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. OVERVIEW

The genome projects provided us with a huge amount of
information at the DNA level and lead to the identification of
thousands of open reading frames. The demand for technolo-
gies allowing the functional analysis of gene products is, there-
fore, dramatically increased. Discovery and characterization of
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interacting gene products, molecular recognition, and molecu-
lar modeling became central to life sciences. Surface display
technology based on two pivotal concepts—physical linkage
between genotype and phenotype and rescue of individual
clones from large libraries by affinity selection—has the poten-
tial to substantially contribute to functional genomics. The
expansion of surface display technology in biosciences is facili-
tated by the adaptability of the systems to high-throughput
screening formats for automated library handling. While
recombinant DNA techniques allow construction of highly com-
plex molecular libraries, high-throughput screening allows
rapid exploration of molecular diversity using combinatorial
methods. These technologies are becoming increasingly impor-
tant as molecular tools for the understanding of protein—
protein interactions and for the generation of lead compounds,
which, hopefully, will attract the business community to make
investments in this novel segment of biotechnology.

Il. INTRODUCTION

All surface display technologies exploit the concept of linking
the phenotype as a gene product displayed on a surface to its
genetic information integrated into the host genome (1). This
concept is independent from the organism used and has been
successfully applied to construct large molecular libraries in
filamentous phage (2—4), phagemids (5-7), lytic bacterio-
phages (8,9), higher viruses (10,11) as well as prokaryotic
(12-14), and eukaryotic (15,16) surface expression systems.
When Smith (2) initially proposed the idea of phage display
in 1985, he suggested that selection of genes from cDNA
libraries could be one of the most significant applications of
the technology. However, this potentially interesting area of
research has lagged behind, despite the impressive progress
of phage display technology achieved during the last years.
Among the over 2000 papers describing the use of phage
display available to date from the literature, only a few deal
with selection of cDNAs.
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One of the reasons thereof is a direct consequence of the
capsid structure. Most phage or phagemid cloning vectors take
advantage of the ability to assemble phage decorated with
hybrid versions of the receptor protein plIl or the major coat
protein pVIII (17,18). This strategy has proven to be useful for
the N-terminal display of random peptide libraries (3,19—22),
antibody fragments (23-26), and single proteins and protein
domains (27-30) which are directly fused to the coat proteins
(31) or to truncated forms thereof in phagemid vectors (32).
These approaches have been very successful because they allow
direct fusions of the gene products to be displayed to the
N-terminus of the capsid proteins. However, the integrity of
the C-terminus of pIII and pVIII is essential for efficient phage
assembly and, therefore, the original vectors can only tolerate
insertion of foreign DNA at the N-terminus (5,9,33). This repre-
sents the strongest limitation for the construction of ¢cDNA
display libraries. The ¢cDNA inserts encoding the C-terminus
of proteins as obtained after poly(A) -priming and reverse tran-
scription (34) always contains translation stop codons, which
prevent the synthesis of hybrid coat proteins (5,33,35). To over-
come this limitation, several strategies, described in details
below, have been devised. Fewer efforts have been invested in
the use of the remaining three capsid proteins pVI (36-38), pV1I,
and pIX (39), but their adequacy as vectors to display cDNA
libraries has not yet been tested extensively.

Hi. CLONING VECTORS

The basic idea of phage display technology consists in the
synthesis of a recombinant protein as fusion with a phage coat
protein, provided that the fusion does not interfere with
phage infectivity or assembly. Historically, the first phage
vectors allowing the fusion of polypeptides to plIl or pVIII
contained the whole genome. According to the nomenclature
proposed by Smith (40), these phage vectors can be described
as type 3 and type 8 vectors (Fig. 1). The strongest limitation
of these types of vectors is related to the short length of the
inserts tolerated by the phage. The major coat protein pVIII
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type 3+3, pJuFo

Figure 1 Different mono- and multivalent M13-based phage
surface display systems. Vectors of the type 3, 8, 33 and 88 are mod-
ified wild type phage. All other systems are phagemid vectors and
require co-infection with wild type phage for assembly of infective
phagemid particles. See text for further explanations.

can only tolerate very small inserts of about six to eight amino
acids between the N-terminal residues three and four (41,42).
The plll allows larger peptides and small proteins to be pre-
sented as fusion between the export leader sequence and
domain D1 without dramatically affecting its function
(19,43). Meanwhile, hybrid phage (type 33 and 88, Fig. 1)
has been developed which contains both wild type and fusion
coat proteins integrated into the genome (44). The possible
drawback of these vectors consists in recombination events
between the homologous wild type and fusion DNA regions,
resulting in the loss of the information required for the
production of fusion proteins (45).
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By combination of the best features of phage and plas-
mids, new types of vectors termed phagemids were created
(46,47). These vectors offer several advantages compared to
filamentous phage, such as easy preparation of high yields
of dsDNA for cloning and sequencing, simple maintenance
as replicative plasmid form in bacteria, and adaptability to
robot-assisted high-throughput screening technologies
(48-50). Phagemids contain a bacterial and a phage origin
of replication, the phage packaging signal, antibiotic resis-
tance genes for selection of transformants, and the gene
encoding a coat protein used to generate fusions to be dis-
played on phage surface. As a consequence thereof, they repli-
cate in the host as plasmids and are able to be packaged in a
phagemid particle, or recombinant phage, upon infection with
a helper phage that provides the genes for the production of
the structural, the packaging and assembly proteins needed
for phage morphogenesis. Sophisticated helper phage carries
mutations in the origin of replication or packaging sequences.
Therefore, during replication, the phagemid genome is pack-
aged more efficiently than the helper phage genome. The
big advantage of phagemid over phage vectors consists in
the possibility of displaying not only small, but also larger
peptides (51), large molecules such as antibody fragments
(52-54) and many other proteins including enzymes (55,56),
enzyme inhibitors (57), and products of c¢DNA libraries
(4,7,33,35,58-60). This becomes possible because the helper
phage carries the full complement of capsid-encoding genes.
As a competition during phagemid assembly, a mixture of
wild type and fusion coat protein can be incorporated into
the phage coat (vectors of type 3+ 3 and 8 + 8, Fig. 1). More-
over, the number of fusion protein copies incorporated into
the recombinant phage particle (valency) can be influenced
using inducible promoters inserted in front of the truncated
coat protein gene on the phagemid genome (61).

More recently, other phage coat proteins have been
exploited for the display of fusions including pVI (36) used
to display ¢cDNA products as C-terminal fusions (type 6 + 6,
Fig. 1). The coat proteins pVII and pIX have been used as
fusion partners for the display of heavy and light chain
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antibody fragments (39); however, these approaches have so
far been less commonly used. In addition to the mentioned
“standard” phage display vectors, other plll-based systems
classified as “phage two-hybrid systems” have been reported.
Formally these vectors have been termed SAP for selection
and amplification of phage (62) and SIP for selectively infec-
tive phage (63,64). In these systems, the fusion proteins are
expressed directly followed by the D2 and D3 domains of pIII
rendering all phage infection defective. Infectivity, e.g., the
ability of the phage to bind to the F-pilus and hence to infect
Escherichia coli cells is restored by the selection target fused
to the pIIl domain(s) D1 or D1 and D2. The SIP technology
may represent a powerful tool for rapid selection of protein—
protein interactions (65) in spite of the few applications
reported so far. Possible display strategies and vectors have
been reviewed recently (66) (see also Chapter 2) and will
not be discussed here in further detail.

1IV. DISPLAY OF ¢DNA LIBRARIES ON
PHAGE SURFACE

Highly diverse display libraries have been constructed by
fusing either genomic (67,68) or cDNA fragments (5,7)
(35,36,58,60) to gene III or gene VIII of filamentous phage.
In both cases, the display can be a challenge as the presence
of stop codons can hamper the generation of N-terminal
fusions to the coat proteins, a direct consequence of the capsid
structure (33,48,50). Since the integrity of the C-terminus of
plII and pVIII is considered essential for efficient phage
assembly, insertions of foreign peptides can only be tolerated
at the N-terminus. However, this problem has been alleviated
using different strategies. Flusion of cDNAs to the C-terminus
of the gene VI protein is compatible with phage propagation
and packaging (36) as demonstrated in pilot experiments
(37). The feasibility of this approach has been clearly demon-
strated by the isolation of peroxisomal proteins from human
cDNA libraries (38,69) and of a collagen-binding protein
from a Necator americanus cDNA library (70). Moreover,
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Fuh and Sidhu (22) and Fuh et al. (71) have demonstrated
that, in contrast to the common belief, polypeptides fused to
the C-terminus of both the M13 plIl and pVIII coat proteins
are functionally displayed on the phage surface. The C-term-
inal fusion approach, although not widely used until now,
could be of considerable importance to phage display technol-
ogy and would allow broad investigations of biological pro-
blems, which are not suited for N-terminal display. Main
areas of interest in this field are the study of protein—protein
interactions requiring free C-termini and functional screen-
ing of cDNA libraries.

More sophisticated approaches are based on the ability to
separate the gene III product of filamentous phage into its
functional domains: the N-terminal domains binding to the
I pilus and mediating infection, and the C-terminal domain
morphologically involved in capping the trailing end of the
filament according to the vectorial polymerization model
(72,73). Although cleavage of the gene III product into two
separate functional entities is incompatible with phage propa-
gation, infectivity can be restored by joining the segments
through noncovalent protein—protein interactions (74,75).
The so-called SIP technology (64,65) can be efficiently used
to screen cDNA libraries for selection of proteins that interact
with a target molecule as demonstrated in a few cases (76,77).

However, the most widely used systems for the construc-
tion and screening of cDNA libraries displayed on phage sur-
face involve an indirect fusion strategy where cDNA inserts
fused to the 3’ end of the Fos leucine zipper are coexpressed
with a truncated form of the gene III product decorated with
the Jun leucine zipper (5). The phagemid derived by modifica-
tion of phagemid pComb 3 (78) and formally termed pJulFo
(Fig. 2) has been widely used for the isolation of Igk-binding
molecules from complex allergenic sources as reviewed else-
where (7,48,79-81). Selective enrichment of IgE-binding mole-
cules from c¢DNA libraries constructed using mRNA from
Aspergillus fumigatus (82), Malassezia furfur (83), peanut
(84,85), Alternaria alternata (86), Cladosporium herbarum
(87), Coprinus comatus (88), storage mites (89), and wheat
germ (90) yielded phage displaying hundreds of different
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Figure 2 Genetic elements of the pJulFo phagemid and proposed
pathway for the assembly of phage surface displayed c¢cDNA
libraries. (Modified from Ref. 5.)

IgE-binding proteins. Interestingly, some of these structures
represent phylogenetically conserved proteins and share a
high degree of sequence identity to their human counterparts.
Human proteins, including manganese-dependent superoxide
dismutase (91), acidic Py ribosomal protein (92), and cyclopilin
(93) could also be directly selected from a human lung cDNA
library displayed on the pJuFo surface using sera of patients
sensitized to A. fumigatus as ligand (94,95), thus demonstrat-
Ing cross-reactivity to the environmental allergens (91,92).

Of course, filamentous phages and phagemids are not the
vectors of choice for high-level expression of recombinant
proteins. Therefore, all cDNAs isolated from phage surface
display libraries need to be subcloned in high-level expression
vectors and transformed to a suitable host if relevant amounts
of protein are required, for example, for clinical studies (96).
In general, inserts subcloned from selected phagemids into
high-level expression vectors are well expressed because, for
display on phage surface, the genetic information needs to
be transcribed and translated by E. coli.

Filamentous phage display systems, like any other
cloning system, are not universal as they are subjected to
biological restrictions imposed by the host and by the codon
usage of the cloned inserts. Possible serious biological
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limitations derive from the characteristics of the phage life
cycle. Filamentous phage particles are released from the host
cell without breaking the integrity of the cell membrane. The
proteins, which assemble to form the capsid in the periplas-
mic space, must therefore cross the lipid bilayer of the inner
membrane. Therefore, any fusion peptide or protein with bio-
chemical characteristics preventing transmembrane trans-
port will not be integrated into the capsid. To be recognized
by the ligand used for selection, displayed proteins need to
adapt a conformation able to interact with the ligand. The
chemical characteristics of the periplasmic environment,
which affect the folding and stability of the recombinant pro-
teins displayed, may influence the ability of hybrid coat pro-
teins to interact with the ligand used for selection. Since
cDNA libraries encode very diverse protein domains with dif-
ferent biochemical properties, it is probable that a subset of
these proteins or protein fragments will not be displayed
and thus not be present in the surface display library. In addi-
tion, cDNA libraries, like any other molecular library dis-
played on phage surface, suffer from host-specific biological
limitations related to restriction in codon usage, refolding
pathways, and potential toxicity of the expressed gene pro-
ducts for the heterologous host.

However, phage surface display of ¢cDNAs allows for the
survey of very large libraries using the discriminative power
of affinity selection against homo- and heterogeneous ligands.
Although the most successful applications of the pJuFo-based
cloning technology are related to IgE-binding molecules using
serum IgE from allergic patients as ligand, other successful
applications have been reported. Examples are the mapping
of protein-ligand interactions using whole genome phage dis-
play libraries (67), construction of vectors for stable immobili-
zation of multimeric recombinant proteins (97), and detailed
analysis of the Cba anaphylatoxin effector domain (98) fol-
lowed by selection of a Cha receptor antagonist (99). Pereboev
et al. (100) have used pJuFo to display adenovirus type 5 fiber
knob as a tetrameric molecule able to bind to the coxsackie-
virus-Ad receptor, demonstrating the versatile applicability
of the cloning system. More recently, pJuFo has been used
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to select autoantigens from human ¢cDNA libraries derived
from patients suffering from vitiligo (101) and prostate cancer
(102). In the first study, purified IgG from serum of vitiligo
patients was used to screen a melanocyte cDNA-phage sur-
face display library resulting in the discovery of the mela-
nin-concentrating hormone receptor 1 (MCHR1) as a novel
autoantigen related to this autoimmune disorder. Immuno-
reactivity against the receptor was demonstrated in sera of
vitiligo patients using radiobinding assays. Among sera from
healthy controls and from patients with other autoimmune
diseases, no immunoreactivity to MCHR1 was found, indicat-
ing a high disease specificity of autoantibodies raised against
the receptor. In the second study, a cDNA library constructed
from mRNA isolated from a lymph node metastasis of a
patient suffering from hormone refractory prostate cancer
(HRPC) was screened with purified autologous and hetero-
logous IgG of patients suffering from prostate cancer. Sequen-
cing of single clones after four rounds of biopanning yielded
different cDNAs depending on the amount of IgG used for
screening, some of them corresponding to already known can-
cer-associated antigens. These results, together with the
isolation of colorectal-tumor-associated antigens from a pri-
mary colorectal tumor ¢cDNA library displayed on the surface
as fusion to the gene VI protein (37), demonstrate the applic-
ability of phage surface display for identification of cDNA
expression products in such diseases as cancer and autoim-
mune disorders. The pJuFo vector was also used to clone pro-
teins directly interacting with the cytoplasmic tail of the
murine IgE-antigen receptor from a murine B cell ¢cDNA
library displayed on phage surface (103). In contrast to the
previous examples, which used heterogeneous ligands, a
homogeneous synthetic 28 amino acid long peptide derived
from the cytoplasmic tail of IgEk was used as selection bait.
Among the inserts from 30 randomly chosen clones sequenced
after five rounds of biopanning, two carried cDNA fragments
coding for the hematopoietic protein kinase 1 (HPK1). The
BIACORE measurements showed that HPK1 interacts in
vitro with the cytoplasmic tail of IgE as expected. The binding
of HPK1 to the cytoplasmic domain of IgE indicates the
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existence of an isotype-specific signal transduction and may
represent a missing link to upstream regulatory elements of
HPK1 activation.

These examples clearly demonstrate that phage-displayed
cDNA expression cloning can be a powerful tool for the isolation
of unknown genes. The great advantage of cDNA surface dis-
play compared to conventional lambda phage-based methods
1s that in many cases the functional activity of a protein struc-
ture can be used to select interaction partners together with
the genetic information required for their production. Thus,
sequencing of the DNA of the integrated section of the phage
genome can readily elucidate the amino acid sequence of a
displayed gene product.

V. PROBLEMS ASSOCIATED WITH THE
DISPLAY OF cDNA LIBRARIES ON PHAGE
SURFACE

A growing number of observations, published or not, indicate
that filamentous phage display technology is subjected to
several limitations, some of these already discussed.
Obviously, the quality of any cDNA library depends directly
on the quality of the cDNA ligated into the vector, which, in
turn, is determined by the quality of the mRNA. Although
the methods for the isolation of mRNA available are quite
reliable, oligo(dT)-priming might generate a high frequency
of truncated cDNAs through internal poly(A)-priming during
reverse transcription (104). Therefore, for genome wide gene
identification, reverse transcription should be done using
anchored oligo(dT) primers, which diminish the generation
of truncated cDNAs caused by internal poly(A)-priming. Dur-
ing the construction of a cDNA-phage surface display library,
every step should be optimized to create the highest frequency
of potentially expressible full-length ¢cDNA inserts. Transfor-
mation with empty phagemids or phagemids containing short
inserts that have a growth advantage over large insert-
containing phagemids may result in these undesirable clones
becoming over-represented during library amplification.
Avoiding overgrowth by defective clones is especially
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important for large and highly heterogeneous ¢cDNA expres-
sion libraries.

Translational problems related to the codon usage might
be alleviated by the use of hosts harboring genes encoding
limiting tRINA species like argU, ileY, and leuW to attain rea-
sonable expression levels of proteins affected by rare codon
usage (105). Like other prokaryotic-based expression systems,
phage display may not be suitable for selection of proteins
that require post-translational modifications (e.g. glycosyla-
tion, phosporylation, etc.) or heterodimeric assembly for func-
tional activity. Moreover, due to the absence of mammalian
chaperonins, conformationally dependent structures may
not be efficiently expressed or refolded in these bacterial
expression systems and therefore not recognized by the ligand
used for selection.

However, a successful screening does not only depend on
biological factors, but also on the biopanning strategy used
(1,18). Selective enrichment of clones of interest becomes
necessary since phage surface display libraries contain large
numbers of cognate and uncognate phage. In a standard
amplified library with a diversity of 108, each single clone is
present in several thousand copies among a population of
10?10 phage molecules. Therefore, the use of efficient
selection and screening procedures is one of the key elements
which determine the success of the combinatorial approach as
discussed in details elsewhere (106). Phage display techni-
ques require immobilization of the target protein to a solid
support during biopanning. The immobilization process must
maintain the target in a native or native-like conformation for
phage selection (107). The commonly used method of protein
immobilization through direct adsorption to plastic surfaces
denatures many proteins making them unsuitable targets
for phage selection. Indirect immobilization of biotinylated
ligands on streptavidin coated surfaces or chemical cross-
linking to bifunctional resins (108) has been reported to be
more successful for the generation of native-like ligand
surfaces and should be considered whenever possible.

In spite of these limitations, phage display technology
has significant advantages over other screening methods.
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Compared to conventional bacterial or lambda phage-based
expression systems, which are submitted to the same biologi-
cal limitations, phage display technology enables rapid and
selective enrichment of desired clones in small volumes using
minimal amounts of ligand molecules which can be, indeed, a
limiting factor for selection.

VI. ADAPTABILITY OF PHAGE DISPLAY
TO HIGH-THROUGHPUT SCREENING
TECHNOLOGY

The identification of the proteins produced in a given biological
system started years ago with the discovery and improvement
of recombinant DNA technologies that allowed controlled
expression of genes in many different hosts (109). However,
cDNA-cloning technology including DNA sequencing can not
be directly used to study protein—protein interactions; the
challenge of functional genomics aimed to turn sequence
information into function. Estimates of the total number of
proteins resulting from transcription of the approximately
35,000 human genes vary from 300,000 to millions (110), thus
allowing for a much greater number of potential protein—
protein interactions. Although many phenotypes can already
be pinpointed to their genetic origin through the sequence infor-
mation of genome projects, many others remain un-
known. Unfortunately, sequence information in itself is neither
sufficient to provide significant knowledge of the underlying
mechanisms of life, nor of the biology of organisms. It rather pro-
vides a sound basis and framework for further investigations.
The rapid identification of complex networks of interact-
ing molecules in cells and tissues requires technologies that
provide logistic and/or physical links between proteins and
the genes that encode them. The complex nature of molecular
interactions and the large numbers of diverse molecules
involved in biological processes require high-throughput tech-
nology, allowing a sufficient degree of parallelization (50).
New technologies for large scale analysis of genes and
proteins have been devised such as differential display,
RNA/DNA microarrays, and mass spectrometry (111) which,
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however, suffer from the lack of a physical link between
sequence information and function. Phage display provides
a physical link between genotype and phenotype (2,5,6) and
allows the handling of large libraries based on the power of
affinity selection (78). This physical link can easily be
combined with a logistic protein—DNA link provided by robot
technology, enabling high-throughput picking and high-
density arraying of single clones (50). These high-density arrays
have the advantage that each clone has a unique position
defined by the coordinates on the microtiter plate and allow
an unequivocal identification of each clone in later stages.

It has been shown that a human fetal brain cDNA expres-
sion library can be screened in parallel for either DNA hybri-
dization, protein expression, and for antibody screening in a
high-density array format on filter membranes (112,113). This
robot-based high-throughput screening technology has been
successfully applied to phagemid libraries expressing complex
allergen repertoires preselected with serum IgE of allergic
individuals (48,79,81,95). The potential of the combination of
cDNA-phage surface display with selection for specific inter-
action by functional screening and robotic technology is
illustrated by the isolation of more sequences potentially
encoding IgE-binding proteins than postulated from Western
blot analysis using extracts derived from raw material of
complex allergenic sources (114). Moreover, robot-based high-
throughput screening technology has been applied to recombi-
nant antibody arrays displayed on phage surface to detect
antibody—antigen interactions (49). Therefore, high-through-
put screening technology applied to complex surface displayed
cDNA libraries will play an important role in the postgeno-
mic era by identifying potential ligands against large numbers
of diverse molecules expressed by cell cultures, tissues, or
organisms.

VIl.  CONCLUSIONS

The major challenge in the postgenomic era is to turn
sequence information into function. The key molecular players
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in cells and tissues, which are instrumental for the functioning
of an organism, are the proteins. Built up from 20 different
amino acids encoded by the DNA of a limited number of genes,
proteins are produced through complex translational and
post-translational pathways generating a great deal of func-
tional structures. This diversity enables complex networks
of molecular interactions governing the functioning of an
organism. The characterization of large numbers of genes,
their expression patterns, and protein interactions demands
the use of high-throughput technologies able to link infor-
mation, deposited in the genome, to function exerted by the
proteins themselves.

Phage surface display of cDNAs as a biological approach
linking genotype and phenotype, although subjected to intrin-
sic biological limitations, can be used for the efficient identifi-
cation of gene products based on protein—protein interactions.
Thus, the technology has the potential for substantially con-
tributing to rapid developments in functional genomics. The
basic knowledge accumulated from successful and unsuccess-
ful applications of cDNA-phage surface display will improve
our understanding of the biological limitations of the systems
currently used, and thus will help further improve the
technology.
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