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Abstract

Internal kink instabilities have been studied in straight tokamak geometry employing an elec-

tromagnetic gyrokinetic particle-in-cell (PIC) code. The ideal-MHD internal kink mode and the

collisionless m = 1 tearing mode have been successfully simulated with the PIC code. Diamagnetic

effects on the internal kink modes have also been investigated.
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I. INTRODUCTION

The internal kink instability is a fluid fixed-boundary mode which can, however, be

strongly affected by kinetic effects. It occurs if the safety factor q(rc) = 1 at some position

rc inside the plasma column [1–3]. The fluid internal kink mode is always unstable in screw

pinch geometry, but it can be partially stabilized by toroidal corrections [4]. Nevertheless,

it plays an important role in tokamak operation (in particular during “sawtooth” [5] and

“fishbone” [6] activity). In the fluid picture, the internal kink mode is destabilized by the

gradients of the parallel current and of the plasma pressure. Physically, the kink instability

is a tilt and a shift of the plasma column. It can be unstable because the field line bending

vanishes at the position rc and fails to compensate the magnetic force associated with the

gradient of the ambient parallel current and the gradient of the pressure (directly related to

the diamagnetic current). The uncompensated perturbed magnetic energy is then set free

in the narrow “inertial” (or “resonant”) layer around rc and is converted to kinetic energy of

poloidally rotating plasma (and drives reconnection when non-ideal effects are important).

A kinetic description may be needed in order to address the physics of the inertial (resonant)

layers.

The internal kink instability has been known in plasma physics research from the begin-

ning of the fusion programme. Already in 1973, it was considered as a plausible candidate

to explain the q(0) > 1 tokamak stabilitiy criterion. It has been hypothesized [3] that the

internal kink mode can be involved in the disruptive instabilities. In Ref. [3], an ideal Mag-

netohydrodynamical (MHD) theory of the internal kink modes was developed. A nonlinear

kinked neighboring equilibrium was found. However, the resulting nonlinear ideal-MHD

amplitudes were too small to explain the disruptive phenomena in tokamaks although such

qualitative properties as the negative voltage spikes and inward shifts in major radius pro-

duced by the mode evolution agreed with the experimental observations. The next time the

internal kink modes received increased attention was in 1975 when B. Kadomtsev proposed

his model [7] for the sawtooth phenomena, discovered experimentally one year before [5].

In this model, the growth of the magnetic island associated with the internal kink mode

(poloidal mode number m = 1) plays a crucial role. Clearly, such a process is beyond the

range of the ideal MHD theory considered in [3].

This has motivated the development of theoretical descriptions of the internal kink mode
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which include various non-ideal effects. Thus, in Ref. [8] the internal kink mode has been

considered within a two-fluid model including resistivity, ion-ion collisions and diamagnetic

effects (which were found to be stabilizing). Further development focused on a more detailed

description of the resonant layer around the q = 1 magnetic surface. In Ref. [9], the kinetic

theory of the m = 1 internal instability was considered (kinetic electrons and fluid ions).

Similarly to Ref. [8], a diamagnetic stabilization of the internal kink mode was found. In

Ref. [10], the role of collisionless reconnection (driven by the electron inertia) on the evolution

of the internal kink mode was studied in the regime δe ≫ ρi (here δe is the electron skin

depth and ρi is the ion gyroradius), neglecting ion Finite Larmor Radius (FLR) effects. Such

a regime corresponds to very low values of plasma pressure β ≤ me/mi. It has been pointed

out, however, that an accurate treatment of the ion orbits (in terms of their gyro-average)

is needed in order to consider realistic regimes with δe ≤ ρi. A technical difficulty arising

here is due to the non-local character of the gyrokinetic polarization density which results

in an integral quasineutrality equation (see also [11]). This problem has been addressed in

Ref. [12] in the context of the tearing mode problem. The integral equation resulting from

the non-local ion response has been solved by an iterative method (assuming the poloidal

beta to be small). In Ref. [13], an alternative approach to this problem has been suggested

based on the Fourier expansion in the resonant layer with respect to the radial variable. This

approach emphasizes the singular layer but retains the global nature of the mode through

the boundary conditions. An interpolation formula has been used in order to treat the

gyro-averages (it fails when the density or temperature gradients are too large). In 1991,

Porcelli combined the approach of Ref. [13] concerning the ions with electron inertia effects

assuming, however, an adiabatic or isothermal electron temperature response (depending on

the parameter regime). In Ref. [14], he found the so-called m = 1 collisionless tearing mode

which dominates the ideal-MHD version of the internal kink mode when the ideal drive is

sufficiently small (basically, when the ion gyroradius exceeds the ideal-MHD inertial length).

This development has been used in the formulation of the revised sawtooth model [15] by

Porcelli et al in 1996 (this model takes into account the complex dynamics of the resonant

layer which includes the ion FLR and reconnection effects).

Despite the great progress achieved in the analytical understanding of internal kink

modes, it is still an area of active research. Thus, very recently a unified theory of the

internal kink and tearing modes has been developed in Ref. [16]. This theory provides an
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accurate treatment of the ion orbits and the electron temperature response without assuming

it to be adiabatic or isothermal.

On the numerical side, there is a vast literature on simulations of internal kink modes

using the fluid approach. For example, Ref. [17] analyzes the ideal stability of the inter-

nal kink mode in shaped tokamak plasmas. Recent full-MHD simulations [18, 19] studied

various nonlinear regimes of the internal kink mode evolution and included some two-fluid

(e. g. diamagnetic) effects. It is however desirable to have a first principles approach to the

internal kink mode since the kinetic effects can be important in the resonant layer, and two-

fluid models are often derived under a number of assumptions that may be too simplistic.

Such an attempt was undertaken for the first time with a gyrokinetic [20] particle-in-cell [21]

code in 1995. In Ref. [22], both the linear and nonlinear evolution of the internal kink mode

were simulated, targeting the sawtooth collapse on a fast time scale. However, these early

simulations operated at extremely small β ≤ me/mi and neglected ion FLR effects. This

work has recently been continued in Ref. [23] (also at a very small plasma beta). In addition

to particle-in-cell simulations, the internal kink mode has been considered by employing an

eigenvalue approach to the solution of the gyrokinetic equations [24, 25].

In this paper, we study the linear evolution of the internal kink mode in straight-tokamak

geometry employing the global gyrokinetic particle-in-cell method. Realistic values of plasma

β ≫ me/mi are used. The objective of this paper is two-fold. First, we study how the kink

mode properties change depending on the relation between the ion gyroradius and the MHD

inertial length. Second, we explore, for the first time, what could be the limitations of the

gyrokinetic PIC approach to this problem at realistic values of plasma beta.

The structure of the paper is as follows. In Sec. II, the basic equations and the discretiza-

tion procedure are discussed. Simulations in the fluid and kinetic regimes are presented in

Sec. III. Finally, our conclusions are summarized in Sec. IV.

II. BASIC EQUATIONS AND NUMERICAL APPROACH

We use the linear two-dimensional δf PIC-code GYGLES [26–28]. The code is electro-

magnetic and treats all particle species (ions and electrons) kinetically. It solves the gyroki-

netic Vlasov-Maxwell system of equations (in the p‖-formulation, see Ref. [20] for details).

The distribution function is split into a background part and a small time-dependent per-
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turbation fs = F0s+ δfs (the index s = i, e is used for the particle species). The background

ion distribution function is taken to be a Maxwellian. The background electron distribution

function is a shifted Maxwellian (to account for the equilibrium parallel current):

F0e = n0

(

m

2πTe

)3/2

exp

[

− me(p‖ − u)2

2Te

]

exp

[

− mev
2
⊥

2Te

]

(1)

Here u = − j
(0)
‖ /(en0) and µ0 j

(0)
‖ = (B/B) · (∇×B) with B the equilibrium magnetic field.

Assuming the amplitude of the field perturbation to be small (this implies δfs/F0s ≪
1), the first-order perturbed distribution function can be found from the linearized Vlasov

equation:
∂δfs
∂t

+ Ṙ(0) · ∂δfs
∂R

+ ṗ
(0)
‖

∂δfs
∂p‖

= − Ṙ(1) · ∂F0s

∂R
− ṗ

(1)
‖

∂F0s

∂p‖
. (2)

Here, [Ṙ(0), ṗ
(0)
‖ ] correspond to the unperturbed gyrocenter position and parallel velocity, and

[Ṙ(1), ṗ
(1)
‖ ] are the perturbations of the particle trajectories proportional to the electromag-

netic field fluctuations [shown in Eqs. (4)-(7) below]. The perturbed part of the distribution

function is discretized with markers (see Ref. [29] for details):

δfs(R, p‖, µ, t) =
Np
∑

ν=1

wsν(t)δ(R−Rν)δ(p‖ − p‖ν)δ(µ− µν) , (3)

where Np is the number of markers, (Rν , p‖ν , µν) are the marker phase space coordinates

and wsν is the weight of a marker. The equations of motion are [20]

Ṙ(0) = p‖b
∗ +

1

qB∗
‖

b× µ∇B (4)

Ṙ(1) = − q

m
〈A‖〉b∗ +

1

B∗
‖

b×
(

∇〈φ〉 − p‖∇〈A‖〉
)

(5)

ṗ
(0)
‖ = − µ∇B

m
· b∗ (6)

ṗ
(1)
‖ = − q

m

(

∇〈φ〉 − p‖∇〈A‖〉
)

· b∗ (7)

with φ and A‖ being the perturbed electrostatic and magnetic potentials, µ the magnetic

moment, m the mass of the particle, B∗
‖ = b · ∇ × A∗, b∗ = ∇ × A∗/B∗

‖ , A∗ = A +

(mp‖/q)b the so-called modified vector potential, A the magnetic potential corresponding

to the equilibrium magnetic field B = ∇×A and b = B/B the unit vector in the direction

of the equilibrium magnetic field. The gyro-averaged potentials are defined as usual:

〈φ〉 =
∮

dθ

2π
φ(R+ ρ) , 〈A‖〉 =

∮

dθ

2π
A‖(R+ ρ) , (8)
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where ρ is the gyroradius of the particle and θ is the gyro-phase. Numerically, the gyro-

averages are computed sampling a sufficient number of the gyro-points on the gyro-ring

around the gyrocenter position of the marker [21, 30].

The perturbed electrostatic and magnetic potentials are found self-consistently from the

gyrokinetic quasineutrality equation and parallel Ampére’s law [31]:
∫ qiF0i

Ti
(φ− 〈φ〉) δ(R+ ρ− x) d6Z = δni − δne (9)

(

βi

ρ2i
+

βe

ρ2e
−∇2

⊥

)

A‖ = µ0

(

δj‖i + δj‖e
)

, (10)

where δns =
∫

d6Z δfs δ(R + ρ − x) is the gyrocenter density, δj‖s = qs
∫

d6Z δfs p‖ δ(R +

ρ − x) is the gyrocenter current, qs is the charge of the particle, d6Z = B∗
‖ dR dp‖ dµ dθ is

the phase-space volume, ρs =
√
msTs/(eB) is the thermal gyroradius and βs = µ0n0Ts/B

2
0 is

the plasma beta corresponding to a particular species. Note that the polarization density in

Eq. (9) is given by an integral operator and includes a non-local effect of the ion gyro-orbit.

We have found, however, that the computations can be simplified by replacing the

quasineutrality condition, Eq. (9), with

fc(r)
∫ qiF0i

Ti
(φ− 〈φ〉) δ(R+ ρ− x) d6Z − [1− fc(r)] ∇ ·

(

qin0

Ti
ρ2i∇⊥φ

)

= δni − δne (11)

Here,

fc(r) = exp
[

−
(

r − rc
∆rc

)pc]

(12)

with rc being the position of the singular layer. This representation implies that the exact

expression for the polarization density is used around the resonant position q(rc) = 1 (where

the relevant radial scale can be smaller than the ion gyroradius), whereas the long-wavelength

approximation is used outside the resonant layer (which is justified since the kink mode

structure is global in the ideal region). The effect of this representation is to replace (in

the ideal region only!) the kinetic Alfvén waves by shear Alfvén waves, which have more

favourable (for numerics) properties experiencing more physical damping on small radial

scales. In our simulations, we have used ∆rc = 0.2ra and pc = 8. For this choice of the

parameters, ρi ≪ ∆rc in all cases considered.

The electrostatic and magnetic potentials are discretized with the finite-element method

(Ritz-Galerkin scheme):

φ(x) =
Ns
∑

l=1

φlΛl(x) , A‖(x) =
Ns
∑

l=1

alΛl(x) , (13)
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where Λl(x) are finite elements (tensor products of B splines [32, 33]), Ns is the total number

of the finite elements, φl and al are the spline coefficients. The numerical treatment of the

nonlocal gyrokinetic polarization density has been described in Ref. [30]. Homogeneous

Dirichlet boundary conditions are applied for φ and A‖ both on the axis and at the plasma

edge. Further details of the numerical discretization can be found in Refs. [29, 30, 34–36].

III. SIMULATIONS

We consider a straight tokamak (a screw pinch) with minor radius ra and “major radius”

R0 (the pinch is a topological torus with the length L = 2πR0 and periodic boundary

conditions along the axis). The plasma consists of hydrogen ions and electrons (with a

realistic mass ratio). The safety factor is given by the expression q(r) = q0+(1− q0)(r/rc)
pq

(with q0 = 0.6 and pq = 1 in our simulations). The background magnetic field is determined

by the MHD pressure balance condition:

d

dr

(

p+
B2

z +B2
θ

2µ0

)

+
Bθ

µ0r
= 0 , Bθ =

r

q(r)R0
Bz . (14)

This equation is solved with the “initial condition” Bz(r = 0) = B0. It can be seen that

Bz(r) ≈ B0 often gives a good approximation for the equilibrium magnetic field (when the

effect of the plasma pressure is small).

The plasma temperature and density profiles are given by the expressions:

n0(s) = N0 exp
[

− ∆n

Ln

tanh
(

s− sn
∆n

)]

, Ts(s) = T0s exp

[

− ∆T

LTs

tanh
(

s− sT
∆T

)

]

(15)

where s = r/ra with ra the radius of the pinch. The shape of these profiles can be flexibly

tailored by adjusting the parameters ∆T and ∆n (which determine the profile width), sT

and sn (position of the maximal gradient), LTs
and Ln (gradient lengths).

The numerical resolution needed in the simulations depends on the physical parameters.

It has been observed that the radial resolution must always be sufficient to resolve the ion

gyroradius (it is required since the Alfvén continuum must be resolved). For cases when

the electron inertia is of importance, the electron skin depth must also be resolved. In the

“poloidal” direction, Nθ = 4 splines have been found sufficient since only one poloidal mode

is kept in the linear straight-tokamak simulations. The marker resolution is kept on the level

of 700− 1000 markers per grid cell.
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A. Internal kink mode: “MHD regime”

In this subsection, we consider the internal kink instability in the MHD regime. Physi-

cally, it implies that the width of the resonant layer (which in this case coincides with the

MHD inertial-layer width λH) is much larger than the ion gyroradius ρi. The inertial-layer

width is given by the expression [3, 8]:

λH

rc
= − π

[rcq′(rc)Bθ(rc)]2

rc
∫

0

g1(r)dr (16)

with

g1(r) =
(m2 − 1)r(k ·B)2

m2 + k2
zr

2
+

k2
zr

2

m2 + k2
zr

2

(

2µ0
dp

dr
+ r(k ·B)2 +

2

r

k2
zr

2B2
z −m2B2

θ

m2 + k2
zr

2

)

. (17)

Here, q′ = dq/dr, kz = n/R0 and k · B = Bz (m − qn)/(qR0). For the internal kink mode,

the poloidal mode number m = 1 and the toroidal mode number n = 1.

Analytical ideal-MHD theory [3] gives the following expression for the growth rate:

γτA = q′(rc)λH , τA = R0/vA . (18)

Here, vA = Bz/
√
µ0min0 is the Alfvén velocity. Another way (used here) is to solve numer-

ically (with the shooting method) the ideal-MHD eigenvalue problem:

d

dr

(

[µ0min0γ
2 + (k ·B)2]r3

dξ

dr

)

− g1(r)ξ = 0 (19)

employing the boundary conditions ξ′(r = 0) = 0 and ξ(r = ra) = 0. Here, ξ(r) is the MHD

displacement and ξ′ = dξ/dr.

We consider a straight tokamak with “major radius” R0 = 5 m, minor radius ra = 1 m,

magnetic field B0 = 2.5 T, plasma temperature Ti = Te = 5 keV, and plasma density

N0 = 2 × 1019 m3 (which corresponds to β = 0.0128 at the temperature chosen). Both the

plasma density and the temperature are flat. For these parameters, an unstable internal

kink mode exists (destabilized by the gradient of the ambient parallel current).

We consider a sequence of straight-tokamak equilibria corresponding to different locations

of the rational flux surface rc. In Fig. 1, the ideal-MHD inertial-layer width λH is shown as

a function of rc. One sees that λH exceeds both the ion gyroradius ρi = 2.8 × 10−3 m and

the electron skin depth δe = ρe/
√
βe = 1.7× 10−3 m for all equilibria considered.
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In Fig. 2, the internal kink mode growth rate resulting from the gyrokinetic PIC sim-

ulations is compared to the results of the ideal-MHD eigenvalue calculations [the MHD

eigenvalue problem Eq. (19) has been numerically solved using the shooting method]. One

sees that the mode is more unstable for larger rc, i. e. when a larger plasma column is

involved in the instability [this can also be seen formally from Eq. (16)]. The quantitative

agreement between the ideal MHD and the gyrokinetic simulations is very good when the

ion temperature is small Ti = 200 eV (implying ion gyroradius small). When the ion gyrora-

dius increases, the kink mode becomes less unstable (although the quialitative dependence

on rc remains the same). The mode is still an MHD-like internal kink instability but this

will change when k⊥ρi > 1 with k⊥ ∼ 1/λH (see Sec. III B). One can quantify the ion-FLR

effects considering a sequence of internal kink modes keeping all the parameters constant

except the plasma temperature (Ti = Te). Note that the ideal-MHD growth rate does not

depend on the temperature (for a flat profile such as used in these simulations). In contrast,

the gyrokinetic simulations show that the kink mode growth rate decreases with the plasma

temperature (see Fig. 3). This FLR-stabilization effect can be quite substantial when the ion

temperature is large enough. Note that a similar FLR stabilization (caused by the energetic

ions) has already been observed for other MHD modes, e. g. in Ref. [37] for the Toroidal

Alfvén Eigenmodes (see also the recent related gyrokinetic PIC simulations [27]). The FLR

stabilization is caused by the gyro-averaging operation acting on the perturbed electromag-

netic field. Similar (often stronger) stabilization effect is related to the finite width of the

drift orbits [38, 39] in tokamak plasmas (this contribution is absent in a straight geometry

considered here). Clearly, the finite-orbit-width effects can not be found in the ideal MHD

description and should be considered using a kinetic treatment.

In Fig. 4, we compare the ideal-MHD eigenmode structure with the radial pattern found in

the gyrokinetic simulations. An excellent agreement is found. The ideal-MHD displacement

ξ ∼ φ/r corresponding to Fig. 4 has the well-known top-hat structure. The poloidal fluid

velocity vθ ∼ ∂φ/∂r is clearly strongly increased at the rational flux surface, as must be the

case for the internal kink mode.

In Fig. 5, the internal kink mode evolution is shown (here, the rational flux surface

is located at rc = 0.7; the plasma temperature Ti = Te = 5 keV). One sees how the

initial perturbation (which has had a Gaussian shape in the radial direction) decays in the

continuum of the shear Alfvén waves and is then re-organized as an unstable internal kink
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mode. The ion gyroradius must be resolved in order to correctly reproduce the continuum-

decay phase of the mode evolution. The frequency of this mode is zero (this is a well-known

property of the ideal MHD modes, related to the Hermitian symmetry of the underlying

equations; this property can also be reproduced in the gyrokinetic simulations).

So far, we have considered the current-driven internal kink mode (the plasma pressure

was chosen to be flat). Now, let us include the pressure destabilization in our simulations.

In Fig. 6, the kink-mode growth rate is plotted as a function of the plasma density gradient.

For the density profile, we choose sn = 0.5, ∆n = 0.2 [see Eq. (15)]. The plasma temperature

Ti = Te = 3 keV is taken to be flat. The resonant flux surface has been located at rc = 0.7.

Two cases, one with a large magnetic field B = 5 T and the other with a moderate magnetic

field B = 2.5 T, were considered [keeping β(sn) = 0.00773 constant]. One sees from Eq. (18)

that the ideal-MHD result does not depend on the magnetic field strength. Indeed, the

gyrokinetic simulations reproduce this property. The agreement between the gyrokinetic

simulations and the MHD result is good for both values of the ambient magnetic field. The

kink-mode growth rate increases with the density (pressure) gradient, as expected.

Summarizing, we have considered the internal kink mode in the regime ρi < λH (ions in

the resonant layer are magnetized). In this regime, the properties of the kink mode agree

well with the ideal MHD expectations (thus providing a benchmark for our simulations).

The only effect found beyond ideal MHD, is an ion-FLR stabilization of the internal kink

mode (which however can be quite substantial).

B. Internal kink mode: “FLR regime”

We now consider the case when the thermal ion gyroradius exceeds the ideal-MHD inertial

width ρi ≫ λH . The parameters here are as follows. The straight tokamak has the minor

radius a = 0.5 m, the ambient magnetic field B0 = 1 T, and the plasma density n0 =

1.6 × 1018 m−3 (it corresponds to β = 0.00644 when Ti = Te = 5 keV). Equilibria with the

major radii R0 = 5 m and R0 = 20 m have been considered (changing the major radius

one can change the aspect ratio and, consequently, the inertial-layer width λH while ρi/ra is

kept fixed). The comparison between the inertial layer width λH , the thermal ion gyroradius

ρi, and the electron skin depth δe is shown for different aspect ratios in Fig. 7. One sees

that the ion gyroradius is indeed much larger than all other relevant scales, especially when
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R0 = 20 m (this case corresponds to a particularly weak, almost vanishing ideal-MHD drive).

In this regime (ions are demagnetized in the resonant layer), Ref. [14] predicts the exis-

tence of an unstable collisionless m = 1 tearing mode. In the case λH → 0, the growth rate

of this mode is given by the expression [14]:

γ =
ŝq(rc)vA(rc)

R0

(δeρ
2
i )

1/3

rc
, vA =

B2
0√

µ0min0
, ŝq =

r

q

dq

dr
. (20)

In Fig. 8, we plot the growth rate resulting from the gyrokinetic PIC simulations (correspond-

ing to the pinch with R0 = 20 m, i. e. very small λH) compared to the analytic prediction

for the collisionless m = 1 tearing mode as a function of the resonant layer position. In

contrast to the “ideal-MHD” regime (see Fig. 2), the mode is more unstable for smaller rc,

indicating a change in the underlying physical mechanism: reconnection (electron physics)

in addition to the poloidal plasma rotation (ions). The agreement between the gyrokinetic

result and the theoretical prediction Eq. (20) is very good.

In Fig. 9, we consider the dependence of the kink-mode growth rate on the ion tem-

perature (ion-FLR effect). One sees that in the regime of demagnetized ions (inside the

resonant layer), the mode is further destabilized when the ion gyroradius increases. This

FLR-destabilization is in contrast to the MHD-type internal kink mode considered previ-

ously, which was FLR-stabilized (see Fig. 3). The numerical result has been compared with

the analytical expression Eq. (20). The agreement is again very good. For comparison, we

plot the growth rate predicted by the ideal MHD theory, which is more than two orders of

magnitude smaller. It indicates that the kinetic effects can dominate the kink mode physics,

certainly around ideal marginal stability.

Finally, we consider the effect of the electron temperature gradient on the collisionless

m = 1 tearing mode. We employ a temperature profile with sT = rc/ra = 0.5 (the position

of the maximal gradient coincides with that of the resonant flux surface) and ∆s = 0.2 [see

Eq. (15)]. The ion temperature and the plasma density are taken to be flat. As a consequence

of the diamagnetic effect associated with the finite electron temperature gradient, the mode

acquires a finite frequency and becomes a drift-tearing instability (see e. g. [12, 16]). The

frequency resulting from the gyrokinetic PIC simulations is plotted in Fig. 10 as a function

of LTe (electron temperature gradient length) for two different values of the major radius:

R0 = 5 m and R0 = 10 m (recall that the ideal-MHD drive and, consequently, λH decrease

with the aspect ratio). One sees that the frequency is the same for both values of R0. Hence,
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it is set exclusively by the diamagnetic frequency at the position of the resonant flux surface

ωTe = 1/(Brc) dTe/dr. In fact, the frequency of the collisionless m = 1 drift-tearing mode

appears to satisfy ω ≈ 0.4ωTe (cf. Ref. [12]).

The growth rate as a function of LTe (electron temperature gradient length) is plotted in

Fig. 11. As expected [12, 16], the electron temperature gradient stabilizes the collisionless

drift-tearing m = 1 mode. Physically, it has been shown in Ref. [16] that the drift-tearing

mode can couple to a stable Kinetic Alfvén Wave (KAW) which leads to a stabilization of

the mode. Another way to explain this stabilization effect has been elaborated in Ref. [40]

(in the fishbone context). In short, the finite-frequency mode can interact with the Alfvén

continuum (or, alternatively, with the KAWs as in [16]) and thus undergo continuum damp-

ing (as is well-known from the context of Toroidal Alfvén Eigenmodes [41–43]). Of course,

the frequency of the drift-tearing m = 1 mode is quite small, so that the continuum damp-

ing acts only very close to the resonant flux surface (the surface of vanishing k‖) where the

condition ω2 = k2
‖(rA)v

2
A(rA) can be satisfied. The frequency of the m = 1 drift-tearing

mode increases with the electron temperature gradient which makes the continuum damp-

ing more efficient at smaller LTe – to the point of a complete stabilization. Note that in

Fig. 11 the stabilization appears to be stronger for the case with the larger major radius

R0 = 10 m. In this case, the absolute value of the growth rate would be smaller compared

with the configuration with R0 = 5 m, even for the flat temperature profiles, because the

growth rate inversely scales with the Alfvén time τA ∼ R0. Thus, the continuum damping,

which is determined by the mode frequency (set by the electron temperature gradient and

thus equal for both values of R0), corresponds to a larger fraction of the smaller growth rate

when R0 = 10 m.

In Fig. 12, the radial mode structure is shown. One sees that in addition to the conven-

tional internal kink eigenmode, a complicated fine-scale structure appears at the resonant

flux surface. This structure is caused by the continuum damping of the instability. One can

see that it becomes more pronounced when the electron temperature gradient increases (see

Fig. 13). We can estimate the position of the shear Alfvén resonances using the expression:

rA = rc ±
ωτA
q′(rc)

, τA = R0/vA (21)

For the safety factor profile chosen, q′(rc) = 0.8. Fig. 13 indicates that the fine-scale structure

developed could be understood as Kinetic Alfvén Waves (recall that we use a non-local
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expression for the polarization density) resonantly excited by the collisionless m = 1 tearing

mode in the positions approximately satisfying the shear Alfvén wave resonance condition

ω2 ≈ k2
‖(rA)v

2
A(rA) (the Kinetic Alfvén Wave resonance would be more precise). The drift-

tearing (kinetic-kink) mode is damped because of its coupling to the Kinetic Alfvén Waves

(a “continuum”) at the resonant positions. A finite frequency of the tearing mode is required

for this process to function. This frequency is provided by the diamagnetic effect due to a

finite electron-temperature gradient.

IV. CONCLUSION

In this paper we have studied the internal kink modes in a straight-tokamak geometry

using the global gyrokinetic particle-in-cell code GYGLES. Both electron and ion gyrocenters

were treated kinetically, but collisions were ignored. We conclude that the gyrokinetic

particle-in-cell simulations of the internal kink mode can be performed at the realistic values

of plasma beta which are much larger than the electron-ion mass ratio (although only the

straight-tokamak geometry has been considered in this paper). The simulations have shown

that the kink mode properties depend strongly on the ratio between the ideal-MHD inertial-

layer scale and the gyroradius. In the “MHD regime”, the kink mode becomes more unstable

if the rational flux surface “moves” (during the parameter scan) outwards. In the “FLR

regime”, however, the kinetic-kink mode (the “collisionless m = 1 tearing mode” [14])

is more unstable for resonant magnetic surfaces located closer to the magnetic axis (1/rc

dependence of the growth rate). Similarly, the scaling with respect to the ion temperature

is also opposite: the FLR-stabilization for the MHD-type kink mode has been observed

whereas the “collisionless m = 1 tearing mode” is FLR-destabilized. One could speculate

[14] that the most unstable m = 1, n = 1 instabilities observed in real hot plasmas often

correspond to the “collisionless m = 1 tearing” (kinetic-kink) modes rather than the classical

ideal-MHD internal kink modes since usually the real plasmas are at the marginal MHD-kink

stability boundary so that the ion gyroradius can easily overcome the ideal inertial length

(thus bringing the instability into the kinetic regime). The kinetic-kink modes, however,

can be sensitive to the shape of plasma profiles and can be stabilized e. g. by the electron

temperature gradient (through a combination of the diamagnetic and continuum-damping

effects).
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Looking forward, gyrokinetic simulations of the internal kink modes in tokamak geometry

would be of interest. In these simulations, the effects of the guiding center orbits in the

resonant region, the kinetic trapped-ion and fast-particle (e. g. fishbone) effects in the ideal

region should be addressed. Also, gyrokinetic simulations of interchange instabilities (both

in straight and toroidal geometries) could be performed in the future.
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FIG. 1: (Color online) Ideal-MHD inertial-layer width λH as a function of rc [with k‖(rc) = 0]

compared to the ion thermal gyroradius ρi (computed for Ti = 5 keV) and to the electron skin

depth δe. Screw pinch geometry with R0 = 5 m, a = 1 m, B0 = 2.5 T is considered. For these

parameters, the fluid inertial length is larger than the kinetic radial scales ρi = 2.8 × 10−3 m and

δe = 1.7× 10−3 m.
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FIG. 2: (Color online) Internal kink mode growth rate resulting from the gyrokinetic PIC simu-

lations (at two different ion temperatures) compared to the results of the ideal-MHD eigenvalue

calculations (the MHD eigenvalue problem has been numerically solved using the shooting method).

The agreement between the ideal MHD and the gyrokinetic simulations is very good, especially

at the smaller ion temperature (i. e. at the smaller ion gyroradius). One sees that the gyrokinetic

kink mode is somewhat stabilised when the ion gyroradius increases. This FLR effect is absent in

the ideal MHD description.
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FIG. 3: (Color online) Internal kink mode growth rate (resulting from the gyrokinetic PIC simu-

lations) as a function of the plasma temperature (Ti = Te). The growth rate decreases at larger Ti

which should be attributed to FLR-stabilization. The rational flux surface is localized at rc/a = 0.5.

For comparison, the ideal-MHD result is shown (which does not depend on the ion temperature).
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FIG. 4: (Color online) Internal kink mode radial structure in the regime with λH ≫ ρi. The

mode changes abruptly at the rational flux sruface rc = 0.5 which is a well-known property of the

intenal kink modes. One sees a perfect agreement between the eigenmode structures obtained from

the initial-value gyrokinetic PIC simulations and solving (numerically) an ideal-MHD eigevalue

problem.
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FIG. 5: (Color online) Internal kink mode evolution in the regime with λH ≫ ρi. The rational flux

sruface is located at rc = 0.7. The plasma temperature Ti = Te = 5 keV. The initial perturbation

(a Gaussian) decays in the continuum of the shear Alfvén waves which are reorganized afterwards

into the internal kink eigenmode.
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FIG. 6: (Color online) Pressure gradient effect on the kink mode in the MHD regime. Equilibria

with “large” and “moderate” magnetic fields (B = 5 T and B = 2.5 T) have been compared. The

plasma temperature Ti = Te = 3 keV. The result does not depend on B (as expected according to

MHD theory) and the agreement between the gyrokinetic simulations and the MHD computation

is good.
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FIG. 7: (Color online) Ideal-MHD inertial-layer width compared with the ion thermal gyroradius

and the electron skin depth. Screw pinches with a = 0.5 m, B0 = 1 T, R0 = 5 m and R0 = 20 m are

considered. Here, the MHD drive is much smaller compared to the case shown in Fig. 1 (especially

when R0 = 20 m). As a consequence, the ion gyroradius is much larger than the MHD inertial

length indicating the importance of the FLR effects (and ion sub-Larmor scales) in the mode

evolution (kinetic regime of the m = 1, n = 1 mode).
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FIG. 8: (Color online) Internal kink mode growth rate resulting from the gyrokinetic PIC sim-

ulations compared to the analytic prediction for the collisionless m = 1 tearing mode [14]

γ ∼ (δeρ
2
i )

1/3/rc. Here, the parameters chosen are Ti = Te = 11 keV and R0 = 20 m. One

sees a very good agreement between the theory and simulations.
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FIG. 9: (Color online) Internal kink mode growth rate (resulting from the gyrokinetic PIC simula-

tions for R0 = 20 m) as a function of the plasma temperature (Ti = Te). The growth rate increases

with the temperature contrary to the ideal-MHD case (see Fig. 3). The rational flux surface is

localized at rc = 0.4. The agreement of the simulations with the theory is very good. For reference,

the ideal-MHD growth rate corresponding to the parameters chosen is plotted. One sees that the

growth rate of the kinetic-kink (reconnecting) mode is more than two orders of magnitude larger

than the growth rate of the marginally-unstable ideal-MHD mode.
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FIG. 10: (Color online) Frequency of the kinetic internal kink mode (collisionless m = 1 tearing

mode) as a function of the electron temperature gradient. Ion temperature and density are kept

constant. For comparison, an estimate for the drift-tearing mode frequency ω = 0.4ωTe [12] is

plotted. One sees that the agreement is good. The mode properties for two different aspect ratios

(and, consequently, λH) are compared (major radius is varied whereas the minor radius is kept

fixed). One sees that the mode frequency does not depend on λH and, hence, is set exclusively by

the diamagnetic frequency associated with the electron temperature gradient.
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FIG. 11: (Color online) Growth rate of the kinetic internal kink mode (collisionless m = 1 tearing

mode) as a function of the electron temperature gradient (same parameters as in Fig. 10). In

contrast to the frequency, the growth rate is much smaller at larger R0 (note the normalization

to τA ∝ 1/R0.) In this case, the continuum damping (set by the mode frequency which is equal

for both values of R0) corresponds to a larger fraction of the smaller growth rate, making the

stabilization mechanism more effective.
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FIG. 12: (Color online) Kinetic-kink eigenmode (R0 = 10 m) compared at different electron tem-

perature gradient lengths LTe. A fine-scale structure develops around the rational flux surface

[indicating the continuum damping at the position of the resonance ω = ±k‖(rA)vA, see Fig. 13

for details]. The fine-scale structure is more pronounced (see Fig. 13) at larger electron tempera-

ture gradients (where the mode frequency is larger and, consequently, the continuum damping is

stronger).
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FIG. 13: (Color online) The eigenmodes from Fig. 12 zoomed around the rational flux surface.

For comparison, the ion gyroradius and electron skin depth scales are plotted. Also, the positions

of the shear Alfvén resonances are indicated (the kinetic Alfvén wave resonances would be more

precise). One sees that the relevant radial scales are smaller than the ion gyroradius. Kinetic

Alfvén waves are excited at the resonant positions causing a stabilization of the collisionless m = 1

drift-tearing mode (through the “continuum” damping mechanism).
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