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Motivation  

Regression analyses of confinement databases may suffer from unrevealed dependencies on 

the energy confinement time tE. Missing regression parameters (e.g. due to a lack of 

experimental accessibility) or nominal dependencies (like the dependence on device/magnetic 

configuration [1,2] or physics regimes [3]) may become significant obstacles to the derivation 

of predictive scaling laws. These potential unknowns have a direct impact on the reliability of 

performance predictions for future fusion reactors. 

     This paper applies statistical techniques to address 1) if the set of regression variables is 

sufficient for data fitting, 2) the identification of nominal dependencies by cluster analysis, 

and 3) the assessment of the impact of regression variables. The latter issue is particularly 

interesting with regard to the question of which parameters are most important for predictions. 

Therefore such assessment may also provide feedback for proposals for parameter studies in 

running experiments. 

     The specific case investigated here is the ISS04 dataset. In the ISS04 scaling study [1], an 

essential step was the division of analyzed data into 14 subgroups inducing systematic offsets 

in the estimated confinement. Based on physical considerations, the allocation of data into 

subgroups was determined by devices and magnetic configurations. Later investigations of the 
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internal database structure, using cluster analysis [4,5] showed the existence of some natural 

substructures (clusters) in the data  that, in general, do not completely coincide with the ISS04 

subgroups. However, when increasing the number of the clusters (say 12-15), one can observe 

a kind of saturation in the regression parameters towards the ISS04 scaling [4].  

     In general, a single cluster contains data from different devices (and also from different 

ISS04 subgroups). For further studies it is important to identify which parameters are 

responsible for the subgroup formation (cluster analysis recognizes and groups objects with 

similar properties in a dataset). The present paper uses the discriminant function analysis to 

identify the most important clustering parameters. 

Basic ideas of discriminant function analysis 

Discriminant function analysis [5] aims at determination of linear combinations of 

independent variables (predictors) that discriminate among the categories of the grouping 

variable. A single linear combination of predictor variables X1, …, Xp, called a discriminant 

function, is constructed such that it assigns its values into two subgroups that differ as much 

as possible.  

     The maximal number of discriminant functions is equal to the number of subgroups minus 

one, or the number of predictor variables, whichever is smaller. In the most simple case, with 

two subgroups (e.g. L/H mode data), there exists only one discriminant function  

                      D = b1X1 + b2X2 + … + bpXp,          for data previously standardized.                 (1) 

All discriminant functions are pairwise orthogonal (uncorrelated). Viewing the coefficients b's 

one can see how the predictor variables  contribute to the discrimination: the larger the b (in 

absolute value) the larger the contribution. The percentage, pcp, of the correctly predicted 

assignments (using the same data set as for model development) assesses the quality of the 

chosen discriminant model.       

     Figure 1 shows the 14 ISS04 subgroups in the plane spanned by the first two discriminant 

functions (denoted as Canonical 1/2). As predictors the set of the ISS04 engineering variables 

{LOG_TAU, LOG_A, LOG_R, LOG_PMW, LOG_N, LOG_B, LOG_IOTA} has been used. 

The names LOG_TAU, …, LOG_IOTA stand for logarithms of the confinement time,  small 

and large plasma radii, absorbed power, density, magnetic field and iota, respectively.  

Clusters in different subsets and dimensions 

We analyze here two datasets: a) the current version ISHCDB_25 of the stellarator-heliotron 

confinement database [6] extended by 1200 new LHD high-beta observations presented in [7],  
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Figure 1. ISS04 subgroups in the first two discriminant dimensions (in the upper right corner the five LHD 
subgroups can be seen). Discriminant analysis results in the  function coefficients D1= {2.6, -2.6, 658.6, 1.3, 
 -1.4, 0.1, -1.7} and D2= {-1.8, 30.0, -9.7, -0.4, -0.1, -0.3, 12.2}, with pcp=97.2. Hence, almost all the 
discrimination  takes place along the horizontal axis, dominated by LOG_R.    
 

and b) the just mentioned dataset joined with the representative tokamak L-Mode subset of 

the ITER H-Mode database [8] as used in [9,10].  

     Table 1 gives an overview of cluster and discriminant analyses for different datasets in both 

engineering and dimensionless variables. The clusters in the present paper have been derived 

using the same method as in [4]. Cases 1-4 concern subsets of stellarator-heliotron data, while 

number 5 deals with the joined stellarator-heliotron and tokamak data. The column ic# 

indicates the possible number of main clusters suggested by the cluster analysis. Columns 

Main predictors and pcp represent the variables mainly causing clustering and the percentage 

of the correctly predicted assignments, respectively. Based on the pcp parameter, it is clearly 

visible that the ascertained clusters in the engineering variables are well discriminated, mainly 

by the geometrical parameters, while for clusters in the dimensionless variables no 

discriminant model can be determined satisfactorily (with the possible exception of case 2). 

Some findings from other conducted analyses   

In the W7-AS subset, high-beta data always form a separate cluster, in both engineering and 

dimensionless variables (the low pcp-value in Table 1, case 4, right-hand, is caused only by 

difficulties in separation inside of the non-high-beta group). High-beta data in both LHD and 

W7-AS subsets scale similar to each other but differently from ISS04 (in particular, with  

LOG_IOTA coefficient = -0.16 instead of +0.41). 

     Discriminant analysis has also been performed using fixed, defined subgroups (i.e. without 

automatic clustering in the prestage). In the case of high beta in engineering variables, for 

both LHD and W7-AS subsets, magnetic field and the injected power seem to be the 

significant determinators. In dimensionless variables no satisfactory model could be found (in 

the subset containing LHD and W7-AS data, there is the indication that RHOSTAR and 

BETA are significant predictors, with pcp=88).                      
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     The difference between stellarators-heliotrons and  tokamak L-mode is observed in both 

engineering and dimensionless variables, and the tokamak data are clearly separated (pcp=99) 

with main separators LOG_R, LOG_A, LOG_IOTA, and TAU, RHOSTAR, BETA, resp. 
 
Table 1. Clusters in  different datasets and dimensions.  
 

Discrimination Engineering variables Dimensionless variables 

Case Dataset ic# Main predictors pcp ic# Main predictors pcp 

1 all data 3 LOG_A, LOG_R 100 5 BETA, TAU 79 

2 LHD + W7-AS 2 LOG_R 100 2 RHOSTAR, BETA 88 

3 LHD 5 
(without  LOG_A, LOG_R) 

LOG_B, _PMW, _TAU, _N 
94 5 

BETA, TAU 

 
57 

4 W7-AS 4 
(without  LOG_A, LOG_R) 

LOG_B, _PMW, _IOTA 
100 5 

BETA, TAU, RHOSTAR 

 
67 

5 stell-hel-tok 6 LOG_A, _R 96 7 TAU, BETA, RHOSTAR 51 
 

In summary, application of discriminant analysis in conjunction with cluster analysis on the 

ISS04 dataset identifies “anticipated” dependencies (geometry) indicating again the particular 

role of the scaling in size resulting due to the comparison of different devices. Because a and 

R separate ISS04 subgroups, a caveat must be raised for the predictive use of the scaling with 

regard to the geometrical parameters. 

     The applied technique is capable of separating major physics differences, e.g. low- and 

high-beta data, but so far, however, has failed to give a clear distinction in more elaborate 

groups such as shaping dependent subgroups. In a joint dataset, tokamak data are clearly 

separated from the stellarator-heliotron group. As expected [2], there is no joint tokamak-

stellarator scaling. These findings confirm a previous conclusion, that the ISS scaling is a 

reference scaling rather than a predictive one, and underlines the necessity for 1-D predictive 

transport modelling.  

     This paper has been conducted within the International Stellarator-Heliotron Profile 

Database collaboration [6].  
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