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Abstract

The paper presents a theory of ion acoustic waves in the axoplasm of nerve fibres. A set
of non-linear wave equations can be established from first principles starting from the Vlasov
equation - a collisionless Boltzmann equation - and its moment equations. There exists a
density regime where collisions are negligeable and the entropy is conserved. In this regime
nerve pulses experience little or no attenuation. The linear theory shows a rich spectrum of
ion acoustic modes depending on the composition of the axoplasma. These waves travel in the
interior of the nerve fibre and not along the membrane as in the theories of Hodgkin-Huxley
and Heimburg-Jackson. The non-linear theory of ion acoustic modes exhibits nonlinear
waves and solitons. The relation to the Korteveg-de-Vries equation is discussed. The theory
identifies the importance of organic molecules in nerve pulse propagation, however, a unique
identification is not possible. The paper investigates the excitation of nerve pulses via plasma-
beam interaction, which may be one explanation how mechanical signals can be converted
into electric signals.

1 Introduction

The excitation and propagation of nerve pulses is one of the fundamental problems of biophysics
and biochemistry. Nerve pulses are electric pulses and they propagate along nerve fibres or axons
with velocities of about 100 m/s or less. A typical diameter of a nerve fibre is 1-10 µm enclosed
by lipid membrane. This membrane is permeable for light ions like sodium and potassium and
since the concentration of ions differs inside and outside the axon there exists an electric potential
across the membrane, the resting potential. Influx and outflux of ions through voltage-controlled
channels in the membrane are the basis of the Hodgkin-Huxley model (H-H-model) [1] where
non-linear differential equation of the electric potential has been derived. Modern computers
allow to solve this equation and by proper adjustment of the numerical parameters it is possible
to reproduce many features of the experimental findings. The propagation velocity, however, is
not derived from first principles, it is also adjusted to the experimental findings. In this model
only sodium and potassium ions play the dominant role in creating the action potential and its
propagation along the axons. Protein molecules - neither as neutrals nor as ions - do not occur
in this theory.

The theory of Heimburg and Jackson [2][3] introduces thermodynamic aspects and starts from
a non-linear wave equation of fourth order for sound propagation in the membrane which allows
solitary wave solutions. In contrast to the H-H-model reversible processes and conservation of
entropy play a significant role in this theory. Phase transitions in the membrane from a sol state
to a gel state are the key for understanding the function of anesthetics. As a consequence of
the density wave there exists a piezo-electric wave which makes the propagation visible to the
diagnostics. It should be emphasised that in this theory as well in the H-H-theory nerve pulse
propagation is localised to the region of the membrane, which is a few nm in diameter, while
the interior of the nerve fibre being 1000 times larger has no effect on this mechanism.
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Nerve signals are electric signals. They are electrostatic transient phenomena and not elec-
tromagnetic waves. Electrostatic fields are governed by Poisson’s equation which does not occur
in the theories mentioned above. Time-dependent electric fields imply moving electric charges
which play a important role in the H-H-theory, the motion of charged particles, however, is
governed by the force balance either of single particles or in the frame of a fluid theory. The
axon or nerve fibre is filled with water and various molecules and atoms in neutral or charged
states. It is an electrolytic medium and besides ordinary sound waves ion acoustic waves carried
by charged particles can be excited. In context of nerve pulse propagation there are several
important issues:

• What is the mechanism of converting acoustic, optical, mechanical and thermal stimuli
into electric signals?

• What is the mechanism of nerve pulse propagation in the axon?

• What are the conditions for zero or small damping of nerve pulses?

• Which ions play the dominant role in nerve pulse propagation?

• How is the electric signal transmitted across the synaptic cleft?

The present paper does not give answers to all questions, a better understanding of the pulse
propagation, however, may help to clarify the other issues.

In the present model we focus the attention on the cytoplasm inside the axon. The cytoplasm
consists mainly of water (about 80%), amino acids, polypeptides, lipids, about 1% sodium,
chloride and potassium[13]. Also magnesium and calcium may play a role in nerve pulse physics.
However the exact composition is not known in all details and may also differ among the living
species. A large fraction of the cytoplasm is in dissociated state with positive and negative ions.
Let be 1 ≤ k ≤ K the number of charged molecules or atoms and mk, nk, qk, pk the mass, the
density, the charge and the partial pressure of the constituents. Due to the long-range Coulomb
forces the charged particles are in thermodynamic equilibrium with a common temperature of
T ≈ 310 K. This is a dense and weakly ionised plasma and as in gaseous plasmas electrostatic
waves can be excited. Any magnetic field effect may be neglected and the basic equation the
for electric potential is Poisson’s equation and the main problem is to compute the density
of the charged molecules as function of space and time. In contrast to gaseous plasmas with
electrons and hydrogen ions such “axoplasma” consists of positive Na-atoms or K-atoms and
charged protein molecules with large mass. For example, amino acids or polypeptides exhibit a
dipole character and in aqueous solution they become positively and negatively charged and the
fraction depends on the pH of the axoplasm. At the isoelectric point pI the fraction of positively
and negatively charged ions is equal. Due to hydration the Na-ions or K-ions are surrounded by
water molecules which raises the effective mass of these ions. The thermal velocity of charged
ions depends on the temperature and the effective mass and is given in the following equation
Vk = 9.77 × 103

√
T/Ak [m/s] ; T in eV. Ak is the atomic weight or molecular weight. At

body temperatures of T = 310K = 0.028eV typical ion velocities are given in the following
table:

Atomic weight H Na K Ca Mg Cl 300 1000 10000
Velocity [m/s] 1597 340 262 258 333 276 94 50 16

Table 1: Ion thermal velocities
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Figure 1: Left: Thermal velocity of various molecules or atoms at T=310 K. Right: Mach
number of various molecules vs propagation velocity

Glutamic acid and aspartic acid are prominent members of the axoplasm, the thermal velocity
in case of glutamic acid (A=147) is Vk=134.8 m/s and in case of aspartic acid (A=133) Vk=141.1
m/s. Below a molecular weight of A ≈ 260 the thermal velocity according the equation above
is above 100 m/s. For these particles a nerve pulse below 100 m/s runs with subsonic speed. If
heavy polypeptides participate in nerve pulse propagation the speed of propagation is supersonic.
Glutathione - a tripeptide with molecular weight 307 - has a thermal velocity of 93 m/s. Thus,
at propagation velocities below 90 m/s also tripeptides are subsonic. However, it should be
noted that this definition is made with the thermal velocity of the ions. If the sound velocity
differs from the thermal velocity this will also affect the definition of subsonic and supersonic
propagation. Due to hydration the effective mass of the Na and K ions can be larger than the
mass of the bare ions. 6 water molecules add a weight of A = 108 to the weight of the ions. This
implies that the thermal velocity of such a complex is of the order 130-140 m/s. As will be shown
later these velocities Vk are also the phase velocities of ion acoustic modes in the cytoplasma.
The sound velocity Ck depends on the equation of state pk = pk(nk, T ). It is defined by

C2
k =

dpk
mkdnk

(1)

and for pk = Tknk it coincides with the thermal velocity. In fast processes like ion sound
propagation, however, an adiabatic law conserving entropy is more appropriate and with pk ∝ nγk
the sound velocity is

C2
k =

dpk
mkdnk

=
γpk,0
mknk,0

(
nk
nk,0

)γ−1

(2)

where pk,0, nk,0 are some reference data. γ is the coefficient of adiabaticity. With pk,0 = T nk,0
we get

C2
k = γV 2

k

(
nk
nk,0

)γ−1

(3)

This approximation becomes invalid in the vicinity of phase transitions which may be relevant
for amino acids. Amino acids and polypeptides exhibit a dipole character which certainly has an
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effect on the equation of state. Due to the electric dipoles the molecules couple and the result is
a modification of the equation of state and a change of the effective mass. The effect depends on
temperature similar to magnetic dipoles in ferromagnetism below and above the Curie point. If
the equation of state follows the van-der-Waals law the sound velocity decreases with decreasing
temperature. Approaching the region of phase transition the sound velocity C2

k ∝ p′(nk) → 0
tends to zero. The idea of phase transition in the membrane from sol to gel as proposed by
Heimburg and Jackson can be transferred to the polypeptides in the interior of the axon.

2 The axoplasma

Nerve pulses are electric pulses and unlike electromagnetic waves they need a material carrier
with charged particles. The basic equations to describe the propagation of electric pulses in
charged media are the momentum balance, the equation of continuity and Poisson’s equation
correlating the charge density to the electric potential. This raises the question whether the
laws of continuum mechanics are applicable to the fluid inside the axon. The width of an axon
is more than 1 µm while the size of a molecule stays below 1 nm. The difference is more than 3
orders of magnitude which justifies the model of a continuum. An alternative would be a kinetic
theory. The excitation of a nerve pulse, however, will be discussed in the frame of kinetic theory.

The starting point of our analysis is a multi-species plasma with N charged ion species.
In a hydrogen plasma N is 2 (electrons and protons), in a fusion plasma containing D,T and
alpha-particles N is 4. In space physics dusty plasmas consists of heavy macro-particles which
are negatively charged and light positive ions. In such a mixture of positively and negatively
charged ions electrostatic waves can exist and propagate. We assume zero momentum source to
the plasma thus avoiding a situation where plasma rotation is excited by external sources. Ion
sources are described by a source term in the equation of continuity. A sudden influx of ions
can be the reason for electrostatic waves similar to a falling stone which creates waves in water.
Charged particles are deflected by magnetic fields. The radius of gyration of single-charged ions
is

ρ = 1.45× 10−4

√
Ak T

B2
[m] B in T (4)

Ak = 100 and T = 0.0.28 eV yields ρ = 2.4× 10−4/B m. In the earth magnetic field the radius
is several meters and therefor no effect on nerve pulses is expected. Even at magnetic fields
of B = 1 Tesla the radius is much larger than the diameter of the nerve fibre and therefor no
effect on the movement of charged particles inside the axon may be expected. In the following
analysis any magnetic field effects will be neglected. The situation may be different in a moving
coordinate system where the Lorentz force v × B enters the force balance of the axoplasma.
If the nerve system is sensitive to this force this would be a method to detect the orientation
of the earth magnetic field. This effect could be the key to understand the annual north-south
migration of birds.

Charged particles interact among each other by Coulomb forces. The characteristic length
is the Landau length defined by 90o deflection. The equation λL = 4.8 × 10−10T−1 [m] (T in
eV) yields λL = 1.7× 10−8 [m]. The Landau length is much smaller than a typical radius of the
axon but by a factor of 10-100 larger than the radius of the molecules below r < 10−9 m. Since
the cross section of Coulomb interaction is larger than the cross section of neutral molecules
charged particles interact more strongly among each other than with the neutral background.

In the Debye-Hückel theory the Debye-length is defined as the screening distance of a
charged particle by a cloud of particles with opposite charge. The theory yields λD = 7.42 ×
103
√
T/
√
n [m], which yields λD = 1.24 × 103 1/

√
n [m]. Taking into account the dielectric

constant of water yields λD = 1.1× 104 1/
√
n [m] Only if the Debye length is smaller than the
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diameter of an axon we may consider the ensemble of charged particles as a plasma and apply
the standard techniques of plasma physics. However, in a dense axoplasma, where the fraction
of charged particles is about 1% of the number density of water the Debye length is smaller than
the Landau length, which implies that the idea of binary collisions among charged particles col-
lapses. The number of particles in the Debye volume is less than unity and the axoplasma is a
strongly coupled plasma, in contrast to gaseous plasmas with larger Debye length. The density
of charged particles in the axoplasma is much larger than in a gaseous plasma, with a fraction
of 1% the density is 3.3 × 1026 [m−3]. The following table lists the data of an axoplasma with
mass ratio µ = mi/mp = 36.

Table 2: Main parameters of the axoplasma, µ=36

Temperature 0.028 [eV]
Ion density 3.0× 1026 [m−3]
Plasma frequency 3.55× 1012 [s−1]
Debye length 0.63× 10−9 [m]
Wigner-Seitz radius 1.36× 10−9 [m]
Landau length 1.7× 10−8 [m]
Coupling parameter Γ 12.5

In contrast to dusty plasmas and colloidal suspensions the molecular weight of the heavy
ions is about several hundred and they carry one positive or negative charge. A survey on the
issues of strongly coupled charged colloids, polyelectrolytes and biomolecules has been given in
[4].

A basic property of an ensemble of charged particles is the existence of plasma oscillations.
The force balance leads to

d2δx

dt2
+ ω2

pδx = 0 ; ω2
p =

q2
knk

εε0mk
(5)

which is the equation of an harmonic oscillator. ε is the relative permittivity, which is 80 in
water, ωp is the plasma frequency. The maximum displacement is limited by the energy of the
oscillator. Setting the energy equal to the thermal energy defines a maximum displacement of
the oscillator

ω2
p(δx)2 = V 2

k =⇒ δx =
Vk
ωp

= λD ∝
√
T

nk
(6)

Here the Debye length is defined without refering to the concept of shielding. Let us consider the
ions of one kind consider as an array of coupled oscillators, where the interacting electric field is
screened at distances larger than a Debye length. Such a case can be simulated by the Yukawa
system [5], which in the literature is being widely discussed as a model of strongly coupled
plasmas. A simple model of nerve pulse propagation is the one-dimensional Toda lattice[6][7]
with charged particles surrounded by a Yukawa potential. Energy and momentum injected at
one end of the chain travel as a soliton to the other end. However, this implies that the screening
cloud with opposite charge moves together with the ions, a model which certainly does not apply
when the masses of the charged particles are about equal.

The electric field in the plasma is the averaged field plus the fluctuating field of individual
particles. The fluctuating field is the origin of particle collisions, the exchange of energy and
momentum. Each particle species can be described by the kinetic equation

∂fk
∂t

+ ~v · ∇fk +
qk
mk

δ ~E · ∇vfk = Coll (7)
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fk(v,x, t) is the distribution function of the particle species k. The electric field is computed
with the aid of Poisson’s equation. The collsion term Coll describes the energy and momentum
exchange of particles. In weakly coupled plasmas binary collisions are dominant and these can
be modelled by a Boltzmann term, a Fokker-Planck term or a Landau term. If the number of
particles in the Debye sphere is much larger than unity the collisions among charged particles
are binary collisions, however in opposite case of a strongly coupled plasmas collective effects
are dominant. The Lenard-Balescu equation [8][9] accounts for collective effects and Debye
screening. As shown by Balescu [10] the collisions can be neglected in the limit of small Debye
length (Debye length much smaller than Landau length). The kinetic equation without collisional
term is known as the Vlasov equation. A remarkable result of the Vlasov equation is the
existence of the H-theorem which is interpreted as the law of entropy conservation. If collisions
can be neglected the processes are reversible and occur without energy dissipation. This agrees
with remarkable fact that nerve pulses propagate without significant attenuation. If such an
attenuation or blocking is detected it is a sign of a desease.

2.1 Fluid description

In order to investigate the basic features of plasma oscillations and ion acoustic waves in the
axon plasma we start from the macroscopic equations which are the moment equations of the
Vlasov equation. The formulation will be kept as general as possible without focussing on a
specific kind of atoms or molecules. The equation of continuity of every particle species with
charge qk is

∂nk
∂t

+∇ · nkvk =
dnk
dt

+ nk∇ · vk = Sk (8)

where nk is the particle density and Sk the source term. The source term describes chemical
processes like ionisation, dissociation and recombination. In steady state or in slow changes these
proesses are in equilibrium and subject to the law of mass action. However, in fast processes
like ion acoustic waves and solitary waves these atomic processes are negligible. The momentum
balance equations of every particle species

∂

∂t
mknkvk +∇ · (pkI +mknkvk : vk) = qknkE ; k = 1, . . . N (9)

can also be written as follows

∂vk
∂t

+
1
2
∇v2

k − vk × ~ωk + Skvk = − 1
mk

(∇pk
nk

+ qk∇Φ
)

(10)

where the vorticity ~ωk of each particle species is defined by ~ωk = ∇× vk ; E = −∇Φ is the
electric field. Here k is the index of the particle species with charge qk = eZk. Zk is positive
for positive ions and negative for negative ions. Scalar pressure and density are linked by an
equation of state pk = pk(nk, T ). The electric potential is determined by Poisson’s equation

−ε0ε∆Φ =
∑
k

qknk (11)

which after normalising to Φ −→ Ψ = eΦ/kT becomes

∑
k

Zk
nk
N0

= −λ2
D∆Ψ ; λ2

D =
ε0εkT

e2N0
(12)

N0 is a reference density. ε0 is the dielectric constant of the vacuum and ε is the relative
permittivity (ε = 80 in water). The Debye-length λD is rather small. For this reason macroscopic
plasmas may be treated in quasi-neutral approximation. If the dimensions of the plasma are
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comparable with the Debye-length, the quasi-neutral approximation is no longer applicable. The
terms ∇ · πk are the viscous forces which will also be neglected. As will be shown later this is
justified for long wave perturbations.

The pressure is described by the energy conservation law which is

3
2
∂pk
∂t

+∇ ·
(

qk +
3
2
pkvk

)
+ pk∇ · vk = 0 (13)

A complete description of the plasma would add another equation for the heat fluxes qk, however
in the following we consider the two extreme cases: An isothermal plasma where the heat fluxes
are large and the temperature is constant which is appropriate to describe the quiescent state.
The other extreme case neglects the heat fluxes and conserves the entropy density ṡk = 0 which
in an ideal gas is defined by sk = ln pk − 5/3 lnnk = lnTk − 2/3 lnnk. Eq.(13) is now

d

dt
ln

(
pk

n
5/3
k

)
= 0 (14)

This models applies to wave propagation.

3 Collision-less approximation

In the following we neglect all collisional effects and investigate an irrotational flow. Given an
equation of state pk = pk(nk, T ) we define the sound velocity and the functions Fk by

C2
k =

dpk
mkdnk

Fk(nk) =
∫

dpk
mknk

=
∫
C2
k

dnk
nk

+ C (15)

C is a constant of integration. This result shows that the pressure term in Euler’s equation can
be written as the gradient of a scalar Fk. The adiabatic equation of state yields

Fk =
γ

γ − 1
V 2
k

( nk
nk,0

)γ−1

− 1

 (16)

In the case of an ideal gas law we get

Fk(nk) =
∫

dpk
mknk

=
T

mk
ln

nk
nk,0

(17)

where nk,0 is a constant reference density. This form suggests to introduce a new variable
Pk = lnnk/nk,0 instead of nk.

Fk(nk) = V 2
k Pk , Fk =

γ

γ − 1
V 2
k

[
(exp(Pk))

γ−1 − 1
]

(18)

In the limit γ → 1 the two versions coincide. The curl of eq.(10) leads to

∂~ωk
∂t
−∇× (vk × ~ωk) = 0 (19)

which yields the conservation of “potential vorticity”

d

dt

(
~ωk · ∇G
nk

)
= 0 (20)
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where G is a conserved quantity. In two-dimensional flow in the x, y-plane the vorticity has a
z-component, only, and with G = z the equation can be reduced to

d

dt

(
ωk,z
nk

)
= 0 (21)

Since the potential vorticity is a conserved quantity it remains zero if it is zero initially. This
suggests to investigate non-linear wave propagation with zero vorticity and longitudinal oscilla-
tions only. In this case the velocity is the gradient of a scalar vk = ∇Uk and the Euler equation
can be written as

∂∇Uk
∂t

+
1
2
∇ (∇Uk)2 +

1
mk

(∇pk
nk

+ qk∇Φ
)

= 0 (22)

or
∇
{
∂Uk
∂t

+
1
2

(∇Uk)2 +
(
Fk(nk) + V 2

k ZkΨ
)}

= 0 (23)

and after integration the general Bernoulli equation is

∂Uk
∂t

+
1
2

(∇Uk)2 + Fk(Pk) + V 2
k ZkΨ = gk(t) (24)

where gk is an arbitrary function of time which is fixed by the initial conditions at the terminal
of the axon x = 0. In order to compute a steady state solution the ideal gas law may be
appropriate while in case of ion sound propagation the adiabatic compression should be taken
into account. Using the variable Pk = lnnk/nk,0 we write the equation of continuity as follows

∂Pk
∂t

+∇Uk · ∇Pk + ∆Uk = 0 (25)

After another time derivative we get a non-linear wave equation

∂2Pk
∂t2

−∇ · C2
k∇Pk = ∆V 2

k ZkΨ + ∆
1
2

(∇Uk)2 − ∂

∂t
(∇Uk · ∇Pk) (26)

The sound velocity is a non-linear function of Pk and if one neglects the right hand side every
particle species has its own sound wave. Such a non-linear wave equation is the basis of the
Heimburg-Jackson theory [2], however, this theory does not describe charged particles. The
electric field on the right hand side couples the waves of charged particles and may lead to a
solitary wave where all partners propagate with the same group veocity. Together with Poisson’s
equation ∑

k

Zkck exp(Pk) = −λ2
D∆Ψ ; ck =

nk,0
N0

(27)

eqs.(24) and (25) provide well-posed initial value problem. The coefficients ck characterise the
fraction of charged particles.

In order to solve Poisson’s equation one needs boundary conditions. Since there are no
conducting walls it is difficult to specify boundary condition for the electric potential. In a
quiescent state Dirichlet conditions Ψ = 0 is an appropriate condition - at least in cylindrical
geometry. This condition allows one to compute the resting potential. However, nerve fibres are
curved and cylindrical geometry is only a local approximation. Let be G(x,X) which satisfies
the boundary conditions. The solution of Poisson’s equation can be written as

λ2
DΨ(X) =

∫
G(x,X)

∑
k

Zkck exp(Pk) d3x (28)

A simple condition is to require zero potential in the limit X →∞ which leads to

λ2
DΨ(X) =

∑
k

∫
Zkck exp(Pk)
4π|X − x|

d3x (29)
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Any transient variation of the charge density is visible also in the external region and not only
inside the axon. Let us start from a time-independent solution where all parameters depend on
the radial coordinate y and the velocity is zero. This case will be discussed in the next section.
A sudden influx of positive ions - Na+ or K+ or a positive organic molecule - at the end of
the axon disturbes the force balance in x-direction and leads to an excess of positive charge
and to an x-dependent potential Ψ(x, y). The resulting electric field accelerates all negative
ions towards the positive charge and drives the positive charges in the opposite direction. This
creates a positive excess charge in the vicinity of the initial position and by repeating this step
the positive charge migrates in x-direction. It should be noted that this is a migration of a wave
rather than of individual ions.

Based on this collision-less approximation we will investigate the steady-state solution, the
linear and nonlinear ion acoustic waves and the solitary waves in the next sections.

4 The resting potential

A time-independent solution is governed by Poisson’s equation and the balance between pressure
and electric potential. Since pressure and density are correlated by an equation of state the choice
of this equation is important. A simple approximation is the ideal gas law and in the following
this will be the main candidate. However, it should be kept in mind that this approximation
may be a good description for Na+,K+, Cl−-ions, however, in case of charged molecules - in
particular for zwitterions with dipole character - an equation of state taking into account the
van-der-Waals forces may be more appropriate. In particular, if phase transitions occur as a
consequence of temperature changes or by changes in the chemical composition due to drugs and
anesthetics this will have consequences on the resting potential and nerve pulse propagation.

Since the velocity is zero Bernoulli’s equation (24) and the ideal gas law lead to

Pk + ZkΨ = 0 (30)

and the dimensionless Poisson’s equation becomes

σ(Ψ) =
∑
k

Zkck exp(−ZkΨ) = −κd
2Ψ
dy2

; ck =
nk,0
N0

; κ =
λ2
D

a2
(31)

where a is the radius of the axon. The constant gk has been set to zero. Instead of the Debye
length we take the radius a of the axon as the reference length. At the boundary y = 1 we
impose the boundary condition Ψ = 0.

The issue of uniqueness has a simple answer: Because of σ′(Ψ) =
∑
k Z

2
kck exp(−ZkΨ) > 0

any solution of Poisson’s equation is unique. The situation changes if some of the constituents
- in particular the charged protein molecules - are subject to phase transitions, which may be
initiated by changes in temperature or chemical composition. Instead of the ideal gas law we
must start from Fk(Pk, T ) + ZkΨ = 0 and

F ′k(Pk)
dPk
dΨ

+ Zk = 0 ; F ′k(Pk) = p′k(nk) (32)

If F ′k(Pk) is positive the resting potential is unique while in case of negative F ′k(Pk) or p′k(nk)
the uniqueness is not guaranteed and multiple solutions and bifurcations can arise.

As a simple example we consider singly charged ions Zk = ±1 and write the Poisson equation
as

c− exp(Ψ)− c+ exp(−Ψ) = κ
d2Ψ
dy2

(33)
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c+ is the number of positive charges and c− the number of negative charges. If these are equal
c+ = c− the solution is Ψ = 0. This equation can be solved iteratively if the Debye length
is large enough. The iteration breaks down if the Debye length is small. If the Debye length
is much smaller than the radius a, the right hand side may be neglected and the potential is
constant over the radius exept a small region at the boundary.∑

k

Zkck exp(−ZkΨ) = 0 =⇒ Ψ = Ψ0 (34)

In case of single-charged ions we get

c+ exp (−Ψ0)− c− exp (Ψ0) = 0 =⇒ 2Ψ0 = − ln
c−

c+
(35)

Because of σ′ > 0 the solution is unique. If ions are small enough the can freely move through
the semipermeable membrane while heavy molecules are confined inside the axon, for large and
heavy molecules the membrane is impermeable. This model requires only a fixed size of the
pores but no active mechanism which opens or closes the gates. Such an equilibrium across a
semipermeable membrane with fixed pores is known as the Donnan equilibrium[14]. On the basis
of Poisson’s equation MacGillivray [15] has investigated the Donnan equilibrium which follows
the same line as the present analysis. In this respect our model differs from the Hodgkin-Huxley
model, where the ion channels are closed or open depending on the radial electric field.

Following this rationale we write the charge density as c+ → C+ + c+, c− → C−+ c− where
now c+, c− are the light ions Na,K,CL etc and C+, C− denotes positive and negative amino
acids and polypeptides. The potential is negative exept in a small boundary region of the order
Debye length where the transition to Ψ = 0 occurs. If there are more positive charges than
negative ones the potential has the opposite sign.

Since the membrane is permeable to the light ions we compute the potential in the exter-
nal region by inserting the external charges into Poisson’s equation. Overall charge neutrality
requires a positive excess charge in the external region. The same arguments as above can be
applied to this region and the external voltage drop is

2Ψ1 = ln
c+

c−
(36)

The total voltage drop - or resting potential - is

2 (Ψ0 −Ψ1) = − ln
(C− + c−)c+

(C+ + c+)c−
(37)

It should be noted that the sign of the potential is a matter convention. If we define the
electric field by E = ∇Φ the potential changes sign in all results.

The coefficients in eq.(37) are not independent. Inside the boundary region of the order
Debye length the Poisson equation provides a smooth transition between the external and the
internal potential. In this small boundary layer the charge density is approximated by a constant

C = κ2d
2Ψ
dy2

(38)

which provides a parabolic solution. The free parameter in this solution are determined by the
condition of continuity of potential and electric field at y = 1 and at y = 1± κ. The results of
this procedure is

Ψ = Ψ0 −
Ψ0

κ2
(y − 1 + κ)2 (39)
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in the internal region and

Ψ = Ψ1 −
Ψ1

κ2
(y − 1− κ)2 (40)

in the external region. The continuity at the membrane y = 1 demands

(C− + c−) c−

(C+ + c+) c+
= 1 (41)

which demonstrates that the coefficients are not independent. It can easily be shown that in
case of C− = C+ the result is c− = c+. positive and negatice charges are equal and the resting
potential is zero. In the limit c− � C− and c+ � C+ we get the result

C−c−

C+c+
= 1 ⇒ (Ψ0 −Ψ1) = − ln

C−

C+
= − ln

c+

c−
(42)

This results show that only those ions which cannot tunnel through the membrane are
responsible for the resting potential. The magnitude of the resting potential depends on the
excess of negative or positive charges. Polypeptides in aqueous solution exist in both charged
states and at a specific pH - the isoelectric point - the charge concentrations are equal and
the resting potential is zero. Since the ratio between C− and C+ depends on the pH of the
axoplasma the resting potential depends on the pH, too. However, this conclusion can be drawn
if the cytoplasma only consists of one species of heavy molecules. The analysis so far neglected

Figure 2: Resting potential

ions with multiple charges. The general form of the condition (34) leads to polynomial in
X = exp(−Ψ) which in case of additional double-charged ions is

c1X
−1 − c2X + 2c3X

−2 − 2c4X
2 = 0⇒ c1X

1 − c2X
3 + 2c3 − 2c4X

4 = 0 (43)

where c3, c4 are the fraction of double-charged ions. This equation has only one positive solution,
there is uniqueness of the resting potential.

These results are found by separating the boundary layer of the order Debye length from the
bulk of the quasi-neutral plasma. In the following we shall discuss the exact procedure without
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refering to the smallness of the Debye length. Poisson’s equation is three-dimensional and in
cylindrical geometry it reduces to the one dimensional equation.

σ(Ψ) =
∑
k

Zkck exp (−ZkΨ) = −κ1
r

d

dr
r
dΨ
dr

; κ =
λ2
D

a2
(44)

As discussed above the coefficients ck inside the axon (r < 1) are different from those in the
external region r > 1 which is caused by the semipermeability of the membrane. Let us simplify
this equation to

σ(Ψ) =
∑
k

Zkck exp (−ZkΨ) = −κd
2Ψ
dy2

; κ =
λ2
D

a2
(45)

which can be integrated once leading to the “conservation law”

κ

2

(
dΨ
dy

)2

−
∑
k

ck exp (−ZkΨ) = E (46)

E is a constant which is related to the boundary conditions. These are Ψ = 0, y = ±1 and
Ψ′ = 0 y = 0. The differential equation is invariant against the transformation y → −y, which
implies that any solution is symmetric Ψ(y) = Ψ(−y). The first order differential equation for
Ψ(y) is

dΨ
dy

= ±
√

2
κ

√
E −W (Ψ) ; W (Ψ) = −

∑
k

ck exp(−ZkΨ) (47)

The potential W (Ψ) is negative and has a maximum at Ψ = Ψ0. Depending on the sign of Ψ0

the solution Ψ is either positive or negative. Let us consider a negative solution with a minimum
at 0 > Ψm > Ψ0. The differential equation yields√

κ

2

∫ 0

Ψm

dΨ√
W (Ψm)−W (Ψ)

= 1 (48)

which determines the lowest potential Ψm. In the opposite case of positive Ψ0 the solution is
bounded by Ψ0. In summary we find that in the case of small Debye length the excess charge
is localised to the boundary and constant potential in the main part of the axon. If the Debye
length is comparable with the radius of the axon (κ ≈ 1) the resting potential varies over the
radius rather smoothly. These results are independent of the nature of the ions, only the charge
and the relative abundancies ck are important.

5 Ion acoustic waves

Wave-like phenomena usually are studied by linearisation around a steady state solution. The
steady state solution depends on the radial coordinate y while the waves travel in z-direction.
In the following we focus on a case with small Debye length where the electric potential Φ0 is
nearly constant and the steady state solution is homogeneous over the radius. In a quiescent
and homogeneous state the solutions are: nk = nk,0, vk = 0, Φ = C. Since the electric field is
zero, the quiescent state is quasi-neutral

∑
k qknk,0 = 0. Any finite electric potential requires

deviation from quasi-neutrality and the density is nk = nk,0 + δnk or Pk = Pk,0 + δPk. The
linearised version of eq.(26) without source term and Poisson’s equation are

∂2δPk
∂t2

− C2
k∆δPk = ∇ · V 2

k Zk∇δΨ ; −λ2
D∆δΨ =

∑
k

Zkck exp(Pk,0)δPk (49)
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Without the electric field we would get a set of uncoupled ion sound waves, but the electric
potential couples the various ion acoustic waves. Because of the smallness of the Debye length
the coupling is strong. In contrast to the Hodgkin-Huxley model the ion sound waves are
longitudinal waves and not transverse waves. The equilibrium condition Pk,0 + ZkΨ0(y) = 0
shows that the coefficients in this equations are not constant. This refers mainly to the Debye
sheath at the boundary while the inhomogeneity can be neglected in the main body of the axon.

5.1 Plane wave geometry

Based on the approximation of a homogeneous equilibrium Fourier ansatz in all spatial variables
and time leads to an algebraic system

ω2δPk −K2C2
kδPk = K2V 2

k ZkδΨ ; λ2
DK

2δΨ =
∑
k

Zkck exp(Pk,0)δPk (50)

K = kx, ky, kz is the wave vector. In a model of a plane wave the wave vector is arbitrary.
However, imposing the boundary condition δΨ = 0 on the boundary of the axon makes kx
and ky multiples of π/a, where a is the radius of the axon. This result fits to an axon with
rectangular cross section, in cylindrical geometry we would get Bessel functions instead of sin
and cos-function. The boundary condition δΨ = 0 confines the transmission of ion acoustic
waves to the interior of the axon, the external region is not involved. Eliminating the functions
δPk yields

K2λ2
DδΨ =

∑
k

1
(ω2 −K2C2

k)
V 2
k Z

2
kK

2δΨ (51)

and the dispersion relation

1 =
∑
k

ω2
p,k

ω2 −K2C2
k

; ω2
p,k =

V 2
k Z

2
kck exp(Pk,0)
λ2
D

=
q2
knk,0 exp(Pk,0)

εε0mk
(52)

This system describes acoustic modes coupled to plasma oscillations. The dispersion relation is
a polynomial in ω2 which has only positive roots with ω2 > 0. As an example we consider a
two-component plasma where the dispersion relation is a quadratic polynomial in ω2.

1 =
ω2
p,1

ω2 −K2C2
1

+
ω2
p,2

ω2 −K2C2
2

(53)

or
(ω2 −K2C2

1 )(ω2 −K2C2
2 ) = ω2

p,1(ω2 −K2C2
2 ) + ω2

p,2(ω2 −K2C2
1 ) (54)

There are two solutions

ω2 =
a

2
±

√
a2

4
− c (55)

a = K2(C2
1 + C2

2 ) + (ω2
p,1 + ω2

p,2), c = K4C2
1C

2
2 +K2(ω2

p,1C
2
2 + ω2

p,2C
2
1 ) (56)

In the general case with N particle species the dispersion relation is a polynomial of the order
N in ω2. There are N branches ω2 = ω2(K2). We assume equal temperature of all particles
and consider a plasma with an ion species being much heavier than the other particles (mi �
mk,∀k −→ Ci � Ck). This corresponds to the case of negatively charged protein molecules. In
the neighbourhood of ω2 ≈ K2C2

i we may start from a dispersion relation

1 =
ω2
p,i

ω2 −K2C2
i

−
∑
k

ω2
p,k

K2C2
k

(57)
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We define an effective Debye length by

1
λ2
D

=
∑
k

ω2
p,k

C2
k

(58)

and write the solution of the dispersion relation as follows

ω2 = K2C2
i +

K2λ2
Dω

2
p,i

1 +K2λ2
D

(59)

In case of long wave lengths (K2λ2
D � 1) we get acoustic modes with phase velocity Vi. For

molecules with molecular weight above 300 the phase velocity of long-wave acoustic modes is
below 100 [m/s]. Another interesting case is that of two heavy ion species, while all other ions
have small masses. The dispersion relation is

1 =
ω2
p,1

ω2 −K2C2
1

+
ω2
p,2

ω2 −K2C2
2

−
∑
k

ω2
p,k

K2C2
k

(60)

The sum runs over all particle species except k = 1, 2. The dispersion relation has two solutions,
a slow wave and a fast wave. The solutions of the dispersion relation(

ω2 −K2C2
1

) (
ω2 −K2C2

2

)
=
K2λ2

Dω
2
p,1

1 +K2λ2
D

(
ω2 −K2C2

2

)
+
K2λ2

Dω
2
p,2

1 +K2λ2
D

(
ω2 −K2C2

1

)
(61)

is

ω2 =
a

2
±

√
a2

4
− c (62)

a = K2(C2
1 + C2

2 ) +
K2λ2

D(ω2
p,1 + ω2

p,2)
1 +K2λ2

D

, c = K4C2
1C

2
2 +

K2λ2
D(ω2

p,1K
2C2

2 + ω2
p,2K

2C2
1 )

1 +K2λ2
D

(63)

This dispersion relation is applicable to zwitter ions with positive and negative charges. Ne-
glecting the mass difference between the two states leads to C1 = C2 and the dispersion relation
is reduced to

1 =
ω2
p,1 + ω2

p,2

ω2 −K2C2
1

−
∑
k

ω2
p,k

K2C2
k

(64)

which has the same solution as diplayed in eq.(59) exept that the plasma frequency is modified

ω2 = K2C2
1 +

K2λ2
D(ω2

p,1 + ω2
p,2)

1 +K2λ2
D

(65)

In this equation only the sum of zwitter ions occurs, the result is independent of the ratio
between positive and negative charges. For this reason the pH has little or no effect on the
dispersion relation.

In plane wave geometry the wave vector is arbitrary, in a finite wave guide geometry, however,
there is a lower limit of kx and ky as discussed above. This implies that the phase velocity in
z-direction may become large for small kz.(

ω

kz

)2

=
k2
z + k2

x + k2
y

k2
z

C2
1 +

k2
z + k2

x + k2
y

k2
z

λ2
D(ω2

p,1 + ω2
p,2)

1 +K2λ2
D

(66)

Information is transmitted by the group velocity which in the long-wave-length limit KλD � 1
is

vg =
dω

dkz
=

kz√
k2
x + k2

y + k2
z

C1 (67)

The group velocity is smaller than the sound velocity C1. This implies that information by nerve
pulses cannot be transferred faster than with ion sound velocity.
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5.2 Circular approximation

In the rectangular model described previously the solution consists of trigonometric functions.
In a cylindrical model Bessel functions occur. The Laplace operator in cylinder geometry

∆ =
1
r

d

dr
r
d

dr
+

d2

dz2
(68)

satisfies the equation

∆J0(αr) exp(ikzz) = −(k2
z + α2)J0(αr) exp(ikzz) (69)

where J0(αr) is the lowest order Bessel function. In this ansatz the angular dependence is zero.
The corresponding mode in wave guide theory of radar technique is the E00-mode. Imposing
the condition of zero potential on the boundary leads to J0(αa) = 0. The further procedure
follows the same line as above, the wave vector K2 is replaced by k2

z + α2.

5.3 Excitation of plasma oscillations

The dispersion relation derived above has no unstable roots and the question remains how these
waves are excited. The H-H-model assumes that a sudden influx of sodium ions starts the action
potential, however the mechanism of propagation remains unexplained. Following this line we
assume that due to a pressure rise in the dendrites at the axon terminal a jet of charged particles
is injected. The nature of this jet need not to be specified, the following computations are valid
for any kind of ions. In order to model the resting potential we assumed that the membrane
of the axon is permeable for low mass ions like sodium, potassium etc. This assumption may
be also valid for the boundary between dendrites and the cell body, the soma. A difference in
pressure between dendrites and soma leads to an influx of ions into the soma. Such a pressure
difference may occur as a result of a mechanical impact or a sudden rise of temperature in the
dendrites. The injected jet of charged particles triggers an oscillation of the cytoplasma and
these oscillations couple to ion acoustic modes travelling along the axon. The mechanical signal
is converted into an electric signal, which travels in the axon like microwaves in a wave guide or
light in glas fibres. However, we do not exclude that at high external pressure also ion channels
of amino acids will be open. The H-H-model does not explain the nature of ion channels and
the control by the radial voltage, in the present model a pressure difference is sufficient to open
a channel.

In plasma physics beam-driven instabilities are a well-known phenomenon and the question
arises whether this mechanism may be responsible for nerve pulse generation. A sudden influx
of ions into the cell body disturbs the distribution function of ions and leads to a deviation from
a Maxwellian. Such a unidirectional ion beam creates a “bump-in-tail” instability which usually
is described in the frame of kinetic theory with the aid of the Vlasov equation. The macroscopic
picture simulates this case with a lowest order velocity v0,k = ∇Uk,0. In the terminal region the
influx of fast ions creates a finite averaged velocity of the ions in this region. The instability
arising in such case has been widely investigated in the theory of weakly coupled plasmas.

The macroscopic picture does not describe all details of instabilities created by a unidirec-
tional beam. A microscopic model starting from the Vlasov equation - or collisionless Fokker-
Planck equation - may be more appropriate. The linearised Vlasov equation of a particle species
is

∂fk
∂t

+ ~v · ∇fk +
qk
mk

δ ~E · ∇vFk = 0 (70)

where Fk(~v) is the lowest order distribution function and fk the perturbation caused by the
electric field δ ~E = −∇δΦ. In a quiescent plasma the lowest order distribution function is a
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Maxwellian. The injected beam distorts the Maxwellian and creates a second maximum in the
distribution function if the beam is strong enough. A model of such a distribution is

Fk(u) ∝
[
exp

(
− u

2

V 2
k

)
+ b exp

(
−(u− u0)2

u2
k

)]
(71)

Fk(u) is the reduced distribution function, integration over two velocity space variables has
reduced the three-dimensional distribution function to an one-dimensional one. u is the velocity
variable in direction of the beam. Vk is the thermal velocity of particles k and u0 is the mean
velocity of the beam. The factor uk characterises the width or “temperature” of the beam
(uk < Vk). If the factor b is large enough the distribution function has a second maximum and
the conditions for a beam-driven instability can be met. If the beam is absent a homogeneous
Maxwellian plasma is stable, any perturbation will be damped by the mechanism of Landau
damping[16]. The following procedure is standard and need not to be described in detail[17].
Fourier and Laplace transform convert the differential equation into an algebraic equation and
by inverse Laplace transform we obtain the density perturbation as a linear function of the
perturbed electric potential. Inserting this into Poisson’s equation yields the desired dispersion
relation. The result is

1 =
∑
k

ω2
p,k

K2

∫
c

F ′k(u)du
u+ s/iK

(72)

s is a complex variable and the integration in the complex u-plane is computed on the Landau-
contour c. The shape of F ′k(u) is the decisive factor. It can be shown that a “single-humped”
distribution function has no solution with Re(s) > 0, however, if two maxima of Fk exist, such a
positive root exists if the second maximum is strong enough. It suffices if one particle species has
such a non-Maxwellian distribution as described in eq.(71). The energy of the beam particles
is coupled to the electrostatic wave and via Landau damping this energy is transferred to the
Maxwellian background plasma. If the energy source in the beam is strong enough the wave
can be maintained. In macroscopic theory a threshold of the instability does not occur since
Landau damping is a mechanism of kinetic theory. The Landau damping is strong for short
wave lengths of the order Debye length and less effective for long wave lengths.

A strongly coupled dusty plasmas has been investigated by Kalman and Rosenberg [11]
where it has been shown that a uni-directional beam leads to plasma oscillations as in the case
of weakly coupled plasmas.

6 Solitary waves

As shown in the previous section there exists a large spectrum of ion acoustic modes in the
axoplasma. If several modes are excited the non-linear interaction leads to energy exchange,
some modes may grow on the expence of other modes. The extreme case is when all energy is
accumulated in one mode, in a soliton. A soliton is a voltage pulse which does no change its
shape when moving along the axon in z-direction. The linear approximation as discussed in the
previous sections is only valid if the amplitude of the waves is small. With an increase of the
amplitude mode coupling may lead to the formation of solitary waves and non-linear waves. In
such a wave all quantities are functions of u = z−V t, where V is the propagation velocity of the
solitary wave in z-direction. V is a free parameter which will be determined later in this section.
The Mach number is the normalised V is of the soliton. In the co-moving frame Bernoulli’s
equation (24) is

−V ∂Uk
∂z

+
1
2

(∇Uk)2 + Fk + V 2
k ZkΨ = gk (73)
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and the modified equation of continuity

−V ∂Pk
∂z

+∇Uk · ∇Pk + ∆Uk = 0 (74)

which can also be written as

−V expPk
∂Pk
∂z

+∇ · expPk∇Uk = 0 (75)

For any given Pk the last equation is a linear elliptic differential equation for Uk. In order to
solve the equation boundary conditions are needed. These are either Dirichlet conditions Uk = 0
or Neumann conditions dUk/dy = 0. The first condition implies that the tangential flow on the
boundary (the membrane) is zero but the particles can freely move across the membrane. This
applies to Na-ions or K-ions. However, a flow across the membrane through small pores will
certainly be subjected to frictional losses which attenuate the wave propagation. Furthermore,
a flow across the membrane incorporates the external region into the propagation mechanism,
and, since the external region is interrupted by cell membranes any motion of charged atoms or
molecules in this region will be strongly damped. The Neumann condition describes zero flow
across the membrane which confines the propagation mechanism to the interior of the axon.
This condition certainly applies to heavy polypeptides. In this case nerve pulse propagation has
a strong similarity to propagation of light in a glass fibre, however, unlike glass fibres the electric
signal of nerve pulses is measurable also outside the axon. There are no boundary conditions
for the electric potential on the boundary of the axon. Together with Poisson’s equation

−λ2
D∆Ψ =

∑
k

Zkck expPk (76)

we get a closed system of non-linear equations for Ψ, Pk, Uk.

6.1 One-dimensional soliton

In one-dimensional approximation all terms depend only on the u = z − V t-coordinate. This
implies that the velocity in y-direction is zero and no flow across the membrane occurs. It should
be noted, however, that this implies a finite tangential flow on the membrane. A more natural
boundary condition would be to set all components of the velocity equal to zero which requires
a twodimensional treatment.

In this one-dimensional approximation the momentum balance can be integrated once leading
to

1
2

(
dUk
du
− V )2 − 1

2
V 2 + Fk(Pk) + V 2

k ZkΨ = gk (77)

The continuity equation is
d

du

[(
dUk
du
− V

)
expPk

]
= 0 (78)

which yields
dUk
du
− V = −V exp (Pk,0 − Pk) ; Pk,0 + V 2

k ZkΨ0 (79)

and together with eq.(77)

1
2
V 2 [exp(2Pk,0 − 2Pk)− 1] + Fk(Pk) + V 2

k ZkΨ = gk (80)

In isothermal approximation this

M2
k

2
(exp(2Pk,0 − 2Pk)− 1) + Pk + ZkΨ = gk ; M2

k =
V 2

V 2
k

(81)
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and adiabatic approximation

M2
k

2
(exp(2Pk,0 − 2Pk)− 1) +

γ

γ − 1
exp((γ − 1)Pk) + ZkΨ = gk ; M2

k =
V 2

V 2
k

(82)

Mk is the Mach number of the particle species k. As shown above the function Fk(Pk) depends
on the equation of state pk(nk, T ), which in case of heavy polypeptide molecules may differ from
the ideal gas law. A van-der-Waals type of equation of state has a region of small sound velocity
if one approaches the regime of phase transition. Approximating the sound velocity in eq.(??)by
a constant yields

Fk(Pk) ≈
C2
k

V 2
k

Pk (83)

Inserting the solution Pk = Pk(Ψ) into Poisson’s equation provides us with a non-linear equation
for Ψ.

σ (δPi) =
∑
k

Zkck exp(−ZkΨ0) [exp(δPk)− 1] = −λ2
D

d2δΨ
du2

(84)

and
M2
k

2
(exp(−2δPk)− 1) + δPk = gk − ZkδΨ (85)

with δΨ = Ψ−Ψ0 and δPk = Pk − Pk,0. In adiabatic approximation this equation is

M2
k

2
(exp(−2δPk)− 1) +

1
V 2
k

Fk(Pk,0 + δPk) + ZkΨ0 = gk − ZkδΨ (86)

The function on the left side of eq.(85) has two zeros and one extremum. The zeros are
δPk = Yk = 0 and δPk = Yk 6= 0. The position of the extremum is δPk = Ym = lnMk and the
value of the δΨ-function is

gk − lnMk +
1
2

(1−M2
k ) = ZkδΨ(Ym) ≥ gk (87)

Mk = 1 is the extremum of the left hand side. The inverse function δPk(δΨ) has two branches,
a lower branch δP lk(δΨ) : δPk < Ym and an upper branch δP uk (δΨ) : δPk > Ym. By inserting the
functions δPk(δΨ) the charge density becomes a function of δΨ. Integrating Poisson’s equation
once yields

λ2
D

2

(
dδΨ
du

)2

+W (δΨ) = E ;
dW

dδΨ
= σ(δΨ) (88)

The function W (Ψ) is known as the Sagdeev potential. The mechanical analogue of this equation
is a particle with the potential energy W (δΨ). If the potential has a local minimum which is
negative, the expansion around this minimum yields a parabola and the solutions are periodic
functions of u = z − V t. All charged particles are coupled and form a single non-linear wave.
The soliton is the aperiodic limit of these waves.

In the extreme case of low Mach number the approximation to δPk is δPk = gk − ZkδΨ,
while the other extreme of a large Mach number yields

exp(δPk) =

(
1− 2

M2
k

(gk − ZkδΨ)

)−0.5

(89)

This approximation fits to heavy particle with a thermal velocity much below the propagation
velocity V while the first approximation fits to light particles with large thermal velocity. This
approximation often is applied to dusty plasmas in space physics.
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6.2 Small amplitude expansion

As another approximation we consider the small amplitude expansion and set all gk = 0 for the
sake of simplicity. In the neighbourhood of δΨ = 0 the expansion with respect of δΨ is

σ(δΨ) = B(δΨ) + C(δΨ)2 + ... (90)

The constant term is zero. The Sagdeev potential is

W (δΨ) =
1
2
B(δΨ)2 +

1
3
C(δΨ)3 (91)

The conditions for soliton solutions are E = 0, B < 0, C > 0 and the solution is

δΨ =
−3B
2C

1
cosh2(uB/2)

(92)

2/B defines the width of the soliton. In order to find the coefficients B,C we expand δPk around
the zero point Yk

δPk = Yk +AkZkδΨ +BkZ
2
k(δΨ)2 + ... (93)

and
exp(δPk) = exp(Yk) + exp(Yk)AkZkδΨ + exp(Yk)

1
2

(
A2
k + 2Bk

)
Z2
k(δΨ)2 + ... (94)

where the coefficients Ak, Bk differ between the lower and upper branch. These are

Ak =
1

M2
k exp(−2Yk)− 1

; Bk =
M2
k exp(−2Yk)(

M2
k exp(−2Yk)− 1

)3 (95)

Case 1: The expansion at Yk = 0 leads to

Ak =
1

M2
k − 1

; Bk =
M2
k(

M2
k − 1

)3 (96)

and

exp(δPk)− 1 =
Zk

M2
k − 1

δΨ +
1
2

3M2
k − 1(

M2
k − 1

)3Z2
k(δΨ)2 + ... (97)

For the sake of abbreviation we define

Dk = Zkck exp(−ZkΨ0) ;
∑
k

Dk = 0 (98)

and write charge density as

σ =
∑
k

Dk
Zk

M2
k − 1

δΨ +
∑
k

Dk
1
2

3M2
k − 1(

M2
k − 1

)3Z2
k(δΨ)2 (99)

and the coefficients in the Sagdeev potential

B =
∑
k

Dk
Zk

M2
k − 1

C =
∑
k

Dk
1
2

3M2
k − 1(

M2
k − 1

)3Z2
k (100)

As an example we consider two ion species with opposite charge D+ +D− = 0 and M+,M− and
write the coefficients

B = D+

(
1

M2
+ − 1

+
1

M2
− − 1

)
; C = D+

1
2

(
3M2

+ − 1(
M2

+ − 1
)3 − 3M2

− − 1(
M2
− − 1

)3
)

(101)

19



Figure 3: Left: Contours of constant energy E according to eq.(88). The vertical axis is the
derivative of W (Ψ) and Ψ is the horizontal axis. The green region describes periodic solutions
while the separatrix between the green and the red region describes the soliton. Right: Sagdeev
potential of Na+,Cl−

The coefficient C is zero for M+ = M− and positive if M− > M+. If M− < 1 and M+ < 1
the coefficient B < 0 is negative and the condition for small positive solitons can be met. An
example is Na+, Cl−. The Mach number scales with the square root of the mass and therefor
M+ < M− - the Mach number of cloride is smaller than the Mach number of sodium. This case
is illustrated in fig.(3). If we consider potassium instead of sodium the relation is M+ > M−
(potassium is heavier than chlorid) and the coefficient C < 0 is negative. In this case the
soliton has a negative potential. The results of the sodium-chlorid computations show that the
propagation velocity is by a factor of two larger than the measured data of V = 100 m/s or
less. This excludes this simple model as the candidates for nerve pulse propagation. The same
argument applies to K-ions.

Next, we assume hydrated Na-atoms and Cl-atoms with 6 water molecules. The effective
molecular weight is ANa = 131 and ACl = 143. This combination allows soliton solutions with
propagation velocity of V = 119 m/s, but this is also larger than the observed data. On the
other hand, one must not exclude other ions with larger mass in the cytoplasma since an electric
field accelerates all charged particles.

As discussed in the introduction all amino acids or tripeptides below a molecular weight of
A=300 are subsonic if the propagation velocity is below 90 m/s. If no other heavier ions are
participating the coefficient B is always negative. The sign of the coefficient C depends on the
sign of Dk(3M2

k − 1). A sufficient condition for positive solitons is Dk(3M2
k − 1) < 0∀k. The

following figures exhibit the result of Na-ions and negatively charged peptides with molecular
weight A = 307 (Glutathione). The propagation velocity of solitons is 70−80 [m/s]. The results
are nearly unchanged if the Na-ion is replaced by a hydrated Na-ion with A = 131.

As shown in the previous section the resting potential can be understood if heavy negative
and positive ions exist in the axoplasma. Depending on pH-value zwitterions in aqueous solutions
will be in positive and negative state. To account for this fact we assumed 10% of the peptides
as positive ions. The result in figure (4) shows that the propagation velocity is only slightly
changed. At the isoelectric point the density of positive and negative ions is equal and the net
charge of zwitterions vanishes, which implies that the coefficient C is zero and the soliton does
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Figure 4: Left: Sagdeev potential of a Na-Glutathione plasma. Right: 10% of the glutathione
are positively charged

not exist.
If heavier ions of polypetides participate in the formation of an action potential the Mach

number of these is certainly larger than unity. Compared with a thermal velocity of 10-50 m/s
the nerve pulse velocity of 50-100 m/s is supersonic. This causes some problems in satisfying
the condition B < 0 since M2

k > 1 provides positive terms in eq.(99). However, if Mk is large
enough the positive terms scale with 1/M2

k and the negative terms dominate. The question is:
Given a cytoplasma with positive and negative ions. Can we always find a propagation velocity
V such that B(V ) < 0?. The answer is yes. A trivial solution is Mk < 1 for all ions as previously
shown. Depending on the sign of C we get either positive or negative solitons. In order to get
positive solitons the condition is Dk(3M2

k − 1) < 0 or Zk(3M2
k − 1) < 0 which can always be

satisfied if the number of different ions is large enough.
For heavy charged peptides, however, the Mach number exceeds unity and the situation

becomes more complex. The index k denotes the subsonic ions and K the supersonic ions. The
coefficient B is

B =
∑
k

Dk
Zk

M2
k − 1

+
∑
K

DK
ZK

M2
K − 1

(102)

This coefficient is negative if one of the subsonic constituents has a Mach number close to unity.
If M2

k � 1 and M2
K � 1 the condition is

B = −
∑
k

DkZk +
∑
K

DK
ZK
M2
K

< 0 (103)

The second coefficient is

C =
∑
k

Dk
1
2

3M2
k − 1(

M2
k − 1

)3Z2
k +

∑
k

DK
1
2

3M2
K − 1(

M2
K − 1

)3Z2
K (104)

or in the limit

C =
1
2

∑
k

DkZ
2
k +

3
2

∑
k

DK
Z2
K

M4
K

(105)
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The coefficients Dk, DK are positive and negative and the total sum is sero. Due to the large
number of parameters there is always the chance for positive C.

So far only soliton solution have been investigated. These are characterised by setting E = 0.
For all E between E = Emin and E = 0 non-linear periodic solutions exist. This is the green
region in fig.(3). The solutions can be expressed in terms of Jacobi elliptic functions. The wave
length of these solutions grows when approaching the soliton solution defined by E = 0.

6.3 Relation to Korteveg-deVries equation

Solitary waves in hydrodynamics and plasma physics often are described by the Korteveg-de-
Vries equation which in its one-dimensional form is

∂Ψ
∂t

+
∂3Ψ
∂z3

+ 6Ψ
∂Ψ
∂z

= 0 (106)

The soliton ansatz Ψ(z − V t) yields

−V ∂Ψ
∂u

+
∂3Ψ
∂u3

+ aΨ
∂Ψ
∂u

= 0 (107)

which after integration leads to
∂2Ψ
∂u2

− VΨ +
a

2
Ψ2 = A (108)

A is a constant. This is a Poisson-type equation with a “charge density” as given in eq.(90).
The solution has the same structure as shown in eq.(92). Our small amplitude expansion is
equivalent to the solution of a KdV-equation.

6.4 Large amplitude waves

The previous analysis is restricted to waves and solitons with small amplitude and the approx-
imation breaks down if the Mach number is close to unity. The non-linear theory, however,
is valid for any Mach number. When the amplitude grows the non-linear terms in Bernoulli’s
equation become important. As already mentioned above the function Pk(Ψ) is not unique and
there are two branches of Pk. This function cannot given in analytic form and therefor approx-
imative solutions at finite amplitude of the soliton will be discussed. We restrict the analysis to
an isothermal equation of state. The function

y(Pk) =
M2
k

2
(exp(−2δPk)− 1) + δPk ; y = gk − ZkΨ (109)

has an extremum at δPk := Pm = lnMk and the value at this point is (see eq.(87))

ym = lnMk +
1
2

(1−M2
k ) ; ym ≤ 0⇒ y ≥ ym (110)

Any solution of the coupled system - Bernoulli equation and Poisson equation - is subject to
gk − ZkΨ ≥ ym. The coefficient gk accounts for the initial value in Bernoulli’s equation (24). A
plausible choice of this constant is

gk = Fk(Pk) + ZkΨ0 ; z = 0 (111)

At the initial position z = 0 of the soliton a possible initial condition is Uk = 0 and Ψ = Ψ0.
Only Pk is different from Pk,0. If we approximate Fk(Pk) by C2

k/V
2
k Pk the minimum is at

δPk := Pm = ln
(
Vk
Ck
Mk

)
⇒ ym = C2

k/V
2
k Pm +

1
2

(C2
k/V

2
k −M2

k ) (112)
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The smallest value is reached at Ck = 0, ym = −M2
k/2.

Very often in literature the approximation of small or large Mach number is made, however
in the neighbourhood of Mk = 1 an analytic inversion is not possible. In order to elucidate
the situation we consider a two-component plasma with positive and negative ions. In order to
obtain finite amplitude waves or solitons we need a minimum of the Sagdeev potential at finite
Ψ. The neighbourhood of this minimum is the region of finite amplitude waves as discussed
in the previous sections. A sufficient condition is the existence of a finite Ψ with δPk = δPi.
At this point the charge density is zero since D+ + D− = 0 and the Sagdeev potential has
a second extremum. In order to find a second point with zero charge density the condition
δP+ = δP− = δP and Ψ+ = Ψ− = Ψ must be satisfied. This yields the two conditions

−Ψ =
M2

+

2
(exp(−2δP )− 1) + C2

+/V
2

+δP ; +Ψ =
M2
−

2
(exp(−2δP )− 1) + C2

−/V
2
−δP (113)

where with set g+ = g− = 0. The condition for δP is

0 =

(
C2

+

V 2
+

+
C2
−

V 2
−

)
δP +

M2
+ +M2

−
2

[exp(−2δP )− 1] (114)

This equation has two solutions, one solution is δP = 0 which is independent of the Mach
number. The second solution, however, depends on the Mach number. The minimum of the
function is at

2δP = ln(M2
+ +M2

−)

(
C2

+

V 2
+

+
C2
−

V 2
−

)−1

which can be either positive or negative. This implies that the second solution is also positive
or negative. The potential at the roots of eq.(114) is

2Ψ = g− − g+ +
M2
− −M2

+

2
[exp(−2δP )− 1] (115)

If the charge density has two roots of σ(Ψ) = 0 the derivative σ′(Ψ) changes sign, the
Sagdeev potential has a minimum and a maximum. The analysis shows that both, positive and
negative solitons can exist. Let us consider a state with M2

− −M2
+ > 0 and g+, g− = 0, the

heavy molecules are negatively charged and the light ions are positive. If M2
+ + M2

− < 2 the
position of minimum in the Sagdeev potential is negative and according to eq.(115) a positive
soliton is possible. If M2

+ + M2
− > 2 the soliton is negative. These investigations show that

the behaviour of non-linear ion acoustic waves is rather complicated and that further analysis
including numerical computations is needed.

7 Summary

In contrast to the theory of Hodgkin-Huxley and Heimburg-Jackson the theory of this paper
discusses the propagation of electric signals in the axoplasm. The axoplasm contains charged
particles, which via Coulomb interaction are able to form ion acoustic waves and solitons. It
can be shown that in a density regime n = 1020 − 1022 [m−3] of charged particles these waves
experience negligeable attenuation and the theory can be formulated in the frame of a Vlasov
equation leading to the conservation of entropy. This density regime is the regime of weakly
coupled plasmas. In a more realistic density regime with n = 1026 − 1027 [m−3] the theory of
strongly coupled plasmas or complex plasmas is the appropriate description. Since the coupling
parameter stays below 100 we start from a fluid picture and describe the plasma with the
help of the equation of motion and the equation of continuity of each particle species. All
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particles are linked by Poisson’s equation for the electric potential. In contrast to the theory of
Hodgkin-Huxley charged amino acids in form of polypeptides also participate in the nerve pulse
propagation. This suggests that any perturbation of the composition and chemical reaction of
polypeptides in the axoplasma may lead to a pertubation of the nerve pulse propagation.

The theory above approximates the equation of state by an ideal gas law in case of the
quiescent plasma or in case of ion acoustic wave by an adiabatic law. However, polypeptides
exhibit an electric dipole, which affects the inter-molecular interaction and can be possibly
described by a van-der-Waals type equation. This effect opens the chance of phase transition
which is an essential element in the Heimburg-Jackson theory.

The resting potential arises due to the imbalance of charged particles inside and outside the
axon. In the present paper we start from a minimum of assumptions where the membrane is
permeable to light ions - sodium, potassium etc.- and impermeable to charged organic molecules.
No voltage-controlled gates are required. As in the theory of MacGillivray [15] Poisson’s equation
is utilized to compute the resting potential. As a result the resting potential depends on the
fraction of positive and negative organic ions and on the pH-value of the axoplasma.

The linear theory of wave propagation discussed in chapter 5 exhibits a rich spectrum of ion
acoustic waves, which are longitudinal waves. It can be shown that vorticity and shear waves
do not arise during nerve pulse propagation. This is a remarkable fact since viscous damping of
shear waves is stronger than viscous damping of longitudinal waves. Apparently the evolution
has found a parameter regime where attenuation of nerve pulses is a minimum or zero. The
linear theory of acoustic modes also shows that light ions like Na+,K+ and Cl− are not the
only carrier of nerve pulses since the thermal velocity is much larger than the observed velocities
which are below 100 m/s. It needs the cooperation of light positive ions and heavy negative ions
to a achieve a phase velocity and group velocity below 100 m/s.

The non-linear theory demonstrates that all linear waves can couple and form a non-linear
wave or a soliton. Several approximations can be applied in order to clarify the behaviour of
non-linear acoustic waves. In a small amplitude expansion the solution can be found in terms of
Jacobi elliptic functions, soliton solutions are described in terms of a hyperbolic cosine. As in the
case of linear ion acoustic modes it is found that the propagation velocity of a plasma consisting
of Na and Cl is in the order of 200 m/s. Only if heavy organic molecules with a weight above 300
participate in the formation of non-linear waves and solitons, the propagation velocity is below
100 m/s. It can be easily shown that the small amplitude expansion is equivalent to a solution
of the Korteveg-de-Vries equation which describes solitary surface waves in hydrodynamics. The
theory large amplitude non-linear waves is still in an unsatisfactory state since a reduction of
the system of equations to a non-linear Poisson equation is not possible as in the case of small
amplitude expansion.

An important issue is the excitation of ion acoustic modes. One candidate is beam-plasma
interaction which has been discussed above. Injection of charged particles into the soma or main
body of the nerve fibre causes a deviation from a Maxwellian which is a source of instability -
the axoplasma begins to oscillate. Duration and intensity of the oscillation in the soma depend
on the duration and the intensity of the jet. These oscillations couple to plasma waves which
carry the information along the axon. Such a jet may be caused by an enhanced pressure in the
dendrites originating from a mechanical or thermal impact.

The theory of ion acoustic waves outlined above presents a carrier for information along
the axon. Solitons are one possible form, however, in order to transmitt a permanent signal
one needs a dense sequence of solitons. Another possibility is the non-linear waves, where the
amplitude and the duration is variable and thus can transmitt a large spectrum of information.
This scenario bears some resemblence to radio transmission, where a high-frequency carrier
wave is modulated in amplitude and duration. The theory presents a general framework for
propagation of nerve signals. Although there is a clear indication that organic molecules play
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a significant role in nerve pulse propagation, an identification of a specific polypeptide is not
possible. Glutamic acid in form of glutathione has been used as an example in the numerical
analysis, however it cannot be stated that this is the only candidate. Here a cooperation between
physics and biochemistry is required.
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