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Abstract 

This paper reports on the active rotation experiments in RFX-mod where it is demonstrated for the first time in 

RFPs that an internal non-resonant resistive wall mode can be “unlocked” from the resistive wall using an 

external perturbation. The observed constant rotation of the mode depends on the phase shift between the 

external perturbation and the mode. It is seen that plasma rotation, plasma current and coupling to other modes 

have no impact on the rotation frequency of the mode. A simple analytical model is proposed which gives a good 

description of the experimental results. 

 

I Introduction 

 

Resistive Wall Mode (RWM) instabilities are currently the main performance limiting 

MHD phenomena in reversed field pinch (RFP) devices – once the discharge duration exceeds 

the typical wall time of the passive magnetic boundary surrounding the plasma (such as the 

vacuum vessel and/or resistive shell) regardless of the operational scenario.  Hence, in recent 

years significant effort has been applied to active control of RWMs in RFPs. For example, it 

was demonstrated that multiple static, non resonant, current driven RWMs can be completely 

suppressed by the feedback action of a set of active magnetic coils [1,2]. Active control 

techniques are of common interest for many toroidal magnetic confinement concepts. The 

RWM in a tokamak typically rotates with respect to the wall with a rotation frequency (in the 

lab. frame) which is much smaller than the plasma rotation frequency. Plasma rotation 

provide a drag force which rotates the RWM. Unfortunately, plasma rotation though it is 

expected to be strongly reduced in future large devices such as ITER. The role of plasma 

rotation as a stabilizing mechanism is one of the main differences between tokamaks and 

RFPs.  In RFP plasmas, RWMs are usually observed as non-resonant, wall locked 

instabilities, and experience little influence on their growth rates from either plasma fluid 

rotation, error field minimization, or the presence of other MHD instabilities such as tearing 

modes. Here, only remaining stabilization strategy is the use of an active coil system, coupled 
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to a set of magnetic sensors by a feedback controller. Depending on the flexibility of the 

controller implemented, control strategies can vary from the simple implementation of the 

Virtual Shell idea, originally introduced by Bishop in 1989 [3], where the active coil action is 

aimed at canceling the measurement of a set of radial field sensors, to more sophisticated 

controls with non-zero references or full complex gains  in the feedback circuit. This work is 

focused on the influence of the external perturbations on the resistive wall mode in RFP. It 

continues and extends the recent letter [4] and conference contribution [5]. Section II reports 

the experimental results from static perturbation experiments, open-loop rotation experiments 

and closed-loop rotation experiments. A simple cylindrical model is discussed in section III. 

Finally, section IV discusses the implications of these results for further studies of the RWMs.  

 

II Results of the rotation experiments on RFX 

 

II a. Control system 

 

The RFX-mod RFP device (Padova, Italy) has thin copper shell with a vertical field 

penetration time of , 50V shell msτ = . RFX-mod is equipped with a flexible active system for 

MHD mode control [6]. It consists of 192 active coils, fed by 192 independent amplifiers.  

The active coil set entirely covers the RFX-mod external surface, providing control on the 

radial component of the perturbed magnetic field. A digital PID controller allows various 

control schemes to be applied. A schematic of the active control system is shown in figure 1. 

Signals from a large number of sensors measuring all three components of the perturbed 

magnetic field provide the input for the control system. The signals are decomposed with an 

FFT algorithm and converted (according to the chosen control scenario) by a digital controller 

into “reference” signals corresponding to the magnetic field of each harmonic. An inverse 

FFT transform then produces the control currents for each saddle coil via individual coil 

power supplies. Maximum latency time of the control loop is 330μs. 



 

 

 
Figure 1. Schematic illustration of the active control system.  

 

Using this system it is possible to control any particular mode with chosen poloidal (m) and 

toroidal (n) mode numbers. This technique has been widely used in RFPs to investigate the 

dynamics of the mode of interest separately from other MHD activity. In the reported 

experiments, the target mode for investigation was the most unstable internal non-resonant 

resistive wall mode, i.e. an instability with toroidal mode number m= -6 and poloidal mode 

number n= 1. Other modes were suppressed by active control in order to optimize the plasma 

discharge. Note that total field measured by the sensors rb (fig.1 ) includes both the plasma 

and external parts. A model was used [7] in order to separate these parts in the total measured 

signal. In the following we denote the plasma part with the subscript ‘pl’, the external part 

with ‘ext’ and the total field with ‘tot’. 

 

II b. Static perturbations and open-loop experiments 

 

We start our investigations by applying static external perturbations. Time traces of 

the amplitude and phase of the plasma and external perturbations are shown in fig. 2. Two 

cases are compared: (i) the mode is growing freely until 0.1s  and then controlled after this 

time using feedback ( plB : free growth); (ii) the mode is growing freely until 0.05s and then a 

static external perturbation is applied ( plB : static field). The amplitude of the external static 

field is also shown for the second case ( extB : static field). After the start of the external static 

perturbation the mode reappears at different toroidal position so that its phase coincides with 

the phase of the external perturbation and so the mode begins to grow. 



 

 

 
Figure 2. Results of the experiments for free growing mode and static perturbation. Dashed line - free 

growing mode till 0.1s  and controlled after this time using feedback ( plB , plφ : free growth); solid line 

with diamonds – plasma mode with applied static perturbation from 0.05 ( plB , plφ : static field); solid line 

– external perturbation ( extB , extφ : static field). In this figure, the plasma part of the signals is separated 

from the external perturbation amplitude from the coils. 

 

The next set of experiments were made with rotation of external perturbations in open-

loop. An external perturbation was applied with different amplitudes and rotation frequences 

(f=1-30 Hz). Time traces for a discharge with f = 2Hz is shown in figure 3. After the switch-

on of the external rotating field a change in the phase of the mode plφ  is observed. This 

indicates a short period where the mode rotates slowly (between 0.1s and 0.13s) accompanied 

by relatively constant amplitude of the mode plB . However, the relative balance between the 

mode-to-wall and the mode-to-external perturbation interactions is too small (i.e. the wall 

dominates over the external perturbation) which leads to complete wall locking at about 

t=0.14s. From this point on, the mode displays a constant phase (locked to the wall) and 

growing amplitude. The main problem of the open-loop rotation technique is the non-

domination of the “wall-external” field interaction. This problem can be solved using a 

closed-loop technique as shown below.  

 



 

 

 

 
Figure 3. Open-loop rotation experiments. Solid line - plasma mode amplitude plB ; dashed-doted line -  

phase of the plasma mode plφ ; dashed line – external perturbation amplitude extB  (rotation frequency: 

f=2Hz).  

 

 

II c. Closed-loop experiments 

 

The final set of experiments were made with a closed-loop circuit. The principle 

schemes of the feedback action are shown in figure 4.  

 
Figure 4. Principle schemes of the closed-loop feedback experiments and their influence on the mode 

amplitude. a) The mode amplitude is suppressed completely after start of the feedback. pl extB B= −
G G

; b) 

Partial suppression of the mode amplitude. Feedback keeps the mode amplitude at a constant level, 

0φΔ = , starting point for our experiments; c) Partial suppression with phase shift. Feedback keeps the 



 

 

mode amplitude at a constant level and rotate it ( 0φΔ ≠ ); Note that ( )cosextB φΔ  is the same for (b) 

and (c). 

 

Full suppression of the mode amplitude is shown on fig 4a. Here, the plasma mode is 

cancelled by the feedback field resulting in the mode amplitude going to zero. Partial 

suppression is obtained with a smaller extB  (reference case 0φΔ = ) which keeps the mode 

amplitude at a constant level (figure 4b). In this case, “partial suppression” means the growth 

rate is forced to zero, but the mode amplitude has a constant “finite” value. This allows one to 

investigate the influence of phase shifted external perturbations, as shown below. For cases 

(a) and (b), the imaginary part of the gain is zero ( 0φΔ = ). In fig 4c partial suppression of the 

mode amplitude is obtained by applying a complex gain with a non-zero imaginary part. This  

corresponds to introducing an angle ( 0φΔ ≠ )  between the plasma and external components. 

Note that this angle is kept constant during feedback which is different from the open-loop 

rotation experiment where φΔ  varies with time. In the experiments with complex gain the 

projection of externally applied magnetic field ( )extB  on the direction of the plasma field 

( )plB  is a constant ( ( )cosextB constϕΔ = ) and has the same value for figures 4b and 4c.  

The last set of experiments were made in closed-loop (feedback) at low (400kA) and 

high (600kA) plasma currents. It was found in both cases that application of complex gain 

( 0φΔ ≠ ) in the closed-loop operation was able to rotate the plasma mode, as clearly seen in 

figure 5. Here, the plasma perturbations are plotted separate from the total signal, which 

include also perturbations from the coils. 



 

 

 
Figure 5. Results of the RWM rotation experiments with closed-loop feedback at two different plasma currents. The 

The amplitudes plB  and phases plφ  are shown for (m=1,n=-6) mode. φΔ  is angle between the plasma and external 

perturbation. 

 

In the following the reference case for partial suppression of the mode amplitude corresponds 

to figure 4b with 0φΔ = . For this case  the (1,-6) unstable RWM grows freely for the first 

100 ms (400kA plasma current) or 50ms (600 kA plasma current). After which, a small real 

gain was applied to keep the mode amplitude at a finite value, without complete suppression. 

Then complex gain with different values of imaginary part were applied, as discussed above. 

In some of the high current discharges the mode varied slightly in amplitude, phase changes 

nevertheless, remain the same in spite of changes in the mode amplitude. Thus, the rotation 

frequency also remains constant even with increasing mode amplitude. The main RFP 

equilibrium characteristics: field reverse ratio ( ( )z zF B a B= ) and  pitch parameter 

( ( ) zB a BθΘ = ) also remain constant during the mode amplitude growth phase. The reason 

for this behaviour is not fully understood and will be investigated in future experiments. 

 



 

 

 
Figure 6. Dependence of the mode rotation frequency on the phase shift φΔ  between the mode and external 

perturbations. Phase information from the phase traces presented in fig.5 is summarized in this figure.  The models 

are discussed in part III. 

 

In order to estimate the effect of varying imaginary gains, the phase information from the 

experimental traces presented in figure 5 are collected and presented in figure 6. The resulting 

frequency values are shown in the figure with triangles (Ipl=400kA) and open circles 

(Ipl=600kA). The error bars shown represent the time averaging of the frequency obtained 

from the experimental results over the time interval of the constant rotation (see fig. 5). The 

magnitude of the error bar is given by the standard deviation which depends on the length of 

the averaging interval. The feedback system keeps the phase shift between the mode and 

externally applied perturbation at a constant value during the feedback. Experimental results 

show that the rotation frequency of the mode strongly depends on the phase shift and has no 

dependency on plasma current. Plasma rotation at low frequencies is also not important which 

is demonstrated by applying the rotated perturbations in two opposite directions ( 30φΔ = ± ). 

Equivalence of the results at both currents can be also seen in figure 7. Here, the evolution of 

the mode rotation frequency are shown directly after the feedback switch-on (t=0.0s in figure 



 

 

7). One can see that not only stationary frequencies ( )wallt τ>  are the same as shown in figure 

6, but also the initial change of the rotation frequencies ( )wallt τ<   is identical within 

experimental errors. The time required for the frequency to grow to a stationary value is about 

the same for all curves and corresponds to the resistive wall time. This indicates that the wall 

properties and penetration of the perturbation determine the mode acceleration. 

 
Figure 7. Rotation frequency after beginning of the feedback for 400kA (solid lines) and 600kA (dashed 

lines). Time point zero corresponds to the start of the feedback. Wall time is indicated. 

 

 



 

 

 

III Modelling of the rotation experiments 

 

For the analysis of the mode acceleration a periodic cylindrical model is proposed. 

Similar models were used previously for the investigation of the feedback behaviour [8, 9, 

10]. The model assumes a plasma of radius ar  surrounded by a resistive wall at br  and the 

feedback coil at fr r= . The indexes b and f correspond to the resistive wall and the feedback 

coils respectively. In the vacuum region outside the plasma, the most general solution of the 

Laplace equation 0,ΔΨ = with b = ∇Ψ
G

 ( b
G

is the magnetic fluctuation field) and the solution 

for the radial part of perturbed magnetic flux can be expressed 

as ' '( ) ( ) ( )j m j mr A kr I kr B kr K krΨ = + , where mI ( )kr and m ( )K kr  are the modified Bessel 

functions, /k n R=  and j is the index for the vacuum region. Considering only one external 

kink mode with poloidal mode number m  and toroidal mode number n , the perturbed 

magnetic flux is written as 

( )( ), ,( , , , ) ( ) expm n m nr t r i m n tθ φ θ ϕ ωΨ = Ψ ⋅ ⋅ − −  (1) 

Using a similar approach as Ref. [11], the total magnetic flux is expressed as the linear 

combination of plasma and coils parts 

Applying Ampere’s law at rb and rf, and asymptotic matching the above solutions in 

vacuum region, the following relations at the resistive wall and at the coils are obtained 
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and b o brτ μ σδ= , r iω ω γ= + . S(m,n) is a coefficient related to the structure of the feedback 

coils. For the feedback circuit a simple model equation is adopted: 
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where the sensors are located at rb. fI  is the current in the feedback coils, fL its inductance 

and fR its resistance. The final dispersion relation has the following form: 
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Here, the gain (G ) is a complex quantity. The feedback system keeps the phase shift constant 

( (Im( ) / Re( )) .arctg G G constφΔ = = ). A linear stability code is used to solve the Newcomb’s 

equation for the non-resonant internal kink mode and to calculate the instability index bbE ,ˆ  

for the (1,6) RWM ( 0.05F = − , 1.47Θ = , 3.0α = , 0 0.23ε = ). Without feedback, the growth 

rate can be obtained from ,
ˆ

b b bEγτ = . The other indexes ijE  have been calculated by 

asymptotically matching the vacuum solutions of the modified Bessel functions. The feedback 

coil L/R time constant is taken as 2f msτ ≈ . In the computation, the experiment is simulated 

using the following steps: first the value of ( )ˆRe G  is found such that it keeps the (1,-6) mode 

growth rate almost zero with 0φΔ =  (without rotation); then by keeping the same ( )ˆRe G  and 

varying φΔ  the corresponding complex ω  is obtained from the dispersion relation, which 

gives the mode rotation frequency. It is found that the dispersion relation predicts the 

experimentally observed dependence of mode rotation frequency on the phase shift very well, 

as shown in figure 6 (solid line). The problem can be solved with further simplifications: no 

plasma response; ideal feedback; a more simple ansatz for the perturbed flux ( ( ) mr r±Ψ ∼ ); 

close position of the plasma boundary, resistive wall and feedback coils. These assumptions 

reduce the final result to a much simple expression:  

 ( ) 5.1 ( )wf m c tg tgφ φ≈ ⋅ ⋅ Δ ≈ ⋅ Δ             (7) 

where m is the poloidal mode number and 
0

1
wc μ σδ=  is the wall parameter which depends 

only on its conductivity σ  and wall thicknessδ . This solution also agrees well with the 

previous more general model (see figure 6). This suggests that in our experiments:  

• The rotation frequency of the plasma mode is defined by the frequency of the system: 

external coils + resistive wall + sensor. Such result indicates that the ideal mode has 



 

 

no interaction with bulk plasma flow in our experiments (i.e. no inertia and no 

dissipation). Thus, rotation frequency is defined by the wall properties and φΔ . 

• The time delay due to the feedback is not important as it is seen from similarities 

between general and simplified models. Thus, the “ideal feedback” assumption is valid 

for the presented results. 

The equation (7) gives the infinite rotation frequency at 90φΔ = . It is also seen from figure 

4c that such an angle requires infinite gain G. It is clear that this is not achievable. Further 

experiments are therefore necessary to clarify the maximum possible frequency. One should 

note that such experiments may give also an estimate of the plasma rotation influence on the 

resistive wall mode. The presence of influence of the plasma rotation will appear as an 

asymmetry between co- and counter-rotation cases in figure 6. In fact, the plasma rotation is 

the only asymmetry which is present in the experiment. The control system produces identical 

fields in co- and counter direction. In the asymmetric case the proposed simplified model 

would not be applicable because inertia and dissipation must be taken into account. Thus, 

further experiments with higher rotation in both directions would clarify how “ideal” is our 

resistive wall mode. 

 

 

IV Conclusions and Discussion 

 

It has been demonstrated for the first time in RFPs that the RWM can be unlocked 

from the resistive wall using an external perturbation. The observed constant rotation of the 

mode is slower than the inverse resistive wall time and depends on the phase shift φΔ  

between the external perturbation and the plasma mode. It was found that plasma rotation, 

plasma current and coupling to other modes have no strong impact on the rotation frequency 

of the mode. A proposed simple analytical model gives a good description of the experimental 

results (which uses cylindrical approximation and assumes the ideal character of the mode). 

The RWM is a common problem for various toroidal devices (RFPs, Tokamaks). 

Thus, stabilization of RWMs has gained increasing attention in the fusion community during 

recent years. RFP experiments have demonstrated the control of multiple static RWMs with 

feedback coils [12, 13]. The critical point for stabilization of the RWM in tokamaks is the 

prevention of the wall locking. When a mode locks, it grows rapidly and becomes strong and 

extremely difficult to stabilize with external coils (the number of which is also limited 



 

 

compared to RFPs). In this situation, the important task is the prevention of the mode locking 

and the fast unlocking of the mode from the wall. In this respect, RFPs are good test devices 

for testing different control schemes which may then be transferred to tokamaks. The 

presented results with externally induced rotation allow one to investigate the physical 

mechanism of the unlocking and induced rotation and thus can be considered as a first step for 

clarifying the physics of these processes. In some respects, our experiments are similar to the 

MHD spectroscopy in tokamaks [14] and may be used for future comparison. It is clear that 

the achievable rotation frequencies using external coils are of the order of  the inverse 

resistive wall time, which is much slower compared to the plasma rotation frequency, but are 

of the same order as the rotation frequency of RWMs in tokamak. Thus, prevention of locking 

requires continuous control of the mode rotation, which is a challenging task. Further 

investigations are required to understand the feasibility and effectiveness of this approach.   

An other interesting application of the rotation experiments is the investigation of the 

influence of the plasma rotation on the mode. Theoretical predictions show that plasma 

rotation is able to stabilize RWMs also in RFPs, but the rotation frequency should be very 

high (a few percent of the Alfvén velocity) [15]. Such rotation is not achievable in present 

RFPs where no sources of additional momentum input are available at present and the input 

power is mainly ohmic. It is interesting to note that initial predictions, based on a simple fluid 

model, give a small dissipation value also for tokamaks (and thus, only a small stabilizing 

effect from the plasma rotation on the mode), and that only the inclusion of kinetic effects 

substantially changes the dissipation value [16, 17]. Thus, the experimental proof of the 

theory would be also interesting for any achievable frequency range.  

The extension of similar experiments to other toroidal devices would also help to 

understand the role of passive and active boundary conditions in the determination of the 

equilibrium angular velocity for a given phase shift between plasma mode and the external 

perturbation 
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