglect distributions, such as the energy
distribution of backscattered particles, and, moreover, to use theoretic-
ally calculated values (e.g. as given by the codes described in /1/ and

/2/) when experimental values are not available.

The aim of this study is to discuss the possibility of using simple beam
scattering experiments together with calorimetric measurements to check
the combined effect of the approximations used for numerically simulating
backscattering.

The energy deposition on a box wall bombarded by energetic particles
which are reflected from a target in the box is investigated, first in a
simple model (Sec. 4) and then in more sophisticated ones (Sec. 5), by
using the NIMBUS Monte Carlo neutral transport code /3/. These numerical
experiments yield the sensitivity threshold and the resolution of the
bolometer required to check the adequacy of the model used and/or the

correctness of the theoretically computed data.



A three-dimensional version of the NIMBUS code /4/ was used. The ex-
periments simulated were designed with a view to possibly using a beam of
jons with an intensity of 1 mA and an energy of up to 10 keV (hence a power
of up to 10 W), like that available at Max-Planck-Institut fur Plasma-
physik, Garching (Minchen), together with bolometers having detecting

surfaces of about 1 cm2 and sensitivity in the uW range.

2. Reflection phenomenology and simplifications

The backscattering process, i.e. the chain of events taking place when
a particle (ion or neutral) hits a wall, collides with the atoms of the
solid and returns to the surface, can be modelled as a transport problem in
an amorphous or crystalline medium /1, 2/. In computational models of
plasmas surrounded by walls, all these events are simply replaced by re-
flecting properties of the bombarded surface /5, 6/. These properties de-
pend essentially on the atomic and mass numbers of the projectile and
target, and on the incident energy and angle. If the roughness of the
surface (perhaps a decisive parameter in the whole process) and the
charge state of the reflected particle are neglected, the data for each
projectile-target pair, each energy and each incident angle, described
below, should be used as a substitute for the processes occurring in the
wall.

Let o be the incident polar angle (angle between the incident
direction and the normal to the surface) and E, the incident energy of the
impinging particle. Let, moreover, E be the energy of the reflected
particle, B and ¥ the polar and azimuthal angles, respectively, defining

the exit direction. For every projectile-target pair the function




p=p (Eys a3 Es By P ) s (1)

giving the probability of the incoming particle emerging in the element
dE dB dy around E, B, ¥ , completely characterizes the reflection event
for each pair of the parameters (Eo, «). The integral probability of a
particle being reflected is called the "particle reflection coefficient"
and is denoted by RN(EO,a). It thus follows by definition that

EO /2 2u
RN(E sa) = S I Tp(E_ ,a3 E,B,y ) dE dB dy . (2)
0 0

0 00
Coefficient RN gives the emerging fraction of the impinging particles.
The fraction of the incoming energy E0 carried away by the RN emerging
particles is called the "energy reflection coefficient" and is denoted
by RE(EO,u):

EO /2 2n
R (E ,0‘.) = J I p(E 303 E’Bs‘P) =
E' o 0 0 0 0

m
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We shall often write R, without subscript, when we refer to both co-
efficients (2) and (3). Moreover, the shorthand notation R(Eo) will stand
for R(EO, a = 0) and thus denotes the reflection coefficients at normal
incidence: when we dispense with considering the angle dependence in R
and write R(EO), it will be henceforth understood that the reflection
coefficients used are those measured or computed at normal incidence.
We shall often use marginal density functions derived from Eq. (1). For

example, the probability density function pdf) of the emerging energy

/2 2m
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"briefly denoted by f(EO;E) or f(E) when o = 0" or pdf of the exit

polar angle
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In both examples (4) and (5) above, RN is the normalization factor.

It is immediately seen that the bulk of data (eq. 1) required for
faithful simulation of the backscattering is impressive. Simplifications
cannot be avoided. A common simplification is the use of the integral
quantities given by eqs. (2) and (3) (or, more simply, the use of
RN(EO) and RE(EO) for every incidence angle o) together with a cosine
distribution instead of the pdf (5) and an average emerging energy instead
of the pdf (4). For example, the simplest model for backscattering
adopted in NIMBUS is as follows. When a particle at energy EO hits a
wall, first the reflection event is chosen with probability RN(EO). The
choice is decided through a random game. If the game is won, the energy

E1 of the backscattered particle is assumed to coincide with the mean

energy of the reflected particles

1T E o RTET )

The exit direction is chosen with uniform azimuth and a cosine distri-
bution for the polar angle. Thus, in this model the target reduces the
energy of the reflected particle by a certain amount and only randomizes
the direction. At steady state all non-reflected particles are re-

emitted at the thermal energy of the target. Reflection coefficients are



given by empirical expressions fitting experimental or theoretical
data. Some sophistications of the described model are allowed in
special cases, such as introducing a dependence of RN and RE on o,
or an exit angle with distribution other than the cosine,

Owing to the drastic simplifications used, it seems worthwhile to
perform numerical calculations whose results could be experimentally
checked in order to judge the interference and the resultant effect
of all uncertainties introduced. Another source of uncertainties is due
to theoretical data which carry the effects of many assumptions:
amorphous or crystalline structure, interatomic potentials, electronic
energy losses, type of collision. The deposited energy on the wall was

chosen as the quantity to be compared, since it can easily be measured.

3. A simple model for energy deposition in a box

The experiment simulated is as follows: a beam of ions enters a box
10 x 4 x 4 cm from an aperture 0.6 x 0.6 cm located of one of the
bases of the parallelepiped and hits a target 1x1ecm(Fig. 1).

A detector is placed somewhere along the surface AB.

Box
A N M B
Il\)“ s ay=35°
R
Beam - ——————— —>3§ Target
icm
D b

:

Fig. 1 Experiment simulated (three-dimensional)



The distribution of the thermal load along the box walls will be
investigated in various conditions. We shall often use a special
material for the target (e.g. tungsten) that is different from that
of the box.

The average energy per unit length g(eV/cm) that is deposited per
beam particle along the detecting surface AB (which has a height of
4 cm) will be computed. If c is the charge carried per particle and I is
the beam current in amperes, then the total power P loading the wall AB

per cm is
. L
] =9+ ¢ [wcem].

For a beam current of 1 mA and for singly ionized atoms, the quantity
computed will also represent the number of milliwatts deposited per cm
by the scattered beam along AB. The power per cmz, finally, will be
P/4 and this will define the sensitivity of the bolometer.

Let E0 be the mean energy of a particle belonging to the beam
hitting the target (T) inside the box (B) at normal incidence. In the

simple model it is assumed that
1. the escape probability from the box is negligible;

2. the target is small, so that it "disappears" from our balances

after the first collision;

3. the coefficients RN(EO) and RE(EO) are given and there is no de-

pendence RN(EO,u), RE(E »a) on incident angle;

0




4. the law governing the polar exit angle is the cosine; the exit

azimuth is uniformly distributed;

5. the energy distribution of the backscattered particles can be

neglected and substituted by the average energy (6).

Assumptions 1 and 2 above will only simplify the formalism without
introducing relevant errors in the model of the experiment described
in Fig. 1. Much more important are assumptions 3 to 5, with which we try
to replace the knowledge of the probability function (1).

We shall begin with balances extended to the whole box. The energy
Qn deposited on the surfaces at the n-th collision by the particle con-
sidered, and the mean energy En of the particle (ion or neutral) after

the n-th collision can be recursively defined by starting from

i , T
0, = E, - Ej RL(E,) = Eg[1-Rg(E )], +)
T
o Ry(Eo)
T | B T B
Q, = Eq Re(Ey) - [Eg Re(E))] Re(Ey) = Eg Rp(Ey) [1-Rp(Ey)
RE(EI)
B, =B 55— >
Re (E)

%) For Ql recombination energy and ionization energy is neglected.
For Q2 only recombination energy is neglected as the reflected

particles are neutral.



and recalling that after the second collision only superscript B survives
(T and B denote the target and box material, respectively.
If cut-off is assumed at 0.1 eV, the above definitions can be

completed by adding the following

Q.

5 = 0 whenever E1 < 0.1 eV,

The energy deposited on the box wall per beam particle is then
RS
and multiplied by the particle flow gives the total power deposited on
the box walls.
When the balances with the detector covering only a small fraction
of the box wall are rewritten and the contributions upon this restricted
area are now denoted by q; (z q; = q), we have for the contribution 9,

i
on the detector

9@ =212 % >
where 995 is the fraction of the total energy E0 RE(EO) directly re-
flected from the target to the detector. Subscripts recall the
transition from the first to the second collision. In our simple model
the coefficient ay, depends solely on the geometry of the experimental

set-up.
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4. Numerical results for SS and C

A. Stainless steel

- -

Figures 2 and 3 give the results obtained with the assumptions
3 to 5 of Sec. 3 when the box material is stainless steel and the target
is of the same material or tungsten. Empirical formulas at normal in-

cidence, proposed in /6/, were used for the reflection coefficients of
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Fig. 2 Energy deposited along the SS surface AB per beam particie (H or
a) and b): target (SS or W) at 6 cm from the beam entrance
c) and d): target (SS or W) at 4 cm from the beam entrance.
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the first material. For tungsten universal formulas, given in /3/, were
adopted. The ion energy and the ion species investigated are quoted for
each case. The position of the target is also shown in the figures. In
Fig. 2 the target is normal to the beam, while in Fig. 3 the incidence
angle is 45%. We shall first comment on the results of Fig. 2. The first
two cases, a) and b), with the target 6 cm from the entrance of the beam
into the box, show that for the ions, beam energy and target used the

profiles of the energy deposited are similar. Within the model, they




o T

only depend on the geometry adopted and can be characterized by a max imum
at about 1.5 cm from the target (point M in Fig. 1), the right wing
_rapidly decreasing and the left wing decreasing almost exponentially.

The statistical error of the maximum value of g (depending on the number

of histories run) is about 3 %. The angle oy, corresponding to g, > is

aq () & 35°,
A tungsten target enhances for both H and 4He the energy deposited at
the maximum without changing the nature of the curve.

Many facts indicate a dominance of the first collision with the box
wall in the results. For example, the distance between the target and
entrance hole (Fig. 2c and 2d) is reduced, the profile simply shifts to
the left together with the target, and the left wing is thus in-
sensitive to contributions coming from neighbouring walls by multiple
collisions, i.e. q = q,- This can be checked in Fig. 3, where the
contribution of the first collision with the box wall is given separately.
To enhance the small effect, the target here was turned 45° in order to
concentrate (and more easily compute) the reflected beam upon the test
wall (in fact, the maximum is doubled). Only by decreasing the beam
energy, as in Fig. 3b, is some effect achieved both in the maximum
(= 10 % at 25 eV) and in the left wing, where the contribution of other

walls is now felt. The angle corresponding to the new maximum is here

o (9pax) = 10%,

i.e. it has rotated together with the target according to the

assumptions.
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From Figs. 2 and 3 it can be concluded that the contribution of other
collisions after the first one on the box wall seems negligible for
E, > 1 keV and is only 10 % around the maximum for E = 25 eV. Moreover,
a 1 mA beam of 1 keV protons hitting an SS box surface deposits a
maximum power of about 2 mw/cmz, which is well above the sensitivity
threshold of the available detector. For a 1 mA beam of 25 eV (Fig. 3b)
the deposited power is also well above this threshold. The resolution
should be sufficient to discern the difference between the total and

the contribution of the second reflection.

B) Graphite

Specific data given in /5/ were approximated as described in /3/
for our simulations. Some of these data derive from experiments, many
others from theoretical computations. As very few results are
available for He, the computed reflection coefficients of tritium as a
function of the reduced energy were used instead.

Figure 4 plots the maximum of g, in the case of a graphite box and a
tungsten target, as a function of beam energy for H and He and normal ion
incidence. The position of the maximum is the same as in the previous
section. The contribution of the first collision against the box wall
seems here almost coincident with g (see Fig. 4b) in the case of
hydrogen, while no difference at all between g and g, was observed for
helium.

With a beam current of 1 mA the calculated power deposition,
gmax/4 [mw/cmz], is well above the threshold sensitivity of the

available bolometer,
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5. Influence of angle dependence

An experiment like that planned in the previous section could
check the cumulative effect of all simplifying assumptions made. It is
not unreasonable to hope that there will be some compensation between the
various neglected effects in the case of multiple collisions. It will be

shown here that, in a more sophisticated model as far as the angle de-
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pendence is concerned, this compensation does in fact take place.

We shall now drop restriction 3 of Sec. 3 relating to the angle de-

pendence of the reflection coefficients, maintaining the box of Fig. 1,

and try to analyze the effect of this angle dependence on the energy

deposited.

Oen and Robinson /7/ have numerically evaluated the dependence of

reflection coefficients on the incidence angle for hydrogen

and helium

bombarding a copper surface. According to their results both the co-

efficients are enhanced with respect to normal incidence, e.

factor of about 1.4 for o = 45° and for 1 keV protons. This
creases at higher incidence angles and at Tower energies.
Results /7/ for hydrogen on copper were approximated in

computations as follows (a is now in radians):

C C 2
RN“(EO,Q) = RNU(EO,O) (0,597 « - 0,007 «
EO 5_2 keV
C C 2
REU(EO,a) = REU(EO,O) [0,405 o° + 0,446 o
C C ]
Ry (Eg»a) = Ry'(E»0) [1,807 o - 0,250 a
E > 2 keV
0 C C 2
ReY(E,a) = REV(E,0) 5,320 o - 1,631 a

Figure 5 gives the distribution of the energy deposited

Cu surface AB with and without angle dependence. It is seen

g. by a

effect in-

our

+ 1]

+ 1]

+ 1]

+17.

along the

that when the

incidence angle is taken into account, the energy profiles assume a slightly

new character: the left wing is no longer the "exponential”

out angle dependence of the reflection coefficients and the

found with-

maximum is

lower. The average number n of collisions undergone by a beam particle

with the surface AB before thermalization is also given for

file.

each pro-
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Fig. 5 Cu box, W target. Energy deposited along the surface AB per
beam particle (H), with (—) ard without (——) angle de-
pendence in Rcu-n, average number of collisions per beam
particle,

Figure 6 gives the energy densities g at the two points M and N of
Fig. 1, corresponding to the incident angle ai = 35° (maximum of g)
and aR = 60° (2 cm to the left of the maximum), respectively, versus ion
energy. The results obtained with and without angle dependence confirm
that the energy deposited is but little influenced by the law taking into
account the incidence angle. A decrease of only about 10 % is observed

for the beam energy EO = 1 keV.
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Fig. 6 Cu box, W target. Energy deposited per cm and beam particle (H)

at points M and N of Fig. 2 vs. ion energy, with (—) and

Cu

without (——) angle dependence in R”". Contribution of the

first collision (---) in M and N with angle dependence.

The smallness of this effect for large incidence angle, too, is an
interesting feature and can be explained as follows. Both the re-

flection coefficients increase with the incidence angle, i.e.
Ry(E.sa) > R

N( 0 N(Eo’o) - RN(EO) ?
RE(EO,G)‘i RE(EO,O) = RE(EO) .
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In the case of angle dependence, at each collision the amount of
reflected energy increases and therefore the deposited energy decreases.
The fact that the final difference is not significant can be explained
by the increased number of collisions (shown in Fig. 5), which almost
completely compensates the other effects. The dash-and-dot Tines in
Fig. 6, which give the contribution of the first collision on the copper
wall when the angle « is taken into account, show in fact that in this
experiment the first collision on the copper wall is still important,
but no longer predomates over the successive contributions. The more

frequent collisions, in turn, reduce the difference.

6. Influence of energy distribution

In order to isolate and critically discuss assumption 5 (Sec. 3)
on the energy distribution (4) of the emerging particles, f(E), we
now turn to the case of normal incidence for the first two collisions.
In this case, reflection coefficients used in the numerical model
(assumption 3) and also the cosine distribution (assumption 4) are,in
fact,fairly well confirmed experimentally.

The effect of the energy distribution could be studied in a
spherical box or, better, still by the arrangement given in Fig. 7. In
this way, the effect of further collisions (after the first two on
target T1 and T2) is minimized. By rotating the second target T2 around
Ty it is possible to isolate and measure the total contribution of
the first collision on the spherical surface, Qé. Finally, it is

assumed that the two targets, T1 and T2, are of the same material.
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Second detector
target T

B First detector

Beam target Ty

Fig. 7 Set-up for two normal collisions

Thus, let the energy E of the particles emerging from the first

collision with the target T1 now be a random variable with pdf (4),
f(EO, a =03 E) = f(E).

The energy reflected at the second collision for each impinging

particle having energy E is E RE(E). Since the number of particles
emerging per incident particle from the first collision around E is
RN(EO)f(E)dE, the total energy reflected per beam particle at the second

collision is

E
0

Ry(E;) / E Re(E) F(E)ME = Ry(E,) < E Rg(E) >

Thus, the second contribution Qé to the energy deposited is now

Qb = E, Re(Ey) = Ry(E,) < E Re(E)> .
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By using Eq. (6), this last quantity can be written

<E Re(E) >
Q = By Re(Ey) [1 - —gr— 1 (7)
where
E

The second contribution QZ’ computed in Sec. 3 with the different
assumption that all emerging particles had the same average energy <E>

given by Eq. (6), was
02 = EO RE(EO) [1 - Re(<E>)] 3

the error Q,-Q) introduced by omitting the energy distribution of the
2 "2

reflected particles therefore depends on the difference

A = <E R (E)> - <E>RE(<E>) 5

E

i.e. on the difference

A = <F(E)> - F(<E>) .
with

F(E) = E R(E) .

A sufficient condition to get a = 0 is that the function F be Tinear.
In this case, whatever the profile f(E), the correctness of a distri-
bution F(E) could not be checked by our calorimetric measurement of
Qé, since the second distribution would coincide with that yielded by the
s-distribution (6). The influence of a distribution f(E) on Qé cannot be

made evident as long as the linearity condition holds.
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The function F, given in terms of the "reduced" energy e, is universal
and has a maximum around € = 1.5, with monotonic behaviour before and
after this maximum. Figure 8 plots the function F(e) at the left of the
maximum. If the important part of the distribution f(E) occurs in an
interval where F(e) can be approximated by a straight line, the error
will not be relevant. This has been checked for the case of deuterium
hitting a nickel target at 300 eV (e = 0.1). According to the data
quoted in /6/, Figs. 2.5 and 2.14, it is found that

<E RE(E)> = 51.4 eV,

while

<E> R-(<E>) = 50 eV.

£l
The difference of 3 % confirms the virtual linearity of F(E) in the
range examined (0 < e < 0.1), and therefore Q, is not sensitive to f(E).

It may be concluded that, as far as the energy deposited on walls
is concerned, the energy distribution f(E) seems to have but Tittle in-
fluence. It may also be added that at Tow energies the computed distributions
f(E) show a tendency to a sharper peak (/6/, Fig. 2.14), so that
approximation (6) adopted in NIMBUS is quite justified in this range.
Of course, we are aware that the replacement of an energy distribution
by a constant energy could preserve the thermal load on a wall, but not
other quantities such as reaction rates or mean free path or ionization

length reflected particles in the plasma.
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Fig. 8 The universal function F(e) frome =0 to e = 1.

7. Conclusions

The explorative computations performed here seem to show that a
bolometer with sensitivity 1 uw/cm2 could be used in order to estimate
the error introduced by current simplifications of the backscattering
event in the computed thermal load of a wall bombarded with energetic
particles.

In a parallelepiped box with multiple collisions the cumulative
effect of these simplifications could be experimentally evaluated. The
sensitivity analysis performed for the case of strong dependence of the
reflection coefficients on the incident polar angle showed that, fortunat-
ely, there 1is some compensation between effects often neglected in the
numerical models when multiple collisions occur.

The influence of the energy distribution of the reflected particles
was discussed by isolating its effect in a spherical box with the first
two collisions at normal incidence. This effect was found to be rather
modest on the energy deposited on a wall, and thus difficult to be

experimentally detected.
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If the same experiments discussed in this work could be repeated with
a bolometer having a rough detecting surface, thus being closer to the

operating conditions of plasma devices, the interest would be increased.
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