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Abstract. Just as 3d state sum models, including 3d quantum gravity, can be biult using categories 
of group representations, '2-categories of 2-group representations' may provide interesting state 
sum models for 4d quantum topology, if not quantum gravity. Here we focus on the 'Euclidean 2-
group', built from the rotation group SO (4) and its action on the translation group R* of EucUdean 
space. We explain its infinite-dimensional unitary representations, and construct a model based 
on the resulting representation 2-category. This model, with clear geometric content and expUcit 
'metric data' on triangidation edges, shows up naturally in an attempt to write the amplitudes of 
ordinary quantum field theory in a background independent way. 
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INTRODUCTION 

The success of combinatorial and algebraic methods in 3d quantum gravity [17, 18] 
has long been an inspiration for analogous 4d models, including spin foam models of 
quantum gravity. A mathematically elegant approach to getting 4d models from 3d ones 
uses so called 'higher-dimensional algebra'. Our aim here is not only to explain an 
instance of this approach, but also to present evidence that the resulting models may 
be relevant for real-world physics. Indeed, as we shall explain, they have already shown 
up in an unexpected way, in an attempt to understand a certain 'limit' of quantum gravity. 

The reason for the term 'higher-dimensional algebra' is easily explained using the 
example most relevant to this paper: '2-groups' [3]. Whereas a group might consist of 
symmetry transformations of some 'object' •, drawn as 'arrows': 

a '2-group' also has 'symmetries between symmetries': 

(1) 

drawn as '2-arrows'. This added structure gives 2-groups an additional 'algebraic dimen­
sion' ordinary groups do not have. The 2-arrows have two distinct notions of 'product', 
as explained later, and these must satisfy certain 'coherence laws' governing their alge­
braic structure. Like other instances of higher-dimensional algebra, passing from groups 
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to 2-groups is an example of 'categorification', where we have replaced the set of arrows 
with the 'category' of arrows and 2-arrows. 

Going up in dimension often goes hand-in-hand with categorification. For example, 
in constructing topological invariants that are calculated using triangulations, a key 
step is showing invariance under the local 'Pachner moves' that allow one to pass 
between any two triangulations of the same manifold. Pachner moves are subtly but 
strongly tied to the coherence laws of higher categories, in such a way that appropriate 
labels from higher-dimensional algebra can give manifest Pachner invariance. A recent 
review by Baez and Lauda [4] nicely explains the relationship between physical and 
'algebraic' dimensions in topological field theory, and the history of this idea, with 
detailed references. 

Of course, quantum gravity, having local degrees of freedom, may be more than 
mere quantum topology, but it is certainly not less than quantum topology. While 
'categorifying' 3d models to get 4d ones is unlikely to miraculously yield quantum 
gravity, the evidence from topology suggests climbing up from 3 to 4 dimensions may 
require rethinking what sort of mathematics is needed. We should at least consider 
the possibility that standard quantum gravity approaches will fail as long as they are 
attempting to solve a/oMr-dimensional problem using 'three-dwaensionaV mathematics. 

In this note, following Barrett and Mackaay [11], as well as Crane, Sheppeard and 
Yetter [12, 13], we propose using 2-categories of 2-group representations to construct 
state sum models in dimension 4. We give an explicit construction using a categorical 
analog of the Poincare group. Most importantly, this state sum corresponds precisely to 
the background independent formulation of ordinary quantum field theory amplitudes 
derived in [7]. Our brief treatment here is an exposition of results from [1,7] and the 
forthcoming papers [8, 9], to which we refer the reader for further details. 

2-GROUP REPRESENTATIONS FOR STATE SUMS 

Our goal here is to use the representation theory of 2-groups to construct four dimen­
sional state sum models. In these models, edges in a triangulation are labeled by repre­
sentations, and triangular faces are labeled by intertwiners relating the representations 
on their bounding edges. But 2-group representation theory also involves a notion of 
'2-intertwiner' between intertwiners, and these 2-intertwiners label tetrahedra. The 2-
category of representations, intertwiners, and 2-intertwiners has been constructed ex­
plicitly in [1]. Here, we only explain enough of the resulting geometric structure to 
understand the proposed state sum models. 

To describe 2-group representations, we first need a precise algebraic characterization 
of 2-groups themselves. Actually, we shall not need the most general sort of 2-groups; 
what we shall use are called 'strict skeletal 2-groups', which we henceforth simply call 
2-groups, without qualification. This is a significantly restricted class of 2-groups, but 
it includes our main example, and has the advantage that any 2-group of this sort can be 
constructed from two simple and familiar pieces of data: 

• a group G 
• an abelian group H equipped with an action of G as automorphisms. 
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We write elements of G as g,g',..., elements of H as h,h',..., and the action of g on 
h as gh. From these data, we build a 2-group with arrows • ^ • labeled by g's, and 
for each g, 2-arrows g ^ g labeled by /I's. The 2-arrows, usually drawn as in (1), have 
two algebraic operations, • and o, called vertical and horizontal multiplication, for 
diagrammatically obvious reasons: 

9 g 

{g',h')-{g,h)= i.—9 > • • = • L'fe • ={g,h'h) 

{g',h')o{g,h)= • ^ ¥ ^^^ Ih'^ = ^^ Ih'ig'h) ^ ={g'g,h'{g'h)) 

We note that from the data {G,H), we could instead simply construct the semidirect 
product G tK H. While this group is involved in the horizontal multiplication, 2-groups 
have a richer algebraic structure, as well as a richer representation theory. 

The Poincare 2-group is the 2-group for which G is the Lorentz group, and H is the 
group of translations of Minkowski space [2]. For simplicity, we work instead with its 
positive-signature analog, the Euclidean 2-group £, with G = S0(4), H = W^. We now 
describe both the representation theory of 2-groups [1], using the Euclidean 2-group as 
an example, and how the representation theory can be used in state sum models. 

Edges: representations. Edges in our state sum models are labeled by 'irreducible 
representations'. Any (unitary, measurable) representation of £ is given by an S0(4)-
equivariant map x'-^ ^ ^"^^ where X is some space on which the rotation group acts. 
Representations for which the action on X is transitive are indecomposable represen­
tations. Irreducible representations are indecomposable ones for which the map x is 
one-to-one, in which case X is isomorphic to a single SO(4)-orbit in M"', a 3-sphere of 
given radius. So, edges are effectively labeled by positive numbers, the radii of spheres. 

Gluing edges: tensor products. Joining two labeled edges at an endpoint: ^*^' 
means taking the 'tensor product' of representations. The tensor product X (g) X' of two 
irreps of £ turns out to correspond to the map X x X' ^W^ given by (x, x')i-^ x + x'. 

Triangles: intertwiners. Triangular faces: .^^. are labeled by 'irreducible intertwin-
ers', for example going from the tensor product ^ •^ ' to the single irreducible represen­
tation .J:L.. To describe such intertwiners, consider the set 

T = {{x,x',y) G X X X ' X y : x + x' = y} 

of ways to build a triangle using one vector from each orbit X, X ' , y . The diagonal 
action of S0(4) on X x X' x y restricts to an action on T, which we write (3, A) 1-̂  gh. 
An intertwiner amounts to an SO(4) Hilbert bundle over T, that is, a vector bundle V 
whose fibers are Hilbert spaces, with a fiber-preserving SO(4) action. More precisely, 
for heT, ip e V^, and g e S0(4), we can write the action as g{A,(p) = {gA,^l{(p)), 
where $ 1 : 1 4 ^ VJA are linear maps satisfying 

$f' = $?A$!' (2) 
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This equation says sections of the vector bundle V form a representation of SO(4). 
Using an S0(4)-invariant measure fi on T, we can restrict to L^ sections / , for which 
/j,d//(A)|/(A)|^ < oo, and get a unitary representation of S0(4). Alternatively, if we 
fix a reference point AG T and restrict the action to its stabilizer G^ C S0(4), so gA=A, 
then (2) is just the equation for a representation of G^ onV^. Moreover, the full SO(4) 
representation, hence the 2-group intertwiner, can be reconstructed, up to equivalence, 
from this G^ representation—it is just an 'induced representation' [16]. The intertwiner 
turns out to be irreducible if and only if the G^ representation is irreducible. If the radii 
labeling the three edges satisfy the triangle inequahty, G^ is isomorphic to U(l), so we 
may think of triangles as labeled by elements of Irrep(U(l)) = Z. 

Gluing triangles. Triangles with a common edge label, like ^y^' and 'z-^^z', can 
be glued together: '^^ to give more complicated, generally 'reducible', intertwiners. 
Geometrically, the resulting 2-intertwiner from X (g) X' to Z (g) Z' is an SO(4) Hilbert 
bundle over the set 

Q = {{x,x',z,z') eXxX'xZxZ' :x + x' = z + z' eY}. 

of ways of constructing the shape's^' out of vectors in W^ with lengths fixed by the edge 
labels. Note that this shape is not 'rigid' in W", since it can be bent along the joining edge 
without changing any edge lengths, so there are many orbits in this set. In terms of the 
intertwiners (V^, $f^) and (K=., ^^) labeling the two triangles, this bundle assigns the 
vector space W^ •.= V^'S)V^ to each element o G Q. An element g G S0(4) acts on 
this bundle as g{<^,'-p) = (30,i3/|>((^)), with 'i'^ := $f̂ (g) $4. For generic edge labels 
satisfying the triangle inequality, all vector spaces are 1-dimensional, so we really have 
a complex SO(4) line bundle. 

Tetrahedra: 2-intertwiners. A tetrahedron <]>• is labeled by a '2-intertwiner' relat­
ing its back: ^^^ to its front: <|>«, both constructed as in the previous paragraph. If the 
horizontal edge is labeled by the representation Y, and the vertical one by Y', we can 
view both front and back as intertwiners from X (g) X' to Z (g) Z', but subject to different 
triangle gluing constraints: 

x + x = z + z <EY and x + z = x + z <EY 

respectively. A 2-intertwiner for the tetrahedron is a map of SO(4) vector bundles, 
restricted to the intersection of their domains, namely the space of 'tetrahedra': 

T = {{x,x',z,z') eXxX' xZx Z' -.x + x' = z + z' eY &ndx + z = x' + z' e Y') 

Any two tetrahedra in M"' with the same edge lengths differ by an orientation-preserving 
isometry, so there is just one SO(4) orbit in this space of tetrahedra. In terms of the 
intertwiners {V^, $^), (K-, $^), {V<„ $^) and (VS, $^) labeling the four triangles of the 
tetrahedron, the map of vector bundles amounts to a family of maps m ^ from V^f^V^ 
to V<i (g VS, labeled by elements <& G T, and satisfying the intertwining property: 

As with the equation for triangles (2), this can be interpreted in two ways: either as 
an ordinary intertwiner between SO(4) representations on sections, or pointwise as 
intertwiners of stabilizer representations. 

31 

Downloaded 04 Apr 2013 to 194.94.224.254. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://proceedings.aip.org/about/rights_permissions



The representation theory for an arbitrary (strict skeletal) 2-group Q = {G, H) is 
similar in spirit to that just described for £. We have, however, taken advantage of some 
nice features of £, and it seems appropriate here to indicate briefly what may differ 
in the general case. First, the Pontrjagin dual H = hom(i7, U{1)) of H plays a crucial 
role; this is easily overlooked ior Q = £ since M"' is isomorphic to its dual. Irreducible 
representations are in general orbits in H. Also, the action of G on the analog of the set of 
'triangles' T need not be transitive in general. An irreducible intertwiner is then a bundle 
over a single orbit in T; thus triangles carry in general additional labels corresponding 
to G-orbits in T. We have also glossed over some measure-thoretic issues that can be 
finessed away for £, but are vital in other important examples, including the Poincare 
2-group. 

We can summarize the essential ingredients in the general case as follows: 

label I geometric characterization 

irreducible G-orbit in H 
representation 

irreducible G-orbit O in the'space of triangles' in H, 
intertwiner with a G Hilbert bundle over O 

from X ® X to y fiber over A = irreducible representation of stabilizer G^ 

2-intertwiner e /-< TTM. * U J I 
map 01 G Hilbert bundles 

Details about the general representation theory can be found in [1]. 

THE EUCLIDEAN 2-GROUP MODEL 

Knowing the representation theory, and how to use it to label cells of a triangulation A 
of some manifold, the key remaining step in writing a spin foam model for the Euclidean 
2-group £ is assigning appropriate weights W/^{st,ie) ^ IR depending on the length and 
spin labels 4 e ]R^,5t G Z of A. An explicit model is developed in [8], where these 
weights are 

W^{st,Q = \{kt{Q\{ cos S^{st,£e 

*eA .eA V . ( 4 

Here At(4) is the area of the triangle t computed from the edge lengths 4- Each 4-
simplex a gets a factor involving its volume K ( 4 ) and the 'first order Regge action' 
So- = J2tea -^t^t^ where LU" is the dihedral angle of t in the 4-simplex a. 

Let us briefly describe how the weights WA are obtained. First, we have seen that a 
face label can be viewed as a unitary representation of SO(4)—the L^ sections of a line 
bundle over a space T of triangles in M"' with fixed lengths. Defining L^ sections required 
choosing a suitable measure fj, on T for each triangular face t. Any invariant measure 
will work, but it must be properly normahzed. With a natural choice of measures coming 
from the geometry, this normahzation is just the area of t, up to an overall factor, so 
this gives us the 'face factors' in the WA- Similarly, we have seen that a 2-intertwiner 
is a map of SO(4) line bundles over a space T of tetrahedra with fixed edge lengths. 
Given a suitable measure on T, it gives an ordinary intertwiner relating the unitary 
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representations of SO(4) on the boundary faces. The '4-simplex factor' is defined by 
taking the trace the product of five SO(4) intertwiners on the bounding tetrahedra. The 
result is a '20j-symbor—a function of ten edge labels and ten face labels. [8] 

Given these weights, the model is: 

ZA= f l[eedeeJ2wA{st,ee (3) 
e e A s t e Z 

From the perspective of 2-group representation theory, it is very natural to propose mod­
els of this sort. Our interest here in such models, however, is not purely mathematical: 
the Euchdean 2-group model shows up in a surprising but natural way in physics. We 
now turn to explaining this. 

FROM FEYNMAN GRAPHS TO 'QUANTUM FLAT SPACE' 

The model just described was first obtained without presupposing any 2-group structure 
[6, 7]. The goal of this work was simply to rewrite standard Feynman amplitudes 

I d^Xl...ct^Xn J\ G^{ 
{ii)eT 

of Euclidean scalar field theory in the combinatorial language of state sums. It was 
shown that the measure used to evaluate the integral in Feynman amplitudes is in fact a 
state sum model, precisely the one given by (3). 

The strategy for showing this is to gauge out the Poincare symmetry of the integrand, 
favoring the distances 4 i : = 11 a;̂  — x̂  11 as variables, over the vertex positions Xi. One then 
views the 4i as providing flat Regge geometries of the 4-sphere S^, for a certain class 
of triangulations built from the Feynman graph T. With more work, the construction can 
be extended to sum over all Regge geometries of S^, with flatness imposed by delta 
functions forcing the deficit angle UJ at each triangle to vanish. Fourier expanding these 
delta functions 5{bj) ̂  Zlsez*^^P( '̂̂ '̂ ) gives additional spin variables sj G Z labeling 
triangular faces t. 

The end result is that Feynman amplitudes can be computed from the observables 

/r= I \{UieY,WA{st,Q\{G{Q 
-' eeA {st} eer 

obtained by coupling the product of Feynman propagators Heer '^i^-e) to the fluctuating 
geometries {4} of the model (3). Here A is any triangulation of .S"' having the graph 
r as a subcomplex. Certain identities satisfied by the state sum weight insure that the 
observables do not depend (after suitable gauge-fixing) on the chosen triangulation A. 

This result gives a background independent perspective on quantum field theory 
amplitudes. The state sum can be viewed as a 'quantum model of flat space', where 
flatness is implemented dynamically by the choice of the quantum weight. 
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BEYOND THE FLAT MODEL 

In the main model we have described, the Euchdean group S0(4) ix M"' is reinterpreted 
as a 2-group, leading to a new sort of representation theory to be used in the state sum. 
Of course, this is really meant to be a warmup to an analogous Lorentzian model based 
on the Poincare 2-group. 

It is tempting to relate this model to a Poincare gauge theory for gravity. However, 
the most convincing such gauge theory—the MacDowell Mansouri formulation [15, 
19, 20]—has not the Poincare group but the de Sitter group S0(4,1) as gauge group. 
While the de Sitter group cannot be viewed as a 2-group like the Poincare group 
can, it is possible to instead 'cosmologically deform' the representation 2-category 
of the Poincare 2-group. Guided by the geometric description in the Euclidean or 
Poincare case, in such a 'de Sitter deformation', for example, irreducible representations 
become S0(3,l) orbits, not in Minkowski space, but in de Sitter, while 1- and 2-
intertwiners involve gluing relations for triangles and tetrahedra living in de Sitter space. 
Analogously with the Poincare case, the resulting state sum involves 'Regge geometries' 
whose simplices are only 'flat' in Cartan's generalized sense of being isometric with a 
portion of de Sitter space [5, 19, 20]. The Euclidean version of such a model shows up 
in a state sum formulation of Feynman amplitudes for quantum field theory on spherical 
space [7]. 

But other generalizations of the model presented here may also be interesting. In 
principle, one should be able to develop analogous models not only for other strict 
skeletal 2-groups {G,H), but also more general 2-groups, whose representation theory 
is still not fully understood. These may be interesting from the point of view of quantum 
topology. While the Euclidean 2-group model is formally triangulation independent [8], 
we do not yet know whether this property is special, or common to a wide class of 2-
group state sum models. If triangulation independence is generic, interesting invariants 
might be obtained by making a good choice of 2-group. 

On a more physical side, a better understanding of the geometric content of these 
models may give some guiding insights for reahstic models of quantum geometry. We 
emphasize that the perspective on Feynman amplitudes presented in the previous sec­
tion was originally motivated by background independent approaches to quantum grav­
ity. Recent results in three dimensional spin foam gravity [14] have led to the heuristic 
idea that quantum gravity should provide a measure for the integrals in Feynman graph 
amplitudes (cf. [10]). When gravity is 'turned off, this measure should be the standard 
Lebesgue measure. With gravity 'on', the Lebesgue measure is deformed and should 
take into account quantum geometry corrections. On the other hand, the spin foam ap­
proach says quantum gravity should be described by a background-free state sum model. 
This motivated the attempt [6,7] to reformulate Feynman amplitudes as background-free 
state sums. 

Taking this idea seriously suggests that the state sum structure shown here, hence the 
Poincare 2-group model, may contain some seed of information about the structure of 
the quantum gravity amplitude itself. 
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