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We present a detailed analysis of binary black hole evolutions in the last orbit and demonstrate
consistent and convergent results for the trajectories of the individual bodies. The gauge choice can
significantly affect the overall accuracy of the evolution. It is possible to reconcile certain gauge-
dependent discrepancies by examining the convergence limit. We illustrate these results using an initial
data set recently evolved by Briigmann er al. [Phys. Rev. Lett. 92, 211101 (2004)]. For our highest
resolution and most accurate gauge, we estimate the duration of this data set’s last orbit to be

approximately S9M apy.
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Introduction.—Over the course of the next decade, in-
struments capable of detecting gravitational radiation
(such as LIGO, VIRGO, TAMA, GEO600) are expected
to open a new observational window on the Universe. The
collision of binary compact objects such as black holes
(BHs) is one of the most promising sources for first gen-
eration gravitational wave observatories. The theoretical
framework for modeling binary BH (BBH) systems is the
complete set of nonlinear Einstein equations. Intensive ef-
forts to develop numerical codes able to solve these equa-
tions using supercomputers have shown that it is now pos-
sible to evolve BHs for periods of an orbit [1-3]. If these
simulations are to produce waveforms useful for detector
searches, high demands are placed on their accuracy [4].

The near-zone dynamics of binary BH systems are
notoriously difficult to simulate and to analyze. Using the
Baumgarte-Shapiro-Shibata-Nakamura (BSSN) formula-
tion and a particular set of gauges, a series of BBH con-
figurations, corresponding to initial data in quasicircular
orbit at successively larger separations [5], were all found
to coalesce in slightly more than a half orbit [2]. A similar
BSSN evolution carried out using somewhat different
gauges and numerical methods for another data set, slightly
further out along the orbital sequence, was found to evolve
for much more than the estimated orbital time scale
114M ppm Without finding a common apparent horizon
(AH) [1]. In fact, no common horizon was found long after
the BHs would reasonably be expected to have merged.

In this Letter, we carry out an evolution of the same data
set and show that it does, indeed, carry out a complete orbit
before a common AH forms. As the BH separation de-
creases, a local measure of the angular velocity () in-
creases, so that the duration of the final orbit is
approximately 59M. The trajectories are convergent for a
range of resolutions and within a class of gauge conditions.

However, we do find that very high resolutions are
required in order to obtain evolutions close to the contin-
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uum limit. The resolutions we have applied here are sig-
nificantly higher than those used in analogous BH
evolutions to date, except for Ref. [3], where similar res-
olutions were used. With insufficient resolution, we show
that it is possible to substantially under- or overpredict the
orbital period. We also find that apparently small devia-
tions in the chosen coordinate conditions (gauge), based on
the choice of parameters within a particular family, can
have a strong influence on the discretization error within
the subsequent evolution.

Methods.—Initial data for the evolutions discussed in
this Letter correspond to Brandt-Briigmann ‘‘punctures”
[6]. The particular orbital parameters are chosen to be
identical to those first evolved in Ref. [1], namely, initial
separation L/M = 9.32M, bare masses m = 0.476 56M of
each BH, and equal and opposite linear momenta p =
*0.138 08. These parameters are chosen to approximate
a BH pair in quasicircular orbit. The angular velocity ), =
0.054 988 suggests an orbital time scale of 114M for a
perfectly circular orbit. The initial geometry is determined
by numerically solving the constraint equations using the
solver of Ansorg et al. [7].

The binary BH evolution is carried out using the
“BSSN” formulation of the Einstein equations [8—10],
with an implementation described explicitly in Ref. [11].
We use a version of the “1 + log” lapse and I'-driver
shifts, given by Egs. (33) [with f(a) =2V}, /a] and
(46) [with F(a) = 3/4a” /W}, ] of Ref. [11]. We general-
ize the parameter 7 to a lapse-dependent coefficient a?m,
where typically g € [0, 4]. This is helpful for long-term
evolution of BHs from large initial separations through
merger and will be discussed in detail elsewhere.

We also dynamically adapt our gauges to the horizon
location so as to approximate comotion. Individual hori-
zons are located often during the evolution using the finder
described in Ref. [12]. From the motion of the horizon
centroid, the angular and radial positions and velocities are
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determined. Using a damped harmonic oscillator equation,
the acceleration needed to bring the horizon centroid back
to the initial position is determined by

A= —[2TQOA + (A — \9)]/T> (1)

Here A stands for either the current azimuthal angle ¢ or

radius 7 = /x> + y? in the orbital plane and A° for its
initial value. T and Q are constants determining the time
scale and damping factor of the harmonic oscillator. The
correction is added to the time derivative of the shift vec-
tor as

AB = (=y,x,0)0 — (x,y 0)#/r. 2)

The punctures are excised using an extension of the
“simple excision” techniques which have proven success-
ful in evolving single BH spacetimes [13,14]. In particular,
we apply the boundary condition to an embedded boundary
whose shape is determined by the horizon location, as
described in Refs. [2,15].

Spatial differentiation is performed via straightforward
finite-differencing, incorporating nested mesh-refined
grids with the highest resolution concentrated in the neigh-
borhood of the individual horizons. The mesh refinement is
implemented via the carpet driver [16] for CACTUS. The
evolutions carried out in this Letter made use of 8§ levels of
fixed 2:1 refinement. We fix the regions of increased reso-
Iution around the initial BH locations. Because we are
making use of a BH-adapted gauge, the individual horizons
remain on the fine grids throughout the evolution without
requiring moving grids or excised regions. We have used
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FIG. 1 (color online). The minimal proper distance between
individual AHs as a function of time. Lines show two represen-
tative resolutions # = 0.025M and h = 0.015M for each gauge
choice GC1, GC2, and GC3 discussed in the text and an h =
0.0125 evolution for GCI1. Points show Richardson extrapo-
lations (RE) for resolutions & € {0.018,0.015,0.0125}M for
GCl1, h€{0.020,0.018,0.015}M for GC2, and h€E
{0.025, 0.020, 0.015}M for GC3.

finest grid resolutions of 4 = 0.025M, 0.02M, 0.018M,
0.015M, and 0.0125M, with an outer boundary at 96 in
all cases. Our overall finite-differencing accuracy is second
order in space and time.

As a diagnostic of the dynamics of the individual BHs,
we measure the proper distance within a slice between the
pair of AHs. This is calculated by shooting spacelike geo-
desics from the origin (taking advantage of the spacetime
symmetry) to one of the horizon surfaces [17]. As this
measure of distance is within each slice, it does depend
on the particular lapse condition (as will be seen below) but
still provides useful information about the near-zone BH
motion in the given slicing.

Results.—Evolutions were carried out for a number of
resolutions and gauge parameters. A first observation,
important in interpreting the results of Refs. [1,2], is that
the infall coordinate trajectory at a given resolution de-
pends crucially on the gauge choice. In Fig. 1, the results
of evolutions of three choices of gauge parameters (intro-
duced above) are displayed. The first, which we label
“GCl1,” sets (m,n, p,q,n,T,0)=1(0,2,1,1,4,5,1). The
second gauge choice “GC2” sets parameters to
(4,2,1,4,2,5,1). The third gauge choice “GC3” is de-
scribed below. Plotted are the proper separations of the
AHs within the slice versus the coordinate time.

We note that, for the GC1 evolutions at a grid spacing of
h = 0.025M, the BHs fall together rather rapidly. By co-
ordinate time ¢t = 75M, the proper distance between the
AHs is down to L/M = 4.5. Increasing the resolution to
h = 0.020M, h = 0.018M, and h = 0.015M, there is a
trend towards longer evolution times before reaching the
same separation, though the convergence is slow. For the
highest resolution which we have evolved, i = 0.0125, the
infall to the same separation is delayed to only ¢t = 88M.

The evolutions resulting from gauge choice GC2 have
an entirely different character. At the lowest resolution,
with & = 0.025M, we find that not only does the system
evolve well beyond an orbital time period before a com-
mon AH appears, the orbit appears to be elliptical, with
proper separation first increasing with time, and then fall-
ing back, reaching a separation L/M = 4.5 only after t =
119M. This behavior is qualitatively similar to what was
reported for the same initial data set in Ref. [1]. Increasing
the resolution as above, however, we find a faster coales-
cence as resolution is increased, and the apparent elliptical
nature of the orbit disappears.

Importantly, the two families of evolutions correspond-
ing to GC1 and GC2 do show a tendency towards each
other as resolution is increased. In fact, a 3-term
Richardson extrapolation (eliminating 2nd and 3rd order
error terms) of the computed trajectories show that the two
families converge to a common result in the continuum
limit. Figure 1 also shows the results of the extrapolation
for both sets of evolutions at the 3 highest resolutions
where we had sufficient data available. (Using other sets
of 3 resolutions gives very similar results.)
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The differences between GC1 and GC2 results may at
first seem to be the expected result of the variation in
slicing condition between the two classes of evolutions.
However, the fact that the results converge to the same
coordinate trajectory in the continuum limit suggests a
somewhat different explanation, namely, that the finite
difference error inherent in the evolution (particularly in
the lapse) can be strongly influenced by the gauge choice.

The Richardson extrapolation provides an indication of
the accuracy of the evolutions at a given resolution or,
conversely, the resolution required to obtain a result of a
given accuracy. The Richardson-extrapolated coordinate
trajectory seems robust, but we note that the highest reso-
lution (h = 0.0125M) GC2 simulations which we have
carried out still represent a 22% error in separation at t =
100M compared to the extrapolated result. The sensitive
dependence of accuracy on gauge suggests that “ideal”
gauge conditions may be able to improve the accuracy
greatly at a given resolution.

Based on results of the previous experiments, a third
gauge choice parameter was found to demonstrate this
point. Under the label GC3, evolutions of the same data
were carried out using gauge parameters (4,2,1,4,
2,5,2.6), i.e., the same as for GC2 except for the drift-
correction damping parameter. The GC3 results are also
plotted in Fig. 1. Once again, we find the proper separation
measure to be convergent with increasing resolution and,
further, that the Richardson extrapolation lies on top of the
curves predicted by the previous evolutions. However, in
this case the highest resolution attempted, & = 0.015M,
lies much closer to the limiting trajectory.

Figure 2 plots the evolution of the individual BHs’
angular velocity, as measured by the AH centroid’s drift,
for GC3 at our highest evolved resolution. From our expe-
rience with more closely separated binaries, the initial shift
profile corresponded to a quasirigid rotation with ) = 0.3,
approximately 60% of the nominal )y = 0.055 of the
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FIG. 2 (color online). Angular motion of individual AHs as a
function of time (lower scale) and angle (upper scale, in radians
measured backwards along the orbit from the first appearance of
a common AH). The curve shows the angular velocity () of the
AH centroid for GC3, as measured by integrating the corrections
applied to the gauge via (1). The horizontal line corresponds to
the g = 0.055 estimated for the initial data.

initial data [18]. The corotation shift adjustment (1)
quickly raises the effective angular velocity of the coor-
dinate system up to a value close to the initial data pre-
diction €),. As expected, this angular velocity then
gradually increases as the BHs spiral together.

Figure 3 plots the overall motions of the AHs for the
same GC3 case as Fig. 2. The individual horizon shapes are
shown at intervals of SM, transformed according to the
radial and angular motion determined above. The initial
rapid dip in separation from 9.32M to 8.3M in Fig. 1 can
now be seen to be largely a result of the initial coordinate
expansion of the individual horizons, due to our choice of
zero radial shift in the initial data.

A common AH is first detected at + = 124M, by which
time an angular displacement of 10.2 radians, or 1.6 revo-
lutions, has taken place. The common horizon is found via
the method of pretracking, in which a family of surfaces
with the smallest possible generalized expansion is fol-
lowed to provide an estimate which converges on the first
common AH [19]. The listed time is expected to corre-
spond to the first genuine appearance of a common AH,
independent of the search algorithm. Counting backwards
from the appearance of the common horizon, the duration
of the last orbit is approximately 59M. It is interesting to
note that, for the cases where a common horizon is found, it
occurs when the proper separation is approximately 1.8M.
Our Richardson-extrapolated GC1 and GC2 evolutions
reach this same separation less than 5M earlier than this
GC3 evolution.
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FIG. 3 (color online). Schematic showing the motion of one of
the BHs with time, for the GC3 gauge choice at the highest
resolution 2 = 0.015M. At intervals of t = SM, the AH cross
sections in the xy plane are plotted by transforming the corotat-
ing coordinate system by the specified angle and distance. The
apparent growth of the AHs with time is a nonphysical coor-
dinate effect. The first appearance of a common AH at r = 124M
and the corresponding final single AH are shown superposed on
the figure as dotted lines.
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Given the demonstrated resolution dependence of these
results, it is likely that these results will be subject to some
modification as more accurate evolutions become avail-
able. It should also be recalled that a merged event horizon
within the slice will have formed earlier than the common
AH. Experience with closely separated binaries suggests
that this is typically not more than about SM before the
appearance of the first common AH, but studies of the
event horizon evolution for these spacetimes will need to
be the subject of future studies. We also note that the notion
of an “orbit” for closely separated BHs is an intrinsically
gauge-dependent quantity—for example, a sufficiently
small lapse in the region of the horizons could be used to
indefinitely delay merger. The slicings used here are quite
similar in profile to maximal slices and, thus, not atypical
for numerical relativity simulations.

As a final point, we note that a number of measures of
accuracy have been monitored during the course of these
evolutions. In particular, the constraint violation is found to
remain below a value of 0.05 at all points outside the BH
horizons and away from the boundaries for the duration of
the runs. The AH masses of the individual BHs were
measured and found to be essentially constant, convergent,
and accurate even for the low resolution runs. We have also
compared binaries with closer separation, such as the
“QC-0" data evolved by a number of groups [2,20,21]
and find excellent agreement with published results.

Conclusions.—We have carried out evolutions of BBH
configurations, from initial data in quasicircular orbit,
through plunge, to the formation of a common horizon.
The dynamics exhibit a number of interesting properties.

Using a measure of angular velocity based on the AH
motion, we have found that the black holes remain sepa-
rated for more than 1.5 revolutions. This measure initially
yields an angular velocity which is consistent with the
initial data model. The most accurate estimate of the
duration of the last complete orbit before formation of
the first common AH was 59M. As might be expected
for bodies falling towards each other, this orbital period
is considerably less than is predicted by the initial angular
velocity, 114M. The results have been carried out at reso-
lutions much higher than similar studies to date and exhibit
good numerical consistency under a range of resolutions
and for a variety of gauge parameter choices.

By Richardson extrapolating the black hole trajectories,
we derived what appears to be a robust estimate of their
continuum limit, which proved to be almost independent of
gauge choice, at least within the family of gauges consid-
ered here.

These evolutions required extremely high resolution to
attain good accuracy. Insufficient resolution can result in
very different predictions for the orbital trajectories and the
period of the final orbit. This period directly influences the
phase of asymptotically observed waveforms at their stron-
gest point and, thus, is crucial to reproduce accurately.

We demonstrated that the gauge choice can feed directly
into the numerical accuracy of the solution, due to un-

wanted dynamics in the evolution variables caused by
gauge effects. A preferred gauge was found to significantly
improve the accuracy at a given resolution. A more de-
tailed exposition of the gauge conditions used here, applied
to a sequence of initial data configurations, will be the
subject of upcoming studies.
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