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Abstract. We study ”heavy” n–dimensional surfaces which are
suspended from some given boundary data ϕ and have prescribed
surface area A. Using a fixed point argument we show existence
of a solution provided A is close to the area of the corresponding
minimal surface spanned by ϕ.
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The equilibrium condition for a heavy, inextensible and flexible surface M of constant

mass density which is exposed to a vertical gravitational field has been derived by several

authors, see Lagrange [L, pp 158–162], Cisa de Gresy [GG, pp 274–276], Jellett

[J, pp 349–354] and Poisson [P, pp 173–187]. It turns out that there are several model

problems available, which are due to different notions of flexibility and inextensibility,

and, which are all worth to be investigated. Quite generally Poisson [P] considers (flexible–

inextensible) surfaces in R�, which are exposed to an arbitrary force field F = (X,Y, Z),

and, – using direct arguments from mechanics – he deduces a system of partial differential

equations which, in addition to the unknown function u, also involves two independent

“tensions” T and T ′ which describe the forces inside the surface. Of particular interest is

the case where the tension coincide, i.e. T = T ′. Then the system of p.d.e.’s reduces to the

single equation

(1) Z − pX − qY +
T

k2

[
(1 + q2)uxx − 2pq uxy + (1 + p2)uyy

]
= 0,

where we have set p = ux = ∂u
∂x , q = uy = ∂u

∂y , k2 = 1 + p2 + q2 and T satisfies

(2) X dx + Y dy + Z dz + dT = 0,

that is the external force F must have a potential U and T = U + c. ¿From (1) and (2)

Poisson [P] deduces:

(A) The minimal surface equation by taking

X = Y = Z = 0, T = const.;

(B) The equation for a capillary surface by taking

X = Y = 0, Z = a+bz
k

as the equilibrium condition of a flexible surface which is covered by a heavy fluid;

(C) The equation of a heavy surface in a gravitational field by taking X = Y = 0,

Z = gε, where g denotes the gravitational constant and ε is the density of the surface. The

tension T is then given by T = −λ− gεz, λ ∈ R, and hence (1) implies the condition



(3) gε− λ + gεz

k2

{
(1 + q2)uxx − 2pquxy + (1 + p2)uyy

}
= 0.

Assuming gε = 1 we are thus led to the equation

(4)
√

1 + |Du|2 div
Du√

1 + |Du|2
=

1
(u + λ)

in Ω ⊂ R
�, λ ∈ R,

as a model equation for the equilibrium condition of an inextensible, flexible, heavy surface

of constant mass density in a vertical gravitational field.

A further application in architecture lends special interest to equation (4) , cp. [BHT] and

[O]. In fact turning a hanging solution u of (4) upside down gives the optimal shape of a

cupola.

Here we are concerned with the Dirichlet problem in Rn connected with equation (4) and,

in addition, we require a solution u to have prescribed area A, i.e.

∫
Ω

√
1 + |Du|2 dx = A.

In other words we consider the following problem

(P). Let Ω ⊂ R
n be a bounded domain of class C2,α and suppose ϕ ∈ C2,α(Ω̄) is given.

For some prescribed value A ∈ R+ one has to find a function u ∈ C2,α(Ω̄) and some λ ∈ R
such that

(5)
√

1 + |Du|2 div
Du√

1 + |Du|2
=

1
(u + λ)

in Ω

u = ϕ on ∂Ω, and

(6) A(u) =
∫

Ω

√
1 + |Du|2 dx = A.



Observe that problem (P) can also be considered as the n-dimensional mathematical

analogue of the (one-dimensional) catenary problem: To find a surface M = graph u of

prescribed area A and boundary ϕ with lowest possible center of gravity. Indeed, since the

xn+1 -coordinate of the center of gravity is given by the quotient

(∫
Ω

√
1 + |Du|2 dx

)−1 ∫
Ω

u
√

1 + |Du|2 dx

this amounts to the minimization of the integral

∫
Ω

u
√

1 + |Du|2 dx

subject to the constraints

∫
Ω

√
1 + |Du|2 dx = A and u = ϕ on ∂Ω.

Now, introducing a Lagrange multiplier λ one obtains (5) and (6) as the equilibrium

condition for this problem.

Nitsche [N, p 146] has shown by way of example that the above variational problem has no

solution whatever the value of A might be. Thus one has to use more refined techniques

from the calculus of variations in order to construct merely relative minima, say. In this

paper, however, we tackle equation (5) directly and prove suitable a priori estimates which

enable us to apply some fixed point argument.

Clearly, there is an obvious necessary condition on the number A, namely that A ≥ A0,

A0 denoting the infimum of area of all graphs bounded by ϕ.

But, surprisingly, and in contrast to the one-dimensional situation, there is a further

necessary condition namely that A ≤ a1(ϕ), a1(ϕ) denoting some specific number depen-

ding on the boundary values ϕ. In fact, it was pointed out by Nitsche [N] that the Euler

equation (5) in the corresponding rotationally symmetric case has no solution, provided

A > a1(ϕ).



In light of the above remarks the following existence result is natural (and, in a sense,

optimal).

Theorem. Let Ω ⊂ R
n be a bounded, mean-convex domain of class C2,α and suppose

ϕ ∈ C2,α(Ω̄). Then there exists some number A1 > A0 depending only on n,Ω, |ϕ|2,α, such

that for all numbers A ∈ (A0, A1] there is some λ ∈ R and a function u = uλ ∈ C2,α(Ω̄)

which solves problem (P) i.e.

(5)
√

1 + |Du|2 div
Du√

1 + |Du|2
=

1
(u + λ)

in Ω

u = ϕ on ∂Ω, and

(6) A(u) =
∫

Ω

√
1 + |Du|2 dx = A.

Observe that equation (5) is an equation of mean curvature type with (variable) mean

curvature H = H(u,Du) = (u+λ)−1(1+ |Du|2)−1/2 and that Hu ≤ 0, i.e. H is monotone

with the “wrong” monotonicity behaviour.

For the proof of the Theorem we use Schauder’s fixed point theorem in combination with

suitable a priori and monotonicity estimates. We first consider solutions

u = uf,λ ∈ C2,α(Ω̄) of the related problem

(7)
√

1 + |Du|2 div
Du√

1 + |Du|2
= (f + λ)−1 in Ω,

u = ϕ on ∂Ω, where

f ∈ C1,α(Ω̄) is some positive function and λ ∈ R denotes some positive number.

Let c(n) = n−1ω
−1/n
n stand for the isoperimetric constant, ωn = |Bn

1 (0)| the measure of



the unit ball, and put

h := sup
∂Ω

ϕ, k0 := inf
∂Ω

ϕ and λ0 := (1 +
√

2n+1) c(n)|Ω|1/n.

As a first step we establish a priori bounds for sup
Ω

u and inf
Ω

u.

Lemma 1. Let u = uf,λ ∈ C2,α(Ω̄) denote a solution to the Dirichletproblem (7). If λ, λ0

and k0 satisfy

λ ≥ λ0 = (1 +
√

2n+1)c(n)|Ω|1/n and

k0 ≥ (1 +
√

2n+1)2c(n)|Ω|1/n = (1 +
√

2n+1)λ0

then we have the inequality

h ≥ uf,λ ≥ λ0.

The proof follows the argument given in [DH]. For completeness we sketch it here.

Since f, λ are positive the first inequality follows from the maximum principle. To prove

the second relation we choose δ ≥ −k0 and put

w := min(u + δ, 0), A(δ) := {x ∈ Ω : u < −δ}. Multiplying (7) with w , integrating by

parts and using w|∂Ω = 0, we obtain

∫
Ω

|Dw|2√
1 + |Dw|2

=
∫
A(δ)

|w|
(f + λ)

√
1 + |Du|2

, whence

∫
Ω

|Dw| ≤ |A(δ)| + 1
λ0

∫
A(δ)

|w|.

We use Sobolev’s inequality on the left and Hölder’s inequality on the right hand side and

obtain with c(n) = n−1ω
−1/n
n the relation

|w|n/n−1 {c−1(n) − λ−1
0 |Ω|1/n} ≤ |A(δ)|,

where |w|n/n−1 stands for the Ln/n−1-norm of w. Another application of Hölder’s inequa-

lity yields

(δ1 − δ2)|A(δ1)| ≤
{

c(n)λ0

λ0 − c(n)|Ω|1/n
}

|A(δ2)|1/n +1



for all δ1 ≥ δ2 ≥ −k0. In view of a well known Lemma due to Stampacchia, [St, Lemma

4.1] this is easily seen to imply

∣∣∣A(−k0 + 2n+1c1|A(−k0)|1/n
∣∣∣ = 0, where

c1 =
c(n)λ0

λ0 − c(n)|Ω|1/n . By definition this means that

u ≥ k0 − 2n+1λ0 c(n) |Ω|1/n
λ0 − c(n) |Ω|1/n .

Since k0 ≥ (1+
√

2n+1)λ0 and λ0 = (1+
√

2n+1)c(n)|Ω|1/n we finally obtain u ≥ λ0 as

desired. �

To derive a gradient estimate at the boundary we rewrite (7) into

(8) (1 + |Du|2)Δu−DiuDjuDiju = (f + λ)−1(1 + |Du|2).

We can then apply the results of Serrin [Se 1], see also [GT, chap. 14.3]. Equation (8)

satisfies the structure condition (14.41) and the r.h.s. is of order 0(|Du|2). So we obtain a

gradient estimate on the boundary which is independent of |Df |:

sup
∂Ω

|Duf,λ| ≤ c2 = c2(n,Ω, h, |ϕ|2,Ω),

provided only that ∂Ω has non-negative (inward) mean curvature.

It is not possible to derive interior gradient estimates independent of |Df | , but we can

prove

(9) sup
Ω

|Duf,λ| ≤ max{2, 1/4 sup |Df |, 2e4(hλ−1
0 −1) sup

∂Ω
|Duf,λ|}

Estimate (9) can be obtained from a careful analysis of the structure condition in [GT,

chap 15]. For a selfcontained proof, which uses the geometric nature of equation (7) we

refer to [DH].

Having proved the C1estimates we now infer from general theory and Schauder-estimates

the inequality

(10) |uf,λ|2,α,Ω ≤ C (n,Ω, λ0, h, |ϕ|2,α,Ω, |f |0,α,Ω)



for any solution uf,λ of (7) provided

λ ≥ λ0 = (1 +
√

2n + 1) c(n)|Ω|1/n,

k0 = inf
∂Ω

ϕ ≥ (1+
√

2n+1)λ0 and f ≥ 0. Here the constant C only depends on the quantities

indicated.

Note that by Arzela-Ascoli this already implies that uf,λ → u0 in C2(Ω) as λ → ∞, where

u0 denotes the unique (area minimizing) minimal surface spanned by ϕ. In particular we

have A(uf,λ) → A(u0) as λ → ∞ where A(u) =
∫
Ω

√
1 + |Du|2dx denotes the area of the

graph of u.

Later on it will be important to investigate this convergence somewhat more carefully.

For f fixed we now consider the behaviour of solutions uf,λ of equation (7) as λ varies. In

particular we show that uf,λ increases with increasing values of λ. More precisely we have

Lemma 2. Let uf,λ1 and uf,λ2 denote two solutions of the Dirichletproblem (7) with r.h.s.

(f + λ1)−1 and (f + λ2)−1 respectively, where λ1 ≥ λ2 ≥ λ0 and 0 ≤ f ≤ h. Then we

have the inequality

(11) uf,λ1(x) ≥ uf,λ2(x) + c0(2n + 2C diam Ω)−1d2(x, ∂Ω),

where d(x, ∂Ω) = dist (x, ∂Ω) denotes the distance of x to the boundary ∂Ω and

c0 = c0(h, λ1, λ2) = (λ1−λ2)
(h+λ1)2

and C = C(n,Ω, λ0, h, |ϕ|2,α, |f |0,α).

Proof. Put aij(p) = δij − pipj

1+|p|2 , p ∈ Rn. Then (7) may be rewritten into aij(Du)Diju =

(f + λ)−1. Therefore w := uf,λ1 − uf,λ2 satisfies

aij(Duf,λ1)Dijw + aij(Duf,λ1)Dijuf,λ2 − aij(Duf,λ2)Dijuf,λ2 = (f + λ1)−1 − (f + λ2)−1

whence

Aij (x)Dijw + Bi(x)Diw =
λ2 − λ1

(f + λ1)(f + λ2)
< 0,



where

Aij (x) := aij (Duf,λ1(x)) and

Bi(x) := Dkjuf,λ2(x)
∫ 1

0

akj,pi (tDuf,λ1 + (1 − t)Duf,λ2) dt.

(Note that by the Hopf-maximum principle for linear equations this already implies that

uf,λ1 ≥ uf,λ2). Let L denote the linear operator

L := Aij(x)Dij + Bi(x)Di

and take some comparison function

ϕ(x) :=
c0(h, λ1, λ2)
2n + 2C Ω

[ |x− x0|2 −R2],

where R = d(x0, ∂Ω), x0 ∈ Ω and |B|0,Ω ≤ C = C(n,Ω, λ0, h, |ϕ|2,α,Ω, |f |0,α,Ω)

denotes a constant depending only on the quantities indicated (cp. (10)). Then we compute

Lϕ ≤ c0
2n + 2C diam Ω

[2 trace (Aij) + 2|B|0,Ω |x− x0|]

≤ c0
2n + 2C diam Ω

[2n + 2C diam Ω] ≤ c0.

Concluding we get

L(uf,λ1 − uf,λ2 + ϕ) ≤ λ2 − λ1

(f + λ1)(f + λ2)
+

λ1 − λ2

(h + λ1)2
≤ 0

and uf,λ1 − uf,λ2 + ϕ ≥ 0 on the boundary of Ω. Therefore

uf,λ1(x) ≥ uf,λ2(x) − ϕ(x) = uf,λ2(x) +
c0

2n + 2C diam Ω
[R2 − |x− x0|2]

and, on putting x = x0 we obtain

uf,λ1(x0) ≥ uf,λ2(x0) +
c0R

2

2n + 2C diam Ω
. �

We now show that the area of solutions uf,λ decreases as λ increases; in fact we have the

following:



Lemma 3. Let λ1 ≥ λ2 ≥ λ0 and 0 ≤ f ≤ h be given and denote by uf,λ1 , uf,λ2 two

solutions of (7) with r.h.s. (f + λ1)−1 and (f + λ2)−1 respectively. Then there is some

constant C > 0 depending only on n,Ω, λ0, h, |ϕ|2,α,Ω and |f |0,α,Ω such that the following

estimate holds

(12)
∫

Ω

√
1 + |Duf,λ1 |2dx +

(λ1 − λ2)
(h + λ1)3

C ≤
∫

Ω

√
1 + |Duf,λ2 |2dx.

Proof. Put u1 := uf,λ1 and u2 := uf,λ2 . ¿From (7) we obtain for all ϕ ∈ C1
0 (Ω)

(13) −
∫

Ω

Du1Dϕ√
1 + |Du1|2

dx =
∫

Ω

ϕ

(f + λ1)
√

1 + |Du1|2
dx.

We test (13) with ϕ := u2 − u1 ∈ C1
0 (Ω) and obtain

−
∫

Ω

Du1D(u2 − u1)√
1 + |Du1|2

dx =
∫

Ω

u2 − u1

(f + λ1)
√

1 + |Du1|2
dx whence

∫
Ω

|Du1|2√
1 + |Du1|2

dx =
∫

Ω

Du1Du2√
1 + |Du1|2

+
∫

Ω

u2 − u1

(f + λ1)
√

1 + |Du1|2
dx.

We apply Schwarz’ s inequality and Lemma 2 to abtain

∫
Ω

√
1 + |Du1|2dx ≤

∫
Ω

√
1 + |Du2|2dx

+
(λ2 − λ1)(2n + 2C diam Ω)−1

(h + λ1)3
√

1 + |Du1|20,Ω

∫
Ω

d2(x, ∂Ω)dx
.

Concluding we have

∫
Ω

√
1 + |Du1|2dx ≤

∫
Ω

√
1 + |Du2|2dx + C

(λ2 − λ1)
(h + λ1)3

, with

some constant C = C(n,Ω, λ0, h, |ϕ|2,α, |f |0,α). �

It is now desirable to have an explicit bound for the increment of area of the graphs of

u0 := uf,∞ and uf,λ respectively. Note that this estimate does not immediately follow from

(12) b letting λ1 tend to infinity.



Lemma 4. Let λ ≥ λ0, h ≥ f ≥ 0 be given and denote by uf,λ and u0 the unique

solution of the Dirichlet problem (7) and the minimal surface spanned by ϕ respectively:

Then there exists some constant C depending only on n,Ω, λ0, h, |ϕ|2,α and |f |0,α such

that ∫
Ω

√
1 + |Du0|2dx +

C

(h + λ)2
≤

∫
Ω

√
1 + |Duf,λ|2dx

holds true for all λ ≥ λ0,

Proof. Let a(λ) :=
∫
Ω

√
1 + |Duf,λ|2dx denote the area of the graph of uf,λ. Then (12)

implies the inequality

(13)
a(λ1) − a(λ2)

λ1 − λ2
≤ −C

(h + λ1)3
for λ1 ≥ λ2

and some C > 0 independent of λ1, λ2. Also, a(λ) is monotone decreasing, so a′(λ) exists

almost everywhere, a′(λ) ≤ −C
(h+λ)3 by (13) and

(14) a(∞) ≤ a(λ) +
∫ ∞

λ

a′(ξ)dξ.

(Note that from Schauder theory for linear equations we could even infer that

uf,λ, Duf,λ depend Lipschitz-continuously on λ, i.e. (14) is in fact an identity). From (14)

we infer ∫
Ω

√
1 + |Du0|2dx +

C

(h + λ)2
≤

∫
Ω

√
1 + |Duf,λ|2dx

with C > 0. �

Proof of the Theorem. We define the set M by

M := { f ∈ C1,α(Ω̄) : 0 ≤ f ≤ h, sup
Ω

|Df | ≤ M }

By virtue of our C1-estimates we may choose M = M(n,Ω, h, |ϕ|2,Ω) large, so that uf,λ ∈
M for all f ∈M, λ ≥ λ0. If f is restricted to M then the constant C appearing in Lemma

4 only depends on n,Ω, h, |ϕ|2,α and M = M(n,Ω, h, |ϕ|2,Ω).



We put A1 := A0+ C
(h+λ0)2

where C = C(n,Ω, h, |ϕ|2,α,M) denotes the constant in Lemma

4, and we also assume for a moment that

k0 := inf
∂Ω

≥ (1 +
√

2n+1)λ0.

Now fix a value A ∈ (A0, A1]. It follows from a(λ) → A0 as λ → ∞ and from the

monotonicity of a(λ) that for f ∈ M given there is precisely one λ = λ(A) ≥ λ0 and

some unique solution uf,λ ∈ C2,α(Ω̄) of (7) with prescribed area A, i.e. A(uf,λ) = A.

Consider the operator TA

TA :M→M

f −→ uf,λ(A).

It follows from the C2,α estimate (10) and Arzela-Ascoli that TA is compact. Furthermore

TA is continuous. In fact let fm converge to f in C1,α(Ω̄). Then {um,λm = TAfm} is

precompact in C2(Ω̄) and hence any subsequence in turn has a convergent subsequence.

Suppose that umj = umj ,λmj
→ u in C2(Ω̄). Then A(umj ) = A implies A(u) = A and

√
1 + |Dumj |2 div

Dumj√
1 + |Dumj |2

= (fmj + λmj )
−1

implies √
1 + |Du|2 div

Du√
1 + |Du|2

= (f + Λ)−1

for some Λ ∈ R. But from A(u) = A and the uniqueness of λ it follows that Λ = λ(f) and

u = TAf . Hence TAfm converges to u and we can apply Schauder’s fixed point theorem to

obtain the existence of a regular u ∈ C2,α(Ω̄) solving (5) and (6). Now we have to get rid of

the additional assumption k0 ≥ (1+
√

2n+1)λ0. To this end we choose some number γ ∈ R
large, so that ϕγ := ϕ + γ satisfies inf

∂Ω
ϕγ ≥ (1 +

√
2n+1)λ0. Then there is some further

number λ ∈ R and a solution u = uγ ∈ C2,α(Ω̄) satisfying (5) and (6) and uγ = ϕγ on the

boundary of Ω. Therefore the function u := uγ − γ has boundary values ϕ and fulfills the



equation

√
1 + |Du|2 div

Du√
1 + |Du|2

=
1

u + (γ + λ)
in Ω, and

A(u) = A.

This proves the Theorem.
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Presses de l’Université, Montréal 1966.


