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1 Introduction

1.1 Human embryonic stem cells (hESCs)

In 1989, Thomson and colleagues presented for the �rst time the derivation of hESCs
from the inner cell mass of human blastocysts [98]. For this, cleavage stage human em-
bryos, produced by in vitro fertilization for clinical purposes, were cultured to blastocyst
stage and the inner cell masses were isolated (see Figure 1.1). Thomson and colleagues
de�ned three essential characteristics of primate embryonic stem cells [98]. These are
(i) derivation from the preimplantation or periimplantation embryo, (ii) prolonged un-
di�erentiated proliferation (stemness), and (iii) stable developmental potential to form
derivatives of all three embryonic germ layers even after prolonged culture (pluripotency).
Human ESCs o�er insights into developmental events which cannot be studied directly
in the intact human embryo but that have important consequences in clinical areas. For
example, understanding the mechanisms that control di�erentiation enables directed dif-
ferentiation of hES cells to speci�c cell types [98].

However, derivation of ESCs from human blastocysts for clinical applications has to
be considered critical because of ethical and technical reasons. The ethical concerns are
obvious, because isolation of the inner cell mass by destruction of the embryo inversely
leads to the abortion of embryogenesis. From the technical point of view, there are two
main di�culties for putative future cell-replacement therapies. First, for putative future
clinical applications, hESCs are not allowed to be contaminated by reagents used in cell
culture. Second, donor-host rejections are likely to arise caused by di�ering genomic
backgrounds of patient and cell line. Fortunately, alternative approaches for derivation
of hES and hES-like cells have been recently developed.

On the one hand, Kilmanskaya and colleagues [50] have shown that hESCs can be
derived from single blastomers without interfering with the embryonic developmental
potential. On the other hand, several studies on reprogramming somatic cells to induced
pluripotent stem cells (iPSCs) have demonstrated that transduction of only a few tran-
scription factors (TFs) is su�cient for resetting di�erentiated cells into a molecular state
similar to embryonic stem cells (see Figure 1.1). In 2006, Takahashi and colleagues [96]
have demonstrated for the �rst time that iPSCs can be generated from adult �broblasts
in mouse. Subsequently, in 2007, two independent laboratories have presented human
iPSCs derived from di�erentiated �broblasts [95, 107]. Both groups have shown that
their iPS cells ful�ll the pluripotency characteristic of hESCs. For this, they show iP-
SCs di�erentiation into derivatives of all three primary germ layers. Furthermore, iPSCs
resemble hESCs in their morphology, gene expression, chromatin state and DNA methy-
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1 Introduction

Figure 1.1: Embryonic stem cells and reprogramming. Embryonic stem cells are derived

from the inner cell mass of mammalian blastocysts. They have the developmental potential to

di�erentiate into derivatives of all three embryonic germ layers even after prolonged culture

(pluripotency). Several studies on reprogramming somatic cells to induced pluripotent stem cells

(iPSCs) have demonstrated that the transduction of only a few transcription factors (TFs) is

su�cient for resetting di�erentiated cells into a molecular state similar to embryonic stem cells.

(Individual images illustrating the blastocyst, retroviruses, and the vitruvian man were taken

from http://wikipedia.org/.)

lation characteristics [104].

Taken together, these studies demonstrated that hESCs or iPSCs can be generated
without being burdened by the ethical concerns of destructive hESC generation. The
possibility to generate patient speci�c iPSCs will putatively reduce donor-host rejections
in future cell-replacement therapies. Nevertheless, the utilization of transfected somatic
cells for clinical applications has still to be considered critical, because of possible unde-
sirable side e�ects. However, for research, hESCs and iPSCs already serve as a valuable
resource for analyzing the molecular mechanisms responsible for targeted di�erentiation
into functional cell types.

1.2 Transcriptional regulation of pluripotency

The POU domain transcription factor OCT4 is highly expressed in the inner cell mass of
mammalian blastocysts. It is supposed that pluripotency and self-renewal is controlled
by a transcription regulatory network governed by OCT4 and that down-regulation of
OCT4 is crucial for initiating early embryonic di�erentiation [6].

Several studies on reprogramming human somatic cells to iPSCs even emphasize the
role of OCT4 as key regulator of pluripotency in the early mammalian embryo. Here, the
transduction of only a few transcription factors is su�cient for resetting di�erentiated
cells into a molecular state similar to embryonic stem cells. While Takahashi et al. [95]
and Wernig et al. [104] obtained iPS cells by transduction of the TFs OCT4, SOX2,
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1 Introduction

KLF4, and C-MYC, Yu et al. [107] achieved similar results with a transcription factor
set composed of OCT4, SOX2, NANOG, and LIN28. Interestingly, only the TFs OCT4
and SOX2 are common in both approaches. Moreover, Huangfu et al. [39] demonstrated
that iPSCs can be derived at higher e�ciencies by the transduction of these two factors
in combination with histone deacetylase inhibitor -valproic acid.

The TF OCT4 is known as a key regulator for maintaining pluripotency in mammalian
embryos [73, 81, 1] and is exclusively expressed in mammalian embryonic stem cells. For
example, it was shown that OCT4 is expressed neither in functional somatic cells nor
in adult stem cells, by a microarray based gene expression pro�le comparison between
hESCs, adult liver progenitor cells, and hepatocytes [48]. The HMG-box containing TF
SOX2 interacts with OCT4 and the SOX2/OCT4 heterodimer complex is able to pro-
mote selective gene activation or repression during mammalian embryogenesis [82, 12, 74].

Functional data on OCT4 regulatory action is available from heterogeneous sources:
to reveal DNA-Protein binding events of OCT4, SOX2 and of the pluripotency associ-
ated TF NANOG, chromatin immuno-precipitation followed by microarray experiments
(ChIP-on-chip) has been performed using hESCs [13]. Complementary to OCT4 binding
events in hESCs, we have identi�ed OCT4 binding events in human embryonic carcinoma
cells by ChIP-on-Chip experiments [49]. Moreover, OCT4 speci�c sequence motifs have
been identi�ed. Two examples are the octamer motif ATTTGCAT that interacts with
POU domain factors like the homeodomain containing TF OCT4, as well as a motif rec-
ognized by the SOX2/OCT4 heterodimer complex [93, 18, 87]. Mapping of these known
transcription factor binding motifs to the promoter sequences of putative OCT4 target
genes provides additional evidence for direct binding events.

Although ChIP-on-chip experiments and sequence-based methods have the ability to
detect putative protein-DNA binding sites, these techniques do not allow inference of
directional transcriptional dependencies between DNA binding and the e�ect on gene
expression regulation. In order to test the regulatory in�uence of OCT4 to the tran-
scription rate of its target genes, Babaie et al. [6] performed RNA interference-mediated
suppression of OCT4 function in the H1 hESC line and analyzed the resulting global
gene expression changes by microarray experiments. Transcriptional changes induced
by OCT4 knockdown are expected to include genes linked with pluripotency, and genes
activated upon di�erentiation along the trophoblast lineage [6].

ChIP-on-chip experiments, promoter sequence analysis and RNA interference provide
complementary pieces of information on transcriptional dependencies. In order to identify
a core OCT4 regulatory network in hESCs, I have performed [17] an integrated analysis of
such high-throughput data along with promoter sequence analysis (see section 4.1). The
resulting core OCT4 regulatory network controlling pluripotency in hESCs is composed
of the set of genes detected by each of the individual experimental apprsoaches (see
Figure 1.2).
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1 Introduction

Figure 1.2: OCT4 core regulatory network. Core OCT4 transcriptional regulatory net-

work identi�ed by an integrative analysis of ChIP-on-Chip, RNAi knockdown and sequence-based

motif mapping [17]. Green boxes represent genes associated with di�erentiation, and red boxes

indicate genes being speci�c for hESCs [6, 2, 75, 5]. The network also incorporates information

on direct target genes from SOX2 (red lines) and NANOG (blue lines) ChIP-on-chip experiments

and an additional level of gene regulation [68, 34].
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1 Introduction

Figure 1.3: Cytosine methylation. DNA methyltransferases mediate the reversible attach-

ment of a methyl group (CH3) at the 5' position of cytosines.

Taken together, pluripotency is governed by the TF OCT4 and critical regulatory act-
ing protein-DNA interactions have been investigated. Beside these transcription factor
mediated regulations, it is supposed that there exist epigenetic mechanisms involved in
regulation of stem cell di�erentiation and development, including histone modi�cations
and DNA methylation. However, such epigentic mechanisms of hESC di�erentiation have
not yet been investigated on a full genome level. This thesis reveals for the �rst time
global epigentic modi�cations emerging upon induced loss of pluripotency and during
di�erentiation of hESCs along the endodermal lineage. Moreover, important interactions
between DNA methylation, transcription factor binding, and gene expression alterations
are revealed. Finally, epigenetic dependencies during endodermal di�erentiation are pre-
sented in detail for the core OCT4 network that controls pluripotency.

1.3 DNA methylation

In mammals, DNA methylation describes the reversible attachment of a methyl group
(CH3) at the 5' position of the pyrimidine derivate cytosine. DNA methylation does not
change the DNA sequence itself, and is therefore considered as an epigenetic modi�cation.
The process of DNA methylation is mediated by methyltransferase enzymes (see Figure
1.3).

Methyltransferase enzymes are commonly classi�ed according to their enzymatic ac-
tivities. On the one hand, maintenance of methylation activity is necessary to preserve
DNA methylation after every cellular DNA replication cycle. The proposed maintenance
methyltransferase responsible for copying DNA methylation patterns to the daughter
strands during DNA replication is DNMT1 [43]. On the other hand, de novo methyla-
tion sets up DNA methylation patterns in early embryonic development. It is thought
that DNMT3a and DNMT3b are the methyltransferases responsible for this de novo
methylation. Moreover, DNMT3L is a protein which is homolog to other DNMT3s but
has no direct catalytic activity. Instead, DNMT3L assists the de novo methyltransferases
by increasing their ability to bind to DNA and stimulating their activity [43].

DNA methylation is involved in transcriptional regulation during embryonic di�erenti-
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1 Introduction

ation [72] and reprogramming of somatic cells into induced pluripotent stem cells [26, 16].
Aberrant methylation can be associated with severe e�ects, for example the induction of
cancer [47, 41]. Furthermore, distinct genome wide methylation patterns distinguish dif-
ferent cell-types [30, 85]. In mammals, DNA methylation primarily occurs at CpG sites
but a recent study has shown that non-CpG methylation accounts for approximately
25% of all methylated cytosines in human embryonic stem cells [64]. It is supposed that
methylation a�ects gene expression by either interfering with binding of transcription
factors or modifying chromatin structure to a repressive state [43].

Meissner et al. [72] have shown that methylated CpGs are dynamic epigenetic marks
that undergo extensive changes during cellular di�erentiation, particularly in regulatory
regions outside of core promoters. Their data support the notion that both CpG-rich and
-poor regulatory elements undergo distinct modes of epigenetic regulation. Regulatory
elements in CpG-poor sequence contexts seem to undergo extensive and dynamic methy-
lation and de-methylation. Hence, their study con�rms the concept of distinct regulatory
mechanisms of DNA methylation, where methylation of isolated CpGs may contribute
to chromatin condensation or directly interfere with transcription factor binding. More-
over, hypermethylation of high-CpG-density promoters (HCPs) leads to irreversible gene
silencing [72]. According to these �ndings, Rakyan et al. [85] observed a negative corre-
lation between DNA methylation and gene expression at high-, but also at medium-, and
contrary to previous notions, at even some low-CpG density promoters. On the other
hand, Rakyan et al. observed that gene-body methylation positively correlates with gene
expression [85].

1.4 Introduction to methods and limitations for detecting
DNA methylation

In principle, there are two major high-thoughput methods for detecting DNA methyla-
tion. On the one hand, bisulphite based methods can be applied in order to produce
DNA methylation information at base resolution. On the other hand, immunoprecipita-
tion based methods are more cost-e�ective but received methylation levels are of lower
resolution. For a detailed description of the individual techniques that will be mentioned
in this section, see chapter 2.

Bisulphite sequencing or whole genome shotgun bisulphite sequencing (WGSBS) detect
cytosine methylation on a base-pair level. Although whole genome single-base resolution
maps have been generated [63, 64] such techniques cannot yet be cost-e�ective applied
to screen large sets of sequences or samples. As an example, the �rst full genome methy-
lome of hESCs on base resolution were recently reported at a cost of about 1.2 billion
sequence reads [64]. Reduced representation bisulphite sequencing (RRBS) [72] address
this issue by reducing the amount of DNA to be sequenced on the cost of a reduced view
of genome wide methylation pro�les.
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1 Introduction

Methylated DNA immunoprecipitation (MeDIP) uses an antibody speci�c for methy-
lated cytosines in order to immunocapture methylated genomic fragments [103]. Im-
munoprecipitated methylated DNA fragments can be detected either by tiling arrays
(MeDIP-Chip) or by next-generation sequencing (MeDIP-Seq). Methylation pro�les ob-
tained by the MeDIP approach are not base-pair speci�c but re�ect methylation levels
on a resolution restricted by the size of the sonicated DNA-fragments after ampli�cation
and size selection. However, in contrast to WGSBS or RRBS, the MeDIP approach can
be applied in order to obtain cost-e�ective and full-genome methylation levels without
the limitations caused by methylation-sensitive restriction enzymes.

Nevertheless, it has been shown that MeDIP derived data needs to be corrected for
local CpG densities in order to estimate valid methylation levels [27, 80]. This e�ect is
caused by varying e�ciency of antibody binding and immunoprecipitation dependent on
the local density of methylated CpG sites. Especially the analysis of CpG-poor regions
has been assumed to be di�cult [103, 27]. Moreover, the use of tiling arrays or sec-
ond generation sequencing for the detection of the immunoprecipitated methylated DNA
fragments introduce platform dependent e�ects that have to be considered additionally.
While there is applicable software available for analyzing MeDIP-Chip data [27, 80], nor-
malization of MeDIP-Seq data is in principle solved [27] but remains disproportionally
time-consuming. In fact, processing of MeDIP-Seq data from only one full chromosome
(i.e. the human chromosome 1) takes approximately three days on a modern-day server
when the BATMAN software [27] is applied.

Therefore, the major bottleneck of MeDIP-Seq based methylation analysis is the time
e�cient processing of sequencing data with respect to its inherent complexity. There
are several important but not yet well researched aspects in the context of MeDIP-Seq
data analysis including quality control metrics and data normalization. For example,
the number of sequencing reads necessary for obtaining a su�ciently covered methylome
relative to the size of the genome of interest has to be estimated. Second, the coverage of
genome wide CpGs by the available data has to be examined. Third, enrichment of CpG
rich short reads relative to the genomic background has to be analysed in order to provide
a quality measure for antibody binding and immunoprecipitation. Moreover, there is the
dire need for a time-e�cient method that corrects for the DNA sequence speci�c bias
introduced by the MeDIP experiment. Finally, there is no MeDIP-Seq speci�c method
that identi�es events of di�erential methylation when di�erent conditions are compared.
This thesis presents novel concepts and time-e�cient implementations targeting all of the
mentioned existing limitations of MeDIP-Seq based DNA methylation analysis, including
quality control metrics, normalization, and identi�cation of di�erential methylation on a
full genome level.
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1 Introduction

1.5 Aims of the thesis

Generation of genome-wide data derived from methylated DNA immunoprecipitation
followed by sequencing (MeDIP-Seq) has become a major tool for epigenetic studies in
health and disease. Computational analysis of such data, however, still falls short on
accuracy, sensitivity and speed. In fact, the current bottleneck resulting from advanc-
ing technology development in DNA methylation is the computational analysis of the
large-scale sequencing data [54] and, therefore, e�cient experiment speci�c data analysis
methods must be developed.

It has been previously shown that MeDIP-derived data need to be corrected for local
CpG densities in order to compute unbiased methylation levels [27, 80]. This e�ect is
caused by a varying e�ciency of antibody binding and immunoprecipitation dependent
on the local density of methylated CpG sites. Although there are computational meth-
ods available for analyzing MeDIP-Chip data [27, 80], in particular the normalization
of MeDIP- Seq data remains disproportional time-consuming. Moreover, important fea-
tures for the design of MeDIP-Seq experiments have not yet been addressed su�ciently,
for example estimation of the number of reads necessary for obtaining a su�ciently cov-
ered methylome, the analysis of genome wide covered CpGs, the enrichment of CpG rich
short reads relative to the genomic background, as well as statistical identi�cation of
di�erentially methylated regions between di�erent conditions.

Here, I present the �rst method able to cope with the inherent complexity of MeDIP-
Seq data and outperforms computation time of existing methods by orders of magni-
tude with similar performance. As a proof of performance, I processed the available
MeDIP-Seq sperm data from Down et al. [27], compared the results to benchmark data
from the HEP project [30], and show comparable concordance to the results of Down
et asl [27]. In order to demonstrate the computational approach, I have analysed al-
terations in DNA methylation during di�erentiation of hESCs to de�nitive endoderm.
I show improved correlation of normalized MeDIP-Seq data in comparison to available
whole-genome bisulphite sequencing data [64] and investigated the e�ect of di�erential
methylation on gene expression. Furthermore, I analyzed the interplay between DNA-
methylation, histone modi�cations, transcription factor binding, and show that in con-
trast to de-novo methylation, de-methylation is mainly associated with regions of low
CpG densities.

In chapter 2, I describe di�erent experimental techniques applied for the generation
of heterogenous data sources considered in this study. On the one hand, experimen-
tal approaches are described which have been successfully applied for the analysis of
genetic and epigenetic characteristics, including chromatin-immunoprecipitation (ChIP)
and methylated DNA immunoprecipitation (MeDIP). On the other hand, concepts of
DNA arrays and high-throughput sequencing are described. These technologies allow for
genome wide analysis of experiment speci�c treated samples. In addition, I introduce
statistical methods commonly used for analysing high-throughput data.
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1 Introduction

In chapter 3, I present novel methods for analyzing MeDIP-Seq data. As various
computational methods already exist for analyzing gene expression, ChIP-on-Chip, and
ChIP-Seq data [45, 17, 105], the major focus of this thesis is on the development of suit-
able methods for analyzing MeDIP-Seq data. In detail, this thesis addresses not yet well
researched issues like the development of novel quality control metrics for MeDIP-Seq
data (see section 3.2). These quality control metrics include estimation of the required
sequencing-depth for obtaining reproducible full genome methylation pro�les (saturation
analysis, see subsection 3.2.1). As a second quality control metric, coverage of genome
wide methylated CpG dinucleotides is presented (coverage analysis, see subsection 3.2.2).
Third, a method for testing CpG enrichments within the short reads obtained by DNA
sequencing is presented (CpG enrichment analysis, see subsection 3.2.3).

Most importantly, in section 3.3, I present a novel method for normalization of MeDIP-
Seq signals with respect to genomic regions of varying CpG densities. First of all, the
transformation of raw MeDIP-Seq data into a genome wide reads per million format is
explained in section 3.3.1. Afterwards, I introduce the concept of coupling factors as
a measure for local CpG densities (see section 3.3.2). In section 3.3.3, raw MeDIP-Seq
signals are connected to previously generated coupling factors and the dependency of lo-
cal CpG densities and MeDIP-Seq signals is revealed and visualized by calibration plots.
Subsequently, I present the concept of normalization of raw MeDIP-Seq signals into rel-
ative methylation scores (see section 3.3.4) and into absolute methylation scores (see
section 3.3.5), respectively. In section 3.3.6, an evaluation of the developed normaliza-
tion method is given. Here, improvements of normalization are shown by a comparison
of raw and normalized methylation pro�les against bisulphite derived methylation data.
In addition, normalization results are compared to results of the only abvailable but
computational demanding alternative MeDIP-Seq data normalization approach [27]. In
order to provide another important functionality for higher level data analysis, I have
developed a statistical method for the identi�cation of di�erentially methylated regions
based on normalized MeDIP-Seq data (see section 3.4).

I have implemented the several developed methods for immediate use as a standalone
software package. Therefore, I present the �rst standard pipeline for the analysis of
MeDIP-Seq data. The entire computational approach (MEDIPS), including data pro-
cessing, quality control, normalization, statistical analysis of di�erential methylation and
methods for simulation of read coverage and saturation has been made available as an R
software library (see section 3.5). MEDIPS is suitable for any arbitrary genome available
via Bioconductor's annotation libraries [33] and more than 2 billion sequencing reads
from mouse and human have been already processed.

In chapter 4, I apply the computational analysis approach to the analysis of cellular
di�erentiation of human embryonic stem cells (hESCs). As hESCs are pluripotent, and
therefore, can be induced to di�erentiate into a wide variety of cell types, these cells hold
promise for cell replacement therapy [4]. Pluripotency and self renewal are controlled by
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1 Introduction

a transcription regulatory network governed by the transcription factors OCT4, SOX2
and NANOG [13]. Recent studies on reprogramming somatic cells to induced pluripotent
stem cells highlight OCT4 as a key regulator of pluripotency [96, 104]. In section 4.1, I
present an integrated analysis of available high-throughput data, including ChIP-on-chip
and RNAi experiments along with promoter sequence analysis of putative target genes.
By this integrated approach, I have identi�ed a core OCT4 regulatory network in human
embryonic stem cells consisting of 33 target genes. [17].

Di�erentiation of hESCs along the endodermal lineage is induced by treatment with
Activin A, a member of the TGFβ family of ligands [24, 3], resulting in de�nitive endo-
derm (DE). We derived DE cells from hESCs and analyzed the resulting transcriptome
and methylome pro�les of both cell types using the Illumina beadarray platform and
MeDIP-Seq technologies. The results of the quality control metrics for the obtained
MeDIP-Seq data from the two conditions and from additional sequenced input samples
are presented in section 4.3.

The impact of normalization of generated MeDIP-Seq data from hESCs is demon-
strated by a comparison to recently published base-speci�c whole genome shotgun bisul-
phite sequencing (WGSBS) data of hESCs [64] (see section 4.4). The obtained MeDIP-
Seq methylation pro�les are used for testing methylation patterns of promoter regions
(see section 4.5) and of transcription factor binding sites (see section 4.6). By accessing
normalized MeDIP-Seq data from hESCs, DE, and with respect to the additional input
data, genome wide di�erentially methylated regions (DMRs) are identi�ed (see subsec-
tion 4.7). Analogous to Lister et al. [64], I identi�ed a large number of de-methylation
events (for example in the OCT4 transcription factor promoter), emphasizing an im-
portant role of de-methylation during di�erentiation of hESCs. Moreover, di�erential
methylation was examined for further functional known genomic regions like promoters,
exons, introns, and CpG islands (see section 4.8) and for previously identi�ed transcrip-
tion factor binding sites (see section 4.9).

Identi�ed DMRs are further analyzed by an overrepresentation approach [11], con-
necting di�erential methylation to transcription factor binding, histone modi�cations,
and to further functional known genomic attributes (see section 4.10). In order to test
for the e�ect of de- and de-novo methylation on gene expression alterations, according
hybridization experiments of hESCs and DE were performed and di�erential gene expres-
sion was calculated (see section 4.11). Finally, the e�ects of di�erential methylation and
gene expression on the previously identi�ed core regulatory OCT4 network that controls
pluripotency is evaluated in detail in section 4.12.

In summary, this study provides novel concepts in the context of MeDIP-Seq data anal-
ysis, including MeDIP-Seq data normalization, quality control metrics, and identi�cation
of di�erential methylation. By applying MEDIPS to novel MeDIP-Seq data, this study
extends the knowledge on genome-wide regulatory modules and the interplay of genetic
and epigenetic mechanisms during early endodermal di�erentiation of human embryonic
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1 Introduction

stem cells. The results show that MEDIPS is an e�cient approach for genome-wide
methylation analysis that signi�cantly reduces the imbalance of sequencing data gener-
ation and analysis and will assist further studies aiming to understand and characterize
the function of DNA-methylation.
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2 Experimental techniques

Genome wide genetic and epigenetic dependencies can be analysed by several di�erent ex-
perimental approaches combined with high-throughput technologies. For example, DNA
microarrays allow for analysing gene expression patterns of all known genes in paral-
lel. When combined with appropriate experimental approaches, another recent format of
DNA microarrays can be utilized in order to identify transcription factor binding events,
histone modi�cations, or DNA methylation on a genome wide level. High-throughput
sequencing is an emerging technology that increasingly replaces DNA arrays. This is be-
cause novel sequencing technologies allow for massive sequencing of millions of experiment
speci�c DNA fragments in parallel and costs are permanently decreasing. The advantage
of sequencing is that available DNA fragments can be detected without sequence spe-
ci�c limitations introduced by DNA arrays. Both high-throughput technologies, DNA
microarrays and sequencing, produce enormous amounts of data. True biological obser-
vations have to be extracted from the data and suitable multivariate statistical methods
have to be applied in order to distinguish signals from noise.

Chapter 2 of this thesis introduces into techniques underlying DNA arrays and high-
throughput sequencing. In addition, experimental approaches are described which have
been applied in order to analyze genetic and epigenetic characteristics in human embry-
onic stem cells. Moreover, this chapter introduces basic statistical methods commonly
applied for the analysis of high-throughput data. Experimental techniques described in
this chapter were selected because they are source of the heterogenous data types which
serve as the basic input for data analysis methods developed and applied in the context
of this thesis.

2.1 DNA arrays

DNA microarrays are a widely used technology in molecular biology [92, 65, 66]. It is
composed of a carrier substrate (e.g. coated plastic or coated glass) which contains immo-
bilized DNA sequences (probes), speci�c for genetic regions of a reference organism. For
example, microarrays are used for measuring the gene expression of thousands of genes in
parallel. Here, the probes are designed for being complementary to selected transcribed
regions of genes, typically in the surrounding of the 3'-end. The mRNA of the targeted
biological material is extracted and marked (e.g. radioactively or �uorescently). With
a hybridization experiment, the marked cRNA is attached to complementary probes on
the microarray and the strength of the resulting probe-speci�c signals is considered as
an indicator for the expression of the according genes within the targeted material. Mi-
croarrays di�er in their surface material, the technique of immobilizing the probes and
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Figure 2.1: BeadChip technology. Gene speci�c probes are attached to beads which are

then assembled into the arrays [52]. Here, only one oligomer is attached to the bead; actual beads

have hundreds of thousands of copies of the same sequence attached. Each oligonucleotide is of

length 75nt comprising an 25nt identi�er sequence (address) and a 50nt gene-speci�c probe. The

identi�er sequence is used for identifying the location of di�erent bead types on the microarray.

A biotin labeled cRNA from the target sample hybridized to the gene-speci�c probe is shown in

a schematic way. (The image was taken from http://www.illumina.com/.)

in the way of labeling of taget material.

A recent microarray format is the Illumina BeadChip system [52]. The HumanRef-
8 expression bead chip contains >24,000 unique sequences immobilized on magnetic
beads which generate the array elements. Each bead contains hundreds of thousands
of copies of covalently attached oligonucleotide probes. These beads are quantitatively
pooled and introduced to etched microwell substrates. Once introduced, the beads spon-
taneously assemble into wells, resulting in a high density microarray. After bead assem-
bly, a hybridization-based procedure is used to map the array, determining which bead
type resides in each well. Figure 2.1 illustrates one oligomer attached to a bead. Each
oligonucleotide is of length 75nt comprising an 25nt identi�er sequence (address) and a
50nt gene-speci�c probe. The identi�er sequence is used for identifying the location of
the di�erent bead types on the microarray. The �gure shows a biotin labeled cRNA from
a target sample hybridized to the gene-speci�c probe.

An important application of gene expression microarrays is the identi�cation of dif-
ferentially expressed genes, i.e. those genes which show a signi�cant alteration of their
expression when testing two biological samples of di�erent origins. In this thesis (see
chapter 4), the gene expression pro�le of undi�erentiated hESCs (control) is compared
to the gene expression pro�le of di�erentiated de�nitive endoderm (treatment). Depen-
dent on the type of microarray, both samples are either labeled in the same way and
are subsequently subjected to separated microarrays (this is for oligonucleotide arrays)
or both samples are labeled using two distinct �uorescent dyes and are subsequently
subjected to the same microarray (two-color experiment for cDNA arrays). In both
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approaches, gene expression for both biological samples is deduced by the (�uorescent
speci�c) signal intensities of the gene speci�c probes. For a statistical analysis of di�er-
ential gene expression, such microarray experiments have to be performed in a su�cient
number of biological replicates. In order to compare gene expression pro�les derived from
several microarray experiments, the obtained intensity signals have to be normalized due
to di�ering signal intensity ranges caused by variable �uorescence labeling, material avail-
ability, and hybridization e�ciency. Several methods for microarray normalization have
been developed [61, 29, 105].

Based on the normalized signal intensities, di�erential gene expression is calculated
separately for each gene. For this, the average of gene-associated signal intensities of the
control sample is divided by the average of the according gene-associated signal intensi-
ties of the treatment sample. Complementary to this fold-enrichment, statistical tests are
applied in order to test, if the distribution of gene speci�c signal intensities of the con-
trol group di�ers signi�cantly from the distribution of the according gene speci�c signal
intensities of the treatment group (see section 2.2). The combination of fold-enrichment
and statistical testing has proven to be a practical and sophisticated approach for iden-
ti�cation of di�erential gene expression.

Another type of microarrays are tiling arrays. In contrast to gene expression arrays,
tiling arrays are used for identifying genome wide DNA fragments. For this application,
oligonucleotides are generated which are complementary to continuous genomic regions
of a reference genome (see Figure 2.2 B). The relation between length and distance inbe-
tween those probes de�ne the density of the tiling array and therefore, also the accuracy
of the subsequent allocation of detected DNA fragments. Such probes typically cover
genomic regions of interest, e.g. the promoter regions of genes or even the entire genome
of interest. For the latter case, tiling arrays typically consist of a set of complementary
arrays.

In the context of tiling arrays, the targeted biological material is treated in another
way than for gene expression arrays. Here, not the mRNA is extracted but the DNA
is sheared into small DNA fragments. This can be achieved by sonicating the DNA
material and typically results in fragments of 300-700 bp length. The full amount of
DNA fragments serves as control (Input) sample. In a separate procedure, these DNA
fragments are enriched, typically by immunoprecipitation, for a speci�c characteristic to
be analyzed. This can be either local DNA-protein binding events (see Figure 2.2 A and
section 2.4) or methylated cytosines (see section 2.5). The experiment speci�c enriched
DNA fragments serve as the treatment (immunoprecipitated, IP) sample. As for gene
expression experiments, the Input and IP samples are labeled (either as for one- or for
two-colour experiments) and are subsequently subjected to the tiling array(s) (see Figure
2.2 A). For each oligonucleotide, the absolute IP and Input intensity values are stored
and can be compared to each other (see Figure 2.2 C).

The identi�cation of statistical signi�cant di�erences between the enriched and non-
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enriched samples, in principle, follows the statistical analysis used for gene expression
microarrays (see section 2.2) but tiling array speci�c algorithms have been developed
[17, 45, 46]. Such methods make use of the circumstance that neighboring probes (rela-
tive to their location on the reference genome) will simultaneously detect enriched DNA
fragments and their resulting signal intensities will follow a peak-like distribution (see
Figures 2.2 B and D). The array-speci�c density of tiled probes and the estimated average
length of immunoprecipitated DNA fragments de�ne the number of neighboring probes
that will give rise to local signal enrichments and therefore, de�ne the shape of the result-
ing peaks. Tiling array speci�c computational methods incorporate these information for
the identi�cation and localization of enriched DNA fragments.

2.2 Statistical testing of di�erential expression

Statistical tests have proven to be a sensitive approach for identifying di�erentially ex-
pressed genes on the basis of microarray experiments [21, 40, 38]. In the context of this
thesis, statistical tests are also applied for identifying di�erentially methylated regions on
the basis of pre-processed MeDIP-Seq data (see section 3.4). The results of such tests are
generally combined with further calculated attributes in order to exclude less distinctive
absolute di�erences of the two compared data distributions. This can be either a thresh-
old of minimal required signal intensity derived from background data, or thresholds for
the ratio between condition-wise averaged control and treatment signal intensities.

For statistical testing, a su�cient number of experimental (e.g. microarray) repeti-
tions have to be performed. By a repetition of any such measurements of two di�erent
conditions, for each tested attribute (e.g. for each probe), there will be two samples of
intensity values X1, ..., XN and Y1, ..., YM (control and treatment). Statistical modelling
requires the two samples to conform to a certain probability distribution, e.g. a normal
distribution. Two hypotheses are then composed:

H0: The samples have the same location (null hypothesis)
H1 :The samples have di�erent locations (alternative hypothesis)

Statistical tests allow for rating, if the two samples are derived from the same popula-
tion (no di�erential expression) or not (di�erential expression). Statistical tests applied
in the context of this thesis are

� Student's t-test with equal variances, and

� Wilcoxon's rank sum test (also Mann-Whitney U test)

Based on a test-statistic, i.e. a mathematical function applied to the data, both tests
calculate a p-value allowing for rating the signi�cance of di�erential expression. The
test-statistic of the the t-test is e.g.
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Figure 2.2: Chromatin immunoprecipitation (ChIP). A Protein-DNA interactions are

�xed by adding formaldehyde to the targeted biological sample. By sonication, the DNA is

sheared into fragments of length 0.2-1kb. Selected DNA-protein complexes are enriched (im-

munoprecipitated) by adding TF speci�c antibodies (IP sample). As a control, a fraction of the

sheared DNA is treated with an unspeci�c antiobody and the resulting sample is typically called

the genomic or input sample. Subsequently, a series of two-colour tiling array experiments are

performed. B Genomic regions of interest (here the promoter region around the transcription

start site (TSS) of a gene) are continuously covered by complementary oligonucleotides. C Com-

parison of absolute intensity values from the IP- and input samples (log2). D Example of a

chromosomal region bound by a speci�c antibody. The intensity values of neighboring oligonu-

cleotides are increased by a given factor within the IP sample (red curve) compared to the Input

sample (black curve).
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T (X1, ..., XN , Y1, ..., YM ) =
X − Y√

(N−1)S2
X+(M−1)S2
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√
N ·M
N +M

(2.1)

where S2
X and S2

Y are the empirical variances of the control and the treatment group, i.e.

S2
X =

1
N − 1

N∑
i=1

(Xi −X)2 (2.2)

S2
Y =

1
M − 1

M∑
i=1

(Yi − Y )2 (2.3)

In addition, X and Y are the according averages:

X =
1
N

N∑
i=1

Xi (2.4)

Y =
1
M

M∑
i=1

Yi (2.5)

This test statistic follows a determined distribution. Given that the control and treat-
ment samples are normal distributed, this is a t-distribution with M + N − 2 degrees
of freedom. For each experimental result, a p-value can be calculated that indicates the
probability for the t-distribution to result in a more extreme value than the observed
one. Therefore, a small p-value indicates an event of di�erential expression. The p-value
itself is considered as a signi�cance measure for the deviation of the data from the null
hypothesis.

T-tests are parametric approaches that require the data to emerge from a probability
distribution which can be described by a mathematical function (e.g. a normal distribu-
tion). Alternatively, Wilcoxon's rank sum test is a non-parametric approach that allows
the data to emerge from less stringent de�ned distributions. It can therefore be applied
to an extended class of problems and is especially suitable in cases where it cannot be
ensured that measured signal intensities are normal distributed. For each tested attribute
(e.g. for each probe), the Wilcoxon's rank sum test again considers the repetitive and
independent (microarray) measurements X1, ..., XN and Y1, ..., YM of two di�erent con-
ditions (control and treatment). The main assumption is that both random variables
follow continuous distribution functions F1 and F2 and di�er only by a shift of δ:

F1(x) = F2(x− δ) (2.6)

The test involves the calculation of an U statistic whose distribution under the null
hypothesis is known. In case of small samples, the distribution can be calculated, but
for larger sample sizes its distribution is approximated by the normal distribution. For
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each tested attribute, the U test starts by merging all observations from the control
and treatment experiments into one single ranked series. In case there are two or more
identical values in both series, these values are �rst ranked in an arbitrary order but
subsequently their ranks are replaced by their combined rank average. Based on this
merged series, for each group, the sum of all ranks are determined as

R1 =
N∑

i=1

R(Xi) (2.7)

R2 =
M∑
i=1

R(Yi) (2.8)

where R(Xi) and R(Yi) are the ranks of the i-th measurement of the control or the
treatment sample, respectively. In fact, the sum of all ranks equals

R1 +R2 =
(N +M)(N +M + 1)

2
(2.9)

Therefore, after having calculated the sum of all ranks for one group (e.g. R1), the other
one follows by calculation. For both groups, individual U values are calculated as

U1 = R1 −
N(N + 1)

2
(2.10)

U2 = R2 −
M(M + 1)

2
(2.11)

Subsequently, it is valid

U1 + U2 = N ·M (2.12)

This is because from formula 2.9, it follows:

U1 + U2 = R1 −
N(N + 1)

2
+R2 −

M(M + 1)
2

=
(N +M)(N +M + 1)

2
− N(N + 1)

2
− M(M + 1)

2
= N ·M

For the subsequent test, the minimal of both U values is considered:

U = min(U1, U2) (2.13)

As mentioned above, for larger sample sizes, the U distribution can be approximated
by the normal distribution. In that case, the standardized value

Z =
U − µU

σU
≈ N (µ = 0;σ2 = 1) (2.14)
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Figure 2.3: Standard normal distribution. Because the U distribution is approximately

normally distributed, for the standard normal variable Z it is valid: Z ≈ N (µ = 0;σ2 = 1).
The �gure shows the range of the normal distribution for Z values ranging from -5 to 5. Here,

the signi�cance level for p = 0.01 are indicated as red lines at both sides of the distribution.

The according Z values are -2.715 and +2.715. For rejecting the null hypothesis (di�erential

expression) on that signi�cance level, the data derived Z value has to be outside of these extreme

values.

is a standard normal variable, where

µU =
N ·M

2
(2.15)

is the mean and

σU =

√
(N ·M)(N +M + 1)

12
(2.16)

is the standard deviation of U . The levels of signi�cance result by the levels of signi�cance
of the approximated standard normal distribution N (µ = 0;σ2 = 1) and therefore, the
signi�cance of the calculated Z value can be deduced by the standard normal distribution.
The according p-value indicates the probability for the U-distribution to result in a more
extreme value than the observed one. Therefore, a small p-value indicates an event of
di�erential expression. As an example, by de�ning a level of signi�cance to a concrete
percentage, e.g. p = 0.01, for the outcome of the alternative hypothesis (di�erential
expression) in a two-tailed test, it must be valid (see Figure 2.3):

Z /∈ [−2.715,+2.715]

By this approach, the Wilcoxon's rank sum test allows to rate whether one of two mea-
sured data series is signi�cantly larger than the other.
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2.3 Second generation sequencing

DNA sequencing is the process of determining the order of the nucleotide bases (adenine,
guanine, cytosine, and thymine) in a molecule of DNA. Sequencing of the full human
genome was achieved by a technique developed by Frederick Sanger [90].

Figure 2.4: Process of Illumina sequenc-

ing. The work�ow is described in the adja-

cent text. (Individual images were taken from

http://www.illumina.com.)

The classical Sanger sequencing (also
called chain-termination method) requires
a single-stranded DNA template, a DNA
primer, a DNA polymerase, radioactively
or �uorescent labeled nucleotides, and
modi�ed nucleotides that terminate DNA
strand elongation [90]. The DNA sam-
ple is divided into four separate se-
quencing reactions, containing all four
of the standard deoxynucleotides and
the DNA polymerase. To each re-
action is added only one of four di-
deoxynucleotides which are the chain-
terminating nucleotides, thus terminat-
ing DNA strand extension and re-
sulting in DNA fragments of vary-
ing length [90, 91]. The newly syn-
thesized and labeled DNA fragments
are heat denatured, and separated by
size with a resolution of just one nu-
cleotide by gel electrophoresis. The
DNA bands are then visualized by UV
light, and the DNA sequence can be di-
rectly read o� the gel image [90, 91,
69].

The high demand for low-cost sequenc-
ing has driven the development of high-
throughput sequencing technologies that
parallelize sequencing processes, produc-
ing thousands or millions of sequences at
once [35, 19]. High-throughput sequencing technologies are intended to lower the cost
of DNA sequencing beyond what is possible with standard dye-terminator methods [94].
A novel high-throughput sequencing method uses bridge PCR for in vitro clonal ampli-
�cation, where fragments are ampli�ed upon primers attached to a solid surface. This
technology is used by the Illumina Genome Analyzer (www.illumina.com). For high-
throughput sequencing, DNA molecules are physically bound to a surface, and sequenced
in parallel. This technology allows massive parallel sequencing of millions of fragments
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using a reversible terminator-based sequencing chemistry.

Alternative sample preparation methods allow the sequencing systems to be used for
a range of applications including gene expression, ChIP, and MeDIP. After having per-
formed the experiment of interest on the targeted biological material, libraries have to be
generated by adapter ligation to the DNA fragments before spread on the �ow cells (step
1 in Figure 2.4). This step is necessary for the subsequent cluster ampli�cation, as Illu-
mina's sequencing technology relies on the attachment of randomly fragmented genomic
DNA to a planar, optically transparent surface. Attached DNA fragments are extended
and bridge ampli�ed to create high density sequencing �ow cells with hundreds of millions
of clusters, each containing ∼1,000 copies of the same template (step 2). These templates
are sequenced using a four-color DNA sequencing-by-synthesis technology that employs
reversible terminators with removable �uorescent dyes. The sequencing-by-synthesis ap-
proach typically runs in 36 cycles (step 3). After each cycle, an image is generated by
high-sensitivity �uorescence detection using laser excitation and total internal re�ection
optics (step 4). The �rst step in the primary analysis is interpreting the image data in
order to identify distinct clusters and to create digital intensity �les describing the signal
intensities of each cluster in each cycle (step 5). Signal intensity pro�les for each cluster
are used to call bases. Determining the quality of each base call is crucial for downstream
analysis and con�dence scores for each call are calculated (step 6). Finally, millions of
quality tagged short reads are received, typically of length 36bp. The obtained sequence
reads are aligned against the according reference genome and �nally application speci�c
data analysis tools are applied.

Image analysis, base calling, and e�cient quality score dependent alignments are cur-
rently intensively explored topics in the �eld of computational biology. However, these
topics are not subject of this thesis. Proprietary software for the image analysis and
base calling as well as an available sophisticated alignment software [57] are applied.
The main focus of this thesis is on the development of novel methods for the analysis of
MeDIP speci�c sequencing data. Especially a method is developed that corrects for a
CpG density dependent bias which occurs due to preparation procedures during MeDIP
experiments.

2.4 Chromatin immunoprecipitation (ChIP)

Chromatin immunoprecipitation (ChIP) is an experimental technique used to investigate
interaction events between transcription factors (TFs) and DNA. In order to regulate gene
expression, TFs bind to their sequence speci�c DNA binding sites across the genome, of-
ten but not exclusively in promoter regions of genes. Moreover, ChIP is also used for the
identi�cation of genomic locations associated to histone modi�cations [23].

The �rst step of a ChIP experiment is to stabilize protein-DNA interactions by adding
formaldehyde [76]. Subsequently, DNA is sheared by sonication resulting in DNA frag-
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Figure 2.5: Chromatin immunoprecipitation followed by sequencing (ChIP-Seq).

Protein-DNA interactions are cross-linked and stabilized by adding formaldehyde. Subsequently,

DNA is sheared by sonication resulting in DNA fragments of length 0.2-1kb. Enrichment of bound

DNA fragments is achieved by precipitating with a TF speci�c antibody (ChIP sample). As a

control, a fraction of the sheared DNA is treated with an unspeci�c antibody and the resulting

sample is typically called the genomic or input sample. Transcription factor binding events can

be deduced by identi�cation of genomic regions that show enriched levels of DNA fragments in

the ChIP- compared to the input sample. For this, it is necessary to detect and quantify the

DNA fragment concentration along all chromosomes in both samples. DNA fragments can be

detected by second generation sequencing (ChIP-Seq). (The image of the sequencer was taken

from http://www.illumina.com.)

ments of length 0.2-1kb. Afterwards, the sample contains both protein bound and un-
bound DNA fragments. By adding a TF speci�c antibody, enrichment of such DNA
fragments bound by the according TF is initiated [89]. The treated sample is typically
indicated as the IP (immuno-precipitated) sample. From the experimental point of view,
the availability or generation of a highly TF speci�c antibody is most important. In each
ChIP approach, the TF binding events of only one TF is examined. Increased enrichment
of TF speci�c DNA fragments is achieved by PCR ampli�cation. As a control, a fraction
of the sheared DNA is treated with an unspeci�c antibody and the resulting sample is
typically called the genomic or input sample (see Figure 2.5).

Transcription factor binding events can �nally be deduced by identi�cation of genomic
regions that show enriched levels of associated DNA fragments in the IP sample compared
to the Input sample. For this, it is necessary to detect and quantify the DNA fragment
concentration along all chromosomes in both samples. DNA fragments can be either
detected by tiling arrays (ChIP-on-Chip, see also section 2.1 and Figure 2.2 B-D) or by
second generation sequencing (ChIP-Seq, see also section 2.3 and Figure 2.5). Several
methods for determining statistically signi�cant enriched genomic regions from ChIP
experiments are available for ChIP-Chip [59, 99, 17, 46] and ChIP-Seq data [45, 101, 67,
14, 88].
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Figure 2.6: MeDIP work�ow overview. In principle, the work�ow follows classical ChIP

approaches (see section 2.4) but here, an antibody speci�c for methylated cytosines (5mC) is uti-

lized. The �gure illustrates the varying e�ciency of antibody binding and immunoprecipitation

dependent on the local density of methylated CpG sites. Especially the analysis of mCpG-poor

genomic regions has to be considered critical [27]. MeDIP is followed either by array-hybridization

(see also section 2.1) or by second generation sequencing (see also section 2.3).

2.5 Methylated DNA immunoprecipitation (MeDIP)

Methylated DNA immunoprecipitation (MeDIP) uses an antibody speci�c for methylated
cytosines in order to immunocapture methylated genomic fragments [103]. First, genomic
DNA is extracted from cells. Then puri�ed DNA is subjected to sonication in order to
shear it into random fragments (see Figure 2.6). The short length of these fragments is im-
portant for obtaining adequate resolution, improving the e�ciency of downstream steps
in immunoprecipitation, and reducing fragment-length e�ects or biases [70, 42]. To fur-
ther improve binding a�nity of antibodies, the DNA fragments are denatured to produce
single-stranded DNA. Following denaturation, the DNA is incubated with monoclonal
antibodies which bind to methylated cytosines. Subsequently, classical immunoprecipita-
tion technique is applied (see section 2.4). DNA is puri�ed from antibodies by enzymatic
digestion and afterwardds prepared for DNA detection [83, 106, 108]. Analogous to ChIP
(see section 2.4), immunoprecipitated methylated DNA fragments can be detected either
by tiling arrays (MeDIP-Chip) or by next-generation sequencing (MeDIP-Seq).

As already mentioned in section 1.4, it has been shown that MeDIP derived data
needs to be corrected for local CpG densities in order to estimate valid methylation
levels [27, 80]. This e�ect is caused by a varying e�ciency of antibody binding and
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immunoprecipitation dependent on the local density of methylated CpG sites (see Figure
2.6). Especially the analysis of mCpG-poor regions has been assumed to be di�cult [103,
27]. While there is applicable software available for analyzing MeDIP-Chip data [27, 80],
normalization of MeDIP-Seq data is in principle solved [27] but remains disproportional
time-consuming.

2.6 Alternative methods for detecting DNA methylation

Although the main focus of this thesis is on the development of methods for analyzing
MeDIP-Seq data, there are several further methods available for detecting DNA methy-
lation. The impact of the developed MeDIP-Seq data normalization method (see section
3.3) is evaluated by comparing the resulting methylation pro�les to methylation pro�les
derived by other techniques (see subsection 3.3.6). Therefore, an overview of such alter-
native techniques is given in this section.

The discovery that treatment of denatured genomic DNA with sodium bisulphite
chemically deaminates unmethylated cytosine residues much more rapidly than methy-
lated cytosines [37, 102] spurred a revolution in DNA methylation analysis in the 1990s
[31, 20, 54]. This chemical treatment of DNA e�ectively turns an epigenetic di�erence
into a genetic di�erence � unmethylated Cs are converted to Ts (by uracil) � thereby
enabling many new DNA methylation detection and analysis techniques [53, 83, 8, 100,
36, 106, 62, 60, 42, 9, 44]. Analysis of bisulphite-converted DNA was initially done by
Sanger sequencing of cloned PCR products from single loci [31, 79]. Many improvements
have since then been developed, including quantitative direct Sanger sequencing of PCR
products [20] and highly automated application of this approach [30, 54]. By the latter
approach, base speci�c methylation values were generated for selected genomic regions
on the chromosomes 6, 20, and 22 in several human tissues, including e.g. sperm sam-
ples [30]. In subsection 3.3.6, these bisulphite derived sperm methylation patterns are
compared against unnormalized and normalized MeDIP-Seq data derived from another
human sperm sample [27].

Bisulphite genomic sequencing excels at producing base-pair resolution DNA methyla-
tion information, but bisulphite-based methods are not easily adapted to array-hybridization
techniques and so, until recently, were rarely used for genome-scale DNA methylation
analysis [54]. With the exception of 5-Methylcytosine (5mC) residues, bisulphite-treated
DNA is comprised of three di�erent bases instead of four. This reduced sequence com-
plexity, and therefore greater sequence redundancy, results in decreased hybridization
speci�city [54]. Hybridization of bisulphite-converted DNA either requires dedicated
tiling arrays designed for the bisulphite-converted genome or must allow for substantial
mismatches in hybridization [54].

Although the adaptation of bisulphite-converted DNA to array hybridization has been
challenging, bisulphite-converted DNA is particularly well suited for sequencing-based

28



2 Experimental techniques

approaches and is now enjoying a resurgence thanks to the application of next-generation
sequencing platforms [54]. In order to restrict the full amount of DNA that has to be
subsequently analyzed, restriction endonucleases can be utilized. The most widely used
methylation-sensitive restriction enzymes for DNA methylation studies are HpaII and
SmaI. Reduced representation bisulphite sequencing (RRBS) was introduced to reduce
sequence redundancy by selecting only some regions of the genome for sequencing by
size-fractionation of DNA fragments after BglII digestion [71] or after MspI digestion
[72]. These choices of restriction enzymes enrich for CpG-containing segments of the
genome but do not target speci�c regions of interest in the genome [54].

Restriction enzyme enrichment techniques are currently being adapted so that the
read-out can be obtained by next-generation sequencing techniques instead of array
hybridization. Sequence-based analysis is more �exible and powerful as it allows for
allele-speci�c DNA methylation analysis, does not require an appropriately designed mi-
croarray, can cover more of the genome with less input DNA and avoids hybridization
artefacts, although it is still subject to sequence library biases [54]. Sequencing-by-
synthesis of libraries constructed from size-fractionated HpaII or MspI digests that are
compared with randomly sheared fragments is known as Methyl�seq [15].

The most comprehensive single-base-pair resolution DNA methylation analysis tech-
nique is whole-genome shotgun bisulphite sequencing [54]. Whole-genome shotgun bisul-
phite sequencing (WGSBS) has been achieved on the Illumina Genome Analyzer platform
for small eukaryotic genomes, such as Arabidopsis thaliana [63, 22], and for mammalian
DNA [64]. Increased read lengths and paired-end sequencing strategies have aided the
implementation of WGSBS [28, 25, 51], although approximately a tenth of the CpG
dinucleotides in the mammalian genome remain refractory to alignment of bisulphite-
converted reads [54]. In chapter 4, available WGSBS data from Lister et al. [64] is
compared to novel MeDIP-Seq data generated in the context of this thesis. It is demon-
strated that correlation of WGSBS and MeDIP-Seq data is signi�cantly improved after
normalization of MeDIP-Seq data. The developed procedure of MeDIP-Seq data nor-
malization is described in chapter 3.
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3 Modelling of MeDIP-Seq data

The major focus of this thesis is on the development of computational methods suitable
for analyzing MeDIP-Seq data. In chapter 3, I present novel methods for the analysis of
MeDIP-Seq data, including time-e�cient raw data processing (see section 3.1), quality
control metrics (see section 3.2), normalization (see section 3.3), and identi�cation of dif-
ferential methylation (see section 3.4). In section 3.3.6, improvements of normalization
are shown by a comparison of raw and normalized methylation pro�les against bisulphite
derived methylation data. In addition, normalization results are compared to results of
the only abvailable but computational demanding alternative MeDIP-Seq data normal-
ization approach [27]. The entire computational approach (MEDIPS), including data
processing, quality control, normalization, statistical analysis of di�erential methylation
and methods for simulation of read coverage and saturation has been made available as
an R software library. In section 3.5, I present this �rst standard pipeline for the analysis
of MeDIP-Seq data.

3.1 Genome vector

Methylated DNA immunoprecipitation (see section 2.5) followed by sequencing (see sec-
tion 2.3) results in millions of experiment speci�c short DNA sequences. In order to
identify their genomic origin, they are aligned to the according reference genome by
applying available alignment implementations like e.g. MAQ [57] or Bowtie [55]. Fur-
thermore, standard post-processing of the alignment results is to �lter out mapped reads
of low quality and to exclude arti�cial short read pile-ups. For all remaining short reads,
their genomic coordinates together with their associated strand information (plus or mi-
nus strand) are extracted and serve as the basic information obtained from a MeDIP-Seq
experiment.

In order to calculate the genome-wide short read coverage, a targeted data resolution
has to be determined. In principle, a short read coverage can be calculated for each
base position. Because the resolution of MeDIP-Seq data is restricted by the size of the
sonicated DNA fragments after ampli�cation and size selection (typically between 0.2-
1kb), a bin size of 50bp is considered as a reasonable compromise on data resolution and
computational costs. Moreover, short reads generated by modern-day sequencers do not
represent the full DNA fragments but are of shorter length (e.g. 36bp). Therefore, the
data is smoothed by extending each read to a length according to the estimated average
length of sequenced DNA fragments, either along the plus or along the minus strand,
as speci�ed by the short read dependent strand information. Each chromosome is then
divided into bins of size 50bp and the short read coverage is calculated on this resolution.
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3 Modelling of MeDIP-Seq data

Figure 3.1: The genome vector. MeDIP-Seq derived short reads (red lines) are mapped

against the according reference genome. Based on their obtained genomic coordinates, they are

extended to a length of e.g. 400bp along the plus or the minus strand according to the associ-

ated strand information (blue dashed lines). Genome wide short read coverage is calculated by

�rst de�ning a targeted resolution (here 50bp bins) and by counting the number of overlapping

extended reads at each genomic bin position. The genome vector is the computational repre-

sentation of the short read coverage at a 50bp bin resolution (single chromosome vectors are

concatenated to one genome vector).

In the following, the bin representation of the genome is called the genome vector (see
Figure 3.1)

Second generation sequencing approaches generate millions of short reads per experi-
ment. Long-term data storage and e�cient data processing are challenging tasks, even
for modern-day servers. Naive programming approaches cannot be applied in appropriate
time. For example, the task of identifying overlapping extended short reads at genome
wide 50bp bins needs to be implemented in a sophisticated way. Hence, most of the
algorithms implemented in the context of this thesis are primary runtime optimized.

Algorithm 3.1 shows the R source code as implemented within the MEDIPS package
(see section 3.5) for calculating the short read coverage. In fact, this function is called
by a wrapper function which declares and initializes the genome vector with respect to
the number and lengths of chromosomes of the reference genome and with respect to the
targeted coverage resolution (e.g. 50bp). The given MEDIPS.distributeReads function is
called from a loop processing the chromosomes. The wrapper function provides separated
vectors for the start, stop, and strand informations of the reads (all of the same length
n, where n is the number of short reads available for the current chromosome), as well as
a vector containing the chromosomal positions of the prede�ned bins within the current
chromosome. The latter vector is of length m, de�ned by simply dividing the length of
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3 Modelling of MeDIP-Seq data

the current chromosome by the targeted resolution (e.g. binSize=50bp)

m = x
length(chromosome)

binSize
y (3.1)

First of all, the short reads are extended to a length as speci�ed by the extend parame-
ter. Moreover, for each of the provided vectors, additional identi�cation (id) vectors are
generated. For the vector containing the start positions of the short reads, an id vector
of length n is de�ned (here reads_start_id) and each entry is assigned to the value 1.
For the vector containing the stop positions of the short reads, an id vector of length
n is de�ned (here reads_stop_id) and each entry is assigned to the value -1. For the
vector containing the chromosomal bin positions, an id vector of length m is de�ned
(here positions_id) and each entry is assigned to the value 0.

In addition, two vectors ct.vec_pos and ct.vec_id, both of length 2n+m, are declared.
The start and stop positions of the short reads as well as the bin positions are concate-
nated and assigned to the ct.vec_pos vector. Additionally, the previously created id
vectors are concatenated in the same order as the position vectors and are assigned to
the ct.vec_id vector. This combined id vector is sorted with respect to the order of the
sorted combined position vector (this is the sorted ct.vec_pos vector). From the algo-
rithmic point of view, this sorting is the most time consuming step that can be solved in
an average runtime of O((2n+m)log(2n+m)) (e.g. using quicksort).

Next, R's cumsum() function is applied to the ordered combined id vector (this is the
ordered ct.vec_id vector). The cumulative sum is a sequence of partial sums of a given
sequence. For example, given a sequence {xk}2n+m

k=1 , a partial sum of the �rst j terms

is given by countj =
j∑

k=1

xk. For example, the cumulative sums of a sequence (a, b, c, ...)

are a, a + b, a + b + c, .... Therefore, the cumsum() function returns a vector of length
2n + m, where each entry j results by the cumulative sum along the ordered combined
id vector (this is the ordered ct.vec_id vector):

count(x1, ..., xd−1, j, xd+1, ..., x2n+m) =
j∑

k = 1
ct.vec_id(x1, ..., xd−1, k, xd+1, ..., x2n+m)

It is obvious that this calculation can be achieved in O(2n + m) calculation steps.
The resulting count vector is considered as a counter that starts at zero. The cumsum()
function increases the counter by 1, whenever a short read starts and decreases the
counter by 1, whenever a short read stops. Because the chromosomal bin positions are
associated to zeros, the cumsum() function does not change the counter at that positions.
The chromosomal bin positions were sorted in between all start and stop positions of the
short reads, and therefore, the current value of the counter at the chromosomal bin
positions re�ects the number of 'open' or overlapping short reads. From the resulting
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count vector, the number of overlapping short reads at each chromosomal bin position
can be directly sorted out by selecting all entries whose indices are associated to zeros in
the combined and ordered id vector (here ct.vec_id).

By this implementation, the task of identifying all overlapping short reads at arbi-
trary chromosomal bin positions is limited by O((2n + m)log(2n + m)) in time. Naive
approaches easily end up in 2n·m calculation steps when comparing all start and end posi-
tions of the short reads to the chromosomal bin positions. When considering MeDIP-Seq
data, n has to be at least 2·107 for a well covered human methylome (see subsection 3.2.1).
As the human genome consists of approximately 3·109 base pairs, there will bem = 6·107

genomic bins when de�ning a bin size of 50bp. Therefore, the presented implementation
is limited by (2n+m)log(2n+m) = (1·108)log(1·108) = 1, 842, 068, 074 calculation steps,
whereas the naive approach will need 2n ·m = 2 ·2 ·107 ·6 ·107 = 2, 400, 000, 000, 000, 000
calculation steps. This example emphasizes the need for time e�cient implementations
when high-throughput sequencing derived data is modelled.

The described method for calculating the genome vector is only one of several imple-
mentations within the MEDIPS package (see section 3.5) optimized for runtime. How-
ever, the following sections describe the developed concepts for MeDIP-Seq modelling
and will not describe the runtime optimized implementations of these methods.

3.2 Quality control metrics

3.2.1 Saturation analysis

The saturation analysis addresses the question, whether the number of available short
reads is su�cient to generate a saturated and reproducible methylation pro�le of the
reference genome. Figure 3.2 shows an arti�cial example of genomic regions with varying
densities of methylated CpGs. MeDIP-Seq aims to reconstruct such methylation pro�les
on the basis of local short read coverages. It is supposed that an insu�cient number
of short reads will not represent the true methylation pro�le. Only when a su�cient
number of short reads is generated, the resulting genome vector will represent a saturated
methylation pro�le (see Figure 3.2 A).

The basic assumption of the saturation analysis is that only a su�cient number of
short reads will result in a genome wide methylation pro�le which will be reproducible
by another independent set of a similar number of short reads. Figure 3.2 B illustrates
that an insu�cient number of short reads will result in methylation pro�les that cannot
be reproduced by another independent set of an insu�cient number of short reads (Figure
3.2 B low correlation). The correlation of two independently generated genome vectors
will increase when the total number of short-reads considered for the construction of each
of the two genome vectors increases (Figure 3.2 B high correlation). It is supposed that
the increase of the correlation between two independently generated genome vectors will
saturate as soon as the total number of considered short reads is increased to a level that
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Algorithm 3.1 Calculating short read coverages in O((2n+m)log(2n+m)). Here, n is

the number of available short reads and m is the number of genome wide bins as de�ned by the

speci�ed binSize parameter and by the size of the reference genome.

MEDIPS. d i s t r ibuteReads<−f unc t i on ( reads_start=NULL, reads_stop=NULL,
reads_strand=NULL, p o s i t i o n s=NULL, extend=0){

i f ( extend !=0){
reads_start [ reads_strand=="−"]=reads_stop [ reads_strand=="−"]−

extend
reads_stop [ reads_strand=="+"]=reads_start [ reads_strand=="+"]+

extend
}

reads_start_id=vecto r ( l ength=length ( reads_start ) , mode="numeric ")
reads_start_id [ ]=1
reads_stop_id=vecto r ( l ength=length ( reads_stop ) , mode="numeric ")
reads_stop_id []=−1
pos i t i on s_ id=vecto r ( l ength=length ( p o s i t i o n s ) , mode="numeric ")
po s i t i on s_ id [ ]=0

ctmatrix_pos=vector ( l ength=length ( reads_start )+length ( reads_stop )
+length ( p o s i t i o n s ) ,mode="numeric ")

ctmatrix_id=vecto r ( l ength=length ( reads_start )+length ( reads_stop )+
length ( p o s i t i o n s ) ,mode="numeric ")

ctmatrix_pos [ ]= append ( append ( reads_start , reads_stop ) , p o s i t i o n s )
ctmatrix_id [ ]= append ( append ( reads_start_id , reads_stop_id ) ,

po s i t i on s_ id )

ctmatrix_id=ctmatrix_id [ order ( ctmatrix_pos ) ]
count=cumsum( ctmatrix_id )

re turn ( count [ ctmatrix_id==0])
}
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Figure 3.2: Saturation analysis. The �gure shows an arti�cial example of genomic regions

with varying densities of methylated CpGs. MeDIP-Seq aims to reconstruct such methylation

pro�les on the basis of local short read coverages. Short reads are indicated as horizontal black

lines. A It is supposed that an insu�cient number of short reads will not represent the true

methylation pro�le (see second and third row). Only when a su�cient number of short reads is

generated, the resulting genome vector will represent a saturated methylation pro�le (last row).

B Comparing two genome vectors generated by two independent sets of short reads will result in

a low correlation when the number of short reads is not high enough to represent the methylome.

It is supposed that such a correlation will increase by an increasing number of considered short

reads.

is able to represent the tested methylome in a saturated way. Obviously, the number of
short reads that have to be generated for an su�cient sequencing depth depends on the
size of the reference genome.

For the saturation analysis, the total set of available regions (n) is divided into two
distinct random sets A and B of equal size (for simplicity, both sets contain x(n

2 )y reads).
Both sets A and B are again divided into k random subsets of equal size:

A = {a1, ..., ak}

B = {b1, ..., bk}

Again for simplicity, each subset a1, ..., ak and b1, ..., bk contains x( ( n
2

)

k )y distinct ran-
domly selected short reads. The saturation analysis runs in k iterations. For each set A
and B independently, the saturation analysis iteratively selects an increasing number of
subsets and creates according genome vectors (see section 3.1) by using an arbitrary bin
size (e.g. 50bp) and by previously extending the short reads to a suitable length (e.g.
400bp). In each iteration step, the resulting genome vectors GA and GB for the subsets
of A and B are compared using Pearson correlation. These iterations of the saturation
analysis can be noted as given in algorithm 3.2.
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Algorithm 3.2 Simpli�ed pseudo code for the k-iterations of the saturation analysis.

f o r ( i in 1 : k ){
GA = CreateGenomeVector ( a1 , . . . , a i )
GB = CreateGenomeVector (b1 , . . . , b i )

c o r r e l a t i o n=cor (GA, GB)
}

Correlation aims to analyse the statistical relationship between the obtained genome
vectors. It is de�ned as

corGA,GB =
cov(GA,GB)
σGAσGB

(3.2)

where cov(GA,GB) is the covariance and σGA and σGB are the standard deviations of
the temporary genome vectors GA and GB. Let m be the length of the genome vectors,
and let aj and bj the j-th elements of the genome vectors GA and GB, then the empirical
correlation coe�cient is de�ned as:

corGA,GB =

m∑
j=1

(aj − µGA)(bj − µGB)√√√√ m∑
j=1

(aj − µGA)2·
m∑

j=1

(bj − µGB)2

(3.3)

where

µGA =
1
m

m∑
j=1

aj (3.4)

µGB =
1
m

m∑
j=1

bj (3.5)

are the mean values of the genome vectors GA and GB. The variables GA and GB are
positively or negatively correlated, respectively, if corGA,GB > 0 or corGA,GB < 0 and it
is valid corGA,GB ∈ [−1, 1]. The closer the correlation coe�cient is to either =1 or 1,
the stronger the correlation between the variables. If the variables are independent, this
correlation coe�cient is 0, but the converse is not true because the correlation coe�cient
detects only linear dependencies between two variables. Non-linear dependencies between
two variables can be made tangible by transforming all data values into their rank repre-
sentations before calculating the correlation. Such rank correlation coe�cient measures
the extent to which, as one variable increases, the other variable tends to increase (or
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decrease, respectively), without requiring that increase (or decrease, respectively) to be
represented by a linear relationship.

In each of the k iteration steps of the saturation analysis, two genome vectors are

constructed, each one consisting of i ·x ( ( n
2

)

k )y randomly selected distinct short reads,
where i = 1, ..., k. In each iteration step, the correlation of the two resulting genome
vectors is calculated and stored. Instead of calculating the correlation, rank correlation
can be calculated. Although it is not expected to observe non-linear dependencies, the
rank correlation is more robust against outlier values, i.e. sequencing artefacts resulting
in genomic bins associated to an extraordinary coverage in all experimental approaches.
Such extreme outliers present in both genome vectors result in an overestimated good
correlation. In addition, it might be worthwhile to calculate correlation (or rank corre-
lation) for non-zero genomic bins, only. That means, before correlation is calculated, all
values are removed from the two genome vectors where it is valid aj = bj = 0. With
this, genomic bins that are not covered by any short read, e.g. because no cytosines
are present in their surrounding, will not in�uence the resulting correlation. Both mod-
i�cations for calculating the correlation can be enabled by according parameters of the
presented MEDIPS package (see section 3.5).

As the number of considered short reads increases during each iteration step, it is
supposed that the resulting genome vectors become more similar, a dependency that is
expressed by an increased correlation. By storing the resulting correlation coe�cient
after each iteration step, the change of correlation during the k iteration steps can be
visualized by plotting the number of considered reads against the resulting correlation
coe�cients (see Figure 3.3). It is supposed that the correlation will approach a maximum
close to 1 when a saturated number of short reads is considered. Such a plot allows for
gaining an impression of the reproducibility of constructing a methylome with respect to
the number of considered short reads and with respect to the size of the reference genome.

Estimated saturation analysis

A saturation analysis can be performed on two independent sets of short reads, only.
Therefore, a true data based saturation analysis can only be calculated for half of the
available short reads. That is generating two genome vectors where each one contains
x(n

2 )y distinct short reads. Obviously, it is of interest to examine the reproducibility of
the MeDIP-Seq experiment for the total amount of available short reads, that is com-
paring two genome vectors where both are generated from n short reads. But when
considering the same n reads for creating two genome vectors, the resulting correlation
will always be 1. Therefore, a true saturation analysis can be calculated for x(n

2 )y short
reads, only. However, a saturation analysis can be extended by a subsequent estimated
saturation analysis.

For the estimated saturation analysis, the full set of given regions is arti�cially doubled
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by considering each short read twice. Afterwards, the described saturation analysis is
performed on the arti�cially doubled set of regions. Because the arti�cially doubled set
of short reads does not represent a true outcome of a MeDIP-Seq experiment but consid-
ers each read twice, the calculated correlations will overestimate the true reproducibility.
It is assumed that the true correlation for the full set of available short reads will be
between the results of the true and of the estimated saturation analysis.

Random iterations

Methods that randomly select data entries, like for the saturation analysis, can be pro-
cessed several times in order to obtain more stable results. It is recommended to perform
the saturation analysis, and therefore the random partitioning of the short reads into the
several subsets of A and B, several times. The i-th correlation coe�cient as calculated
during the k iteration steps of each individual saturation analysis will be �nally replaced
by the average of the i-th correlation coe�cients calculated during the several repeti-
tions of the saturation analysis. Let cor(GA,GB)i,j

be the correlation calculated in the i-th
iteration of a saturation analysis, where i = 1, ..., k, and of the j-th random repetition
of the saturation analysis, where j = 1, ..., s, and s is the number of performed random
repetitions, then the �nal correlation coe�cient at each of the k iteration steps is

cor(GA,GB)i
=

1
s

s∑
j=1

cor(GA,GB)i,j
(3.6)

The MEDIPS package (see section 3.5) allows to specify an according parameter for exe-
cuting the saturation analysis several times before the averaged results are �nally stored
and plotted.

Results

Figure 3.3 A shows the results of a saturation analysis (blue curve, 10 random saturation
analysis iterations) of approximately 25 million MeDIP-Seq derived short reads. The
maximal obtained correlation is 0.88 as derived from comparing the two genome vectors,
each generated from approximately 12.5 million randomly selected distinct short reads.
The estimated saturation analysis (red curve) shows the estimated maximal correlation of
0.94 as derived from the arti�cially doubled set of short reads. The plot illustrates similar
curve shapes for the true and estimated saturation analysis. Therefore, it is expected that
the correlations calculated for the true saturation analysis will show a similar behaviour
to the correlations calculated for the estimated saturation analysis, in case appropriate
more distinct short reads will be available. However, as mentioned above, it is expected
that the estimated correlation overestimates the results for a true saturation analysis
and therefore, the theoretical maximal correlation for the full set of available short reads
will be between the maximal reached correlation of the saturation and of the estimated
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Figure 3.3: Results of the saturation analysis. A Results of the saturation (blue curve)

and estimated saturation (red curve) analyses (performed with 10 random iterations) of approx-

imately 25 million MeDIP-Seq derived short reads. It is expected that the theoretical maximal

correlation for the full set of available short reads will be between the maximal reached cor-

relation of the saturation (0.88) and of the estimated saturation analysis (0.94). The results

indicate that the human methylome of the examined biological material (here hESCs) can be

well reproduced using 25 million short reads. B Results of the saturation analysis calculated for

approximately 20 million input derived short reads. The maximal obtained correlation is 0.55

for the saturation and 0.75 for the estimated saturation analysis. Moreover, the estimated satu-

ration analysis clearly overestimates the results of the saturation analysis. The results indicate

that the number of input reads is far away from being able to generate reproducible full genome

short read coverages.

saturation analysis (that is between 0.88 and 0.94 in the given example).

Figure 3.3 B illustrates the results of the saturation analysis calculated for approxi-
mately 20 million input derived short reads (this is sequencing the sonicated DNA frag-
ments without preceding immunoprecipitation). Here, the complexity of available DNA-
fragments is much higher than for an immunoprecipitated sample. The �gure shows
that the number of available input reads is not su�cient for creating well reproducible
genome vectors. The maximal reached correlation is 0.55 for the saturation and 0.75
for the estimated saturation analysis. Moreover, here the estimated saturation analysis
clearly overestimates the results of the saturation analysis.

In summary, the saturation analysis reveals that an amount of 25 million MeDIP-Seq
derived short reads is su�cient to generate reproducible human methylomes. This num-
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ber is supposed to vary for di�erent reference genomes and DNA methylation patterns.
On the other hand, 20 million input sequencing derived reads are far away from resulting
in well reproducible full genome short reads coverages. The saturation analysis allows
for examining the available produce of experimental speci�c sequencing data in order to
assess, if su�cient short reads have been produced. Therefore, the saturation analysis is
not restricted to be applied to MeDIP-Seq data only, but other sequencing derived data,
like e.g. ChIP-Seq data, can be evaluated by this approach.

3.2.2 Coverage analysis

The coverage analysis addresses the essential question about the genome wide depth of
sequence pattern (e.g. cytosine or CpG) coverage by an increasing number of integrated
sequencing derived short reads. For this, �rst all genomic coordinates of the sequence
pattern of interest have to be identi�ed.

Here, it is important to consider the fact that DNA sequence patterns can be reverse
complementary. For example, the CpG pattern is reverse complementary and therefore
exists on both strands of the DNA at the same time. On the other hand, when looking
for non reverse complementary sequence patterns, both strands of the DNA have to be
considered. For example, when searching for genomic positions of the single base DNA
pattern C, either both strands have to be accessed or only one strand has to be accessed
but here all C and G positions have to be returned. The MEDIPS package provides
a function that considers this circumstance when identifying the genomic positions of
arbitrary sequence patterns (see section 3.5).

In the following, it is expected that all genomic pattern positions are stored on a vector
P = (p1, ..., pm) where m is the number of sequence patterns present in the reference
genome. For the coverage analysis, the total set of available short reads (A) is divided
into k random subsets of equal size:

A = {a1, ..., ak}

For simplicity, each subset a1, ..., ak contains x(n
k )y distinct randomly selected short reads,

where n is the total number of available short reads. The coverage analysis iteratively
selects an increasing number of subsets and tests how many pattern positions from P
are covered by the available regions. In addition, the coverage analysis counts how many
pi's are covered at least Q times, where Q = (q1, ..., ql) represents an arbitrary number
of coverage depths to be tested. For example, the according function of the MEDIPS
package (see section 3.5) tests by default how many CpGs are covered at least 1x, 2x,
3x, 4x, 5x, and 10x (this is equivalent to the notation Q = 1, 2, 3, 4, 5, 10). In principle,
the coverage analysis can be noted as shown in algorithm 3.3.

In each iteration step, the coverage analysis selects i subsets of A and calculates how
many pi's are covered at least Q = (q1, ..., ql) times. For each level of Q, the returned
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Algorithm 3.3 Simpli�ed pseudo code for the k-iterations of the coverage analysis.

f o r ( i in 1 : k ) {
coverages=CalculateCoverage (A=(a1 , . . . , a i ) , P=(p1 , . . . , pm)

, Q=(q1 , . . . , q l ) )
}

coverages object stores how many pi's are covered by the tested depths and the results of
each iteration step are stored. The k-th iteration step of the coverage analysis shows the
depth of sequence pattern coverages obtained with the full set of available short reads.
The advantage of the iterative approach is that the behaviour of pattern coverage can
be examined with respect to an increasing number of considered short reads. For this,
coverage curves can be generated by plotting the number of covered sequence patterns
for each level of Q against the number of considered short reads. The progression of the
resulting coverage curves indicate the state of saturation of the overall sequence pattern
coverages. As for calculating the genome vector (see section 3.1) or as for the saturation
analysis (see subsection 3.2.1), it is recommended to previously extend the short read
lengths to e.g. 400bp.

Random iterations

Methods that randomly select data entries, like for the coverage analysis, can be processed
several times in order to obtain more stable results. It is recommended to perform the
coverage analysis, and therefore the random partitioning of the short reads into the
several subsets of A, several times. The i-th observed coverages for the tested levels of
Q as calculated during the k iteration steps of each individual coverage analysis will be
�nally replaced by the average of the i-th correlation coe�cients as calculated during the
several random repetitions of the saturation analysis. Let coveragesi,j be the coverage
of any speci�ed level of Q as calculated in the i-th iteration of a coverage analysis, where
i = 1, ..., k, and of the j-th random repetition of the coverage analysis, where j = 1, ..., s,
and s is the number of performed random repetitions, then the �nal coverage at each of
the k iteration steps is

coveragesi =
1
s

s∑
j=1

coveragesi,j (3.7)

The MEDIPS package (see section 3.5) allows to specify an according parameter for ex-
ecuting the coverage analysis several times before the averaged results are �nally stored
and plotted.
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Figure 3.4: Coverage analysis. The Figure shows the results of a coverage analysis for ap-

proximately 26 million MeDIP-Seq derived short reads from a human sample, where the coverage

of the CpG sequence pattern was examined for the levels Q = 1, 2, 3, 4, 5, 10. In total, the human

genome (hg19 [86]) contains approx. 28.2 million CpGs. From these, approx. 22.4 million CpGs

(79.3%) are covered at least one time (qi = 1, red curve) when the full set of approx. 26 million

short reads is considered.

Results

As an example, Figure 3.4 shows the results of a coverage analysis for approximately
26 million MeDIP-Seq derived short reads from a human sample, where the coverage of
the CpG sequence pattern was examined for the levels Q = 1, 2, 3, 4, 5, 10 (10 random
iterations). In total, the human genome (hg19 [86]) contains approx. 28.2 million CpGs.
From these, approximately 22.4 million CpGs (79.3%) are covered at least one time
(qi = 1) when the full set of approximately 26 million unique short reads is considered.
The progression of the coverage curve for the level qi = 1 (red curve) indicates that the
CpG coverage is approaching a maximum and therefore, by adding more short reads, the
coverage does not increase in a linear way anymore.

Although an increase of short reads will always improve the sequence pattern coverage,
the coverage analysis, together with the saturation analysis (see subsection 3.2.1), allow
for gaining an impression on the overall sequence pattern coverage and reproducibility of
constructing a methylome based on the total number of MeDIP-Seq derived short reads.
These data quality controls assist in deciding whether the costs of additional experimental
runs are in due proportion to the expected improvements of coverage and reproducibility.
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3.2.3 CpG enrichment

As a third MeDIP-Seq data quality control, the CpG enrichment approach examines how
strong the genomic regions underlying the obtained short reads are enriched for CpGs
compared to the frequency of CpGs within the reference genome.

For this, �rst the number of Cs (G.c), the number of Gs (G.g), the number CpGs
(G.cg), and the total number of bases (m) within the speci�ed reference genome are
counted. Subsequently, the relative frequency of CpGs and the observed/expected ratio
of CpGs [32] as present in the reference genome are calculated as:

Genome.CpGrel.f =
G.cg

m
(3.8)

Genome.CpGobs/exp =
G.cg ·m
G.c ·G.g

(3.9)

Additionally, the number of Cs (SR.c), the number of Gs (SR.g), the number CpGs
(SR.cg), and the total number of bases (n) are counted for the DNA sequences under-
lying the given short reads, only. Subsequently, the relative frequency of CpGs and the
observed/expected ratio of CpGs as present in the short reads speci�c DNA sequences is
calculated accordingly:

SR.CpGrel.f =
SR.cg

n
(3.10)

SR.CpGobs/exp =
SR.cg · n
SR.c · SR.g

(3.11)

The �nal enrichment values result by dividing the relative frequency of CpGs (or the
observed/expected value, respectively) of the regions by the relative frequency of CpGs
(or the observed/expected value, respectively) of the reference genome:

enrichrel.f =
SR.CpGrel.f

Genome.CpGrel.f
(3.12)

enrichobs/exp =
SR.CpGobs/exp

Genome.CpGobs/exp
(3.13)

43



3 Modelling of MeDIP-Seq data

- #reads (m) # C (m) #G (m) # CpGs (m) Rel. freq. obs/exp E. rel. freq. E. obs/exp

Genomic hg19 - 592.4 592.8 28.6 0.9904 0.2363 - -

MeDIP, hESC 25.9 231.3 232.2 20.0 2.0884 0.3575 2.1087 1.5129

MeDIP, DE 32.5 298.1 299.4 30.8 2.5618 0.4168 2.5867 1.7638

INPUT, hESC 6.2 54.1 54.3 3.0 1.3276 0.2432 1.3405 1.0290

INPUT, DE 16.3 132.3 132.9 6.5 1.0771 0.2234 1.0876 0.9453

Table 3.2: CpG Enrichment. The table shows the results of the CpG enrichment analysis

of the MEDIPS package. CpG enrichment is calculated for MeDIP-Seq data from hESCs, DE

and input samples (here, input samples from hESCs and DE were processed separately) relative

to the reference genome (hg19). m=million, E. rel. freq=CpG enrichment relative frequency, E.

obs/exp= CpG enrichment observed/expected.

For short reads derived from an input experiment (that is sequencing of none-enriched
DNA fragments), the enrichment values are expected to be close to 1. In contrast, short
reads derived from MeDIP-Seq experiments are expected to be enriched for CpG rich
DNA sequences that will be indicated by increased enrichment scores. Table 3.2 shows
the results of CpG enrichments calculated for two MeDIP and for two input sequencing
derived data sets. Enrichment scores show that MeDIP derived short reads are enriched
for CpG's (relative frequency is 2.10 and 2.59, respectively), whereas input derived short
reads do not show comparable CpG enrichments (relative frequency is 1.34 and 1.09,
respectively).

3.3 Normalization

The idea of a MeDIP experiment is to identify cytosine methylation pro�les of a sample
of interest by immunocapturing methylated cytosines using a mCpG speci�c antibody
[103]. However, it has been shown [27, 80] that MeDIP signals scale with local densities
of CpGs and are not necessarily in�uenced by methylated cytosines, only. Therefore, the
need for MeDIP-Seq data correction occurs through an unspeci�c binding of the utilized
antibody to unmethylated cytosines, especially in the context of low densities of methy-
lated cytosines.

3.3.1 Reads per million (rpm)

For each pre-de�ned genomic bin, the genome vector (see section 3.1) stores the number of
provided overlapping extended short reads and these are interpreted as the raw MeDIP-
Seq signals. Based on the total number of provided short reads (n), the raw MeDIP-Seq
signals can be transformed into a reads per million (rpm) format in order to assure
that coverage pro�les derived from di�erent biological samples are comparable, although
generated from di�ering amounts of short reads. Let xbini

be the raw MeDIP-Seq signal
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of the genomic bin i, where i = 1, ...,m and m is the total number of genomic bins, then
the rpm value of the genomic bin is simply de�ned as:

rpmbini
=
xbini

· 106

n
(3.14)

The MEDIPS package (see section 3.5) allows for exporting wiggle �les [86] contain-
ing genome wide rpm values at an user-speci�ed resolution (e.g. 50 bp). By utilizing
these wiggle �les, the rpm pro�les of the processed biological sample can be immediately
visualised using a suitable genome browser.

3.3.2 Coupling factors

Similar to other MeDIP normalization approaches [27, 80], the presented method cor-
rects for the unspeci�c antibody binding by incorporating local CpG densities into the
MeDIP-Seq derived signals. In order to integrate the information about CpG densities
into the following analysis, it is necessary to identify the genomic positions of all CpGs.
This can be achieved by executing the MEDIPS.getPosition() function of the MEDIPS
package (see section 3.5). Following the valuable concept of coupling factors presented by
Down et al. [27], a coupling vector is calculated based on the received genomic positions
of all CpGs.

The coupling vector is of the same size as the prede�ned genome vector (see section
3.1) but contains local CpG densities (also called coupling factors) for each genomic bin,
instead. For each prede�ned genomic bin at position b, the density of surrounding CpGs
has to be calculated. For this, �rst a maximal distance (d) has to be de�ned. Only CpGs
within the range of [b−d, b+d] will contribute to the �nal local coupling factor at b. The
optimized value for d will re�ect the estimated size of the sonicated DNA fragments after
ampli�cation and size selection. This is because MeDIP-Seq derived signals at position
b are in�uenced by sequenced DNA fragments that overlap with position b. Immunopre-
cipitation of these DNA fragments can be caused by a methylated and antibody bound
CpG located at any position of the DNA-fragment. The maximal distance of a CpG
contributing to the signal at b is therefore the estimated length of the sonicated DNA
fragments (d).

There are several ways of calculating coupling factors for genomic bins. Let c be the
chromosomal position of a CpG and as b is the chromosomal position of a genomic bin,
dist =| b − c | is the distance between the genomic bin and the CpG. A CpG will con-
tribute to the coupling factor of a genomic bin at position b, if dist ≤ d. The simplest
way is to count the number of CpGs within the maximal de�ned distance d around a
genomic bin at position b (count function). Another approach is to weight each CpG by
its distance to the current genomic bin. CpGs farther away from the current genomic bin
will receive smaller weights, whereas CpGs close to the genomic bin will receive higher
weights.
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Figure 3.5: Calculation of coupling factors. The upper panel shows a schematic view

of the genome vector created by de�ning a bin size of 50bp. In addition, CpGs are shown in

a schematic way. A coupling factor is calculated for the centered genomic bin at position b

(marked by a red vertical line). For this, all CpGs within a maximal distance d are considered.

The maximal distance d re�ects the estimated average size of sequenced DNA fragments. There

are several ways for calculating coupling factors. The simplest way is to count the number

of CpGs in the surrounding of b but with a maximal distance of d. Alternatively, a weighting

function can be applied in order to weight each CpG by its distance (dist) to the current genomic

bin at position b. There are several possible weighting function. The �ve images at the bottom

of the Figure show the progression of the weighting functions linear , exp, log , count , and custom

[27] by de�ning d = 700.

The upper panel in Figure 3.5 illustrates a genome vector generated by de�ning a bin
size of 50bp. In addition, CpGs are given in a schematic way. The �gure shows that
immunoprecipitated DNA fragments of an estimated average length greater than the
de�ned bin size can contribute to the signal of a genomic bin at position b. Moreover,
the schematic distance function illustrates that CpGs close to position b will receive
higher weights than CpGs located farther away.

There are several possible ways for de�ning weighting functions. In the context of this
thesis, the following weighting functions were evaluated: count, linear, exp [80], log [80],
and custom [27]. Algorithm 3.4 shows appropriate source code for implementation of
these weighting functions. In addition, the images at the bottom of Figure 3.5 show the
progression of these weighting functions by de�ning a maximal distance d = 700.

Whereas the weighting functions count, linear, exp, and log are calculated by the given
formulas, the custom function allows for specifying user-de�ned weights for any possible
distance dist. For example, Down et al. [27] have generated custom weights for the
distances dist ε [0, 648]. These weights were estimated empirically by sampling from the
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Algorithm 3.4 Distance functions for calculating coupling factors. Supported distance

functions are count , linear , exp [80], log [80], and custom [27]. Here, d is the maximal distance

around a genomic bin where CpGs are considered at all, and dist is the actual absolute distance

between a genomic bin and a CpG.

i f ( func=="count ") {wfun=func t i on ( d i s t , d ) { i f (d<=d i s t ) { re turn (1 ) }
e l s e { re turn (0 ) }}}

i f ( func=="l i n e a r ") {wfun=func t i on ( d i s t , d ) { i f (d<=d i s t ) { re turn (1−
d i s t /d) } e l s e { re turn (0 ) }}}

i f ( func=="exp ") {wfun=func t i on ( d i s t , d ) { i f (d<=d i s t ) { re turn (1− d i s t
^2/(d) ^2)} e l s e { re turn (0 ) }}}

i f ( func=="log ") {wfun=func t i on ( d i s t , d ) { i f (d<=d i s t ) { re turn (1− l og
(1+abs ( d i s t ) /(d/18) ,10) ) } e l s e { re turn (0 ) }}}

i f ( func=="custom") {wfun=func t i on ( d i s t ) { i f ( d i s t <=(length (
dFileData [ , 1 ] )−1) ) { re turn ( dFileData [ ( d i s t +1) , 2 ] ) } e l s e { re turn
(0 ) }}}

fragment-length distribution and randomly placing each fragment such that it overlaps
the genomic bin [27]. These weights are stored in an array (here dFileData) and are
returned when the custom function is called with a given pre-calculated dist value.

Let Ccb be the coupling factor between a CpG at position c and a genomic bin at
position b calculated based on an arbitrary weighting function and for any speci�ed
parameter d. Then

Ctot =
∑

c

Ccb (3.15)

is the sum of coupling factors at the genomic bin b with respect to all CpGs at a genomic
position c, where | b − c |≤ d . For simpli�cation, in the following, Ctot is called the
coupling factor at a genomic bin b and gives a (weighted) measure of local CpG density.

It has been shown [103, 30] that in mammalian cells, methylation is negatively corre-
lated to CpG densities. In other words, regions of low CpG density tend to be highly
methylated, whereas regions of high CpG density tend to be mainly unmethylated. In
order to test the correlation of measured methylation values [30] compared to local CpG
densities calculated with respect to the di�erent weighting functions, I have system-
atically calculated coupling vectors (bin size=50) with varying d ε [0, 2000] using the
weighting functions count, linear, exp, log, as well as for the empirically derived weights
presented by Down et al. [27] (custom). Because the custom weights are available for
the range dist ε [0, 648], only, the weight at dist = 648 is also utilized for the remaining
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distances up to d = 2000.

For the comparisons, I have accessed DNA-methylation values derived from bisulphite
sequencing experiments of a sperm sample as presented by the human epigenome project
(HEP) [30]. Bisulphite sequencing derived methylation data was generated for approxi-
mately 3000 selected genomic regions (called HEP traces) of length 50bp to 500bp [30].
In order to compare CpG densities to the available methylation data, for all utilized
weighting functions with varying parameter d, we have calculated mean coupling factors
for each of the HEP traces and examined the relation to corresponding mean methylation
values by Pearson correlation.

Figure 3.6 a shows the resulting Pearson correlation for varying parameter d and for
the several tested weighting functions. Interestingly, the best negative correlation (-0.73;
that is the higher the CpG density, the lower the bisulphite derived methylation values)
was achieved by setting the parameter d = 700 and by using the count function. For this
parameter settings, Figure 3.6 b shows a scatter plot comparing mean HEP methylation
values and mean coupling factors. Here, each data point represents a HEP trace and the
plot contrasts the mean methylation value (x-axis) to the mean CpG density (y-axis).
The colour code divides the full range of CpG densities into four regular quantiles. Based
on these results, in the following, the coupling vector is always calculated by specifying
d = 700 and by using the count function. However, the MEDIPS package (see section
3.5) allows for justifying the according parameters or for supplying any custom de�ned
distance weights.

Coupling vectors can be calculated for any arbitrary DNA sequence pattern using
the MEDIPS package (see section 3.5). Moreover, the resulting coupling vectors can be
exported into a wiggle �le [86] that allows for visualizing the sequence pattern densities
along the chromosomes using a suitable genome browser.

3.3.3 Calibration curve

As I have created a genome vector that contains the raw signals at each genomic bin
as well as an according coupling vector containing the calculated coupling factors at
each genomic bin, the dependency of local MeDIP-Seq signal intensities and local CpG
densities can be examined. However, by simply plotting the genome vector against the
coupling vector, no concrete dependency is observable (see Figure 3.7). Nevertheless, it
can already be observed that increased MeDIP-Seq signals are preferential present in the
low range of CpG coupling factors. Genomic bins associated to higher CpG densities
show comparatively lower MeDIP-Seq signals.

However, a dependency between CpG densities and MeDIP-Seq signals can be made
tangible by calculating the calibration curve. Calculation of the calibration curve is
achieved by �rst dividing the total range of coupling factors into regular levels. Second,
all genomic bins are partitioned into these levels by considering their associated coupling
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Figure 3.6: Evaluation of coupling factor calculations. Panel a shows the resulting Pear-

son correlations (y-axis) between the mean coupling factors and bisulphite sequencing derived

mean methylation values for a varying distance parameter d (x-axis) and for di�erent weighting

factors (colours). The best negative correlation (-0.73) was achieved by setting the parameter

d = 700 and by using the count function. Panel b shows the according scatter plot where each

data point represents a HEP trace. The scatter plot contrasts the mean methylation value (x-

axis) with the mean CpG density (y-axis). The color code divides the full range of CpG densities

(coupling factors, CF) into four regular quantiles.
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Figure 3.7: Full range calibration plot. The raw MeDIP-Seq derived signals (genome

vector, x-axis) is compared to the CpG coupling factors (coupling vector, y-axis). Each data

point represent a genomic 50bp bin. When looking on the full range of MeDIP-Seq signals, no

general dependency is observable.

factors. Finally, for each level of coupling factors, the mean signal and mean coupling
factor of all genomic bins that fall into this level are calculated.

Algorithm 3.5 shows according R code for calculating the calibration curve. For this,
the maximum of all pre-calculated coupling factors (see subsection 3.3.2) is extracted
(heremaxCoup) and is utilized for separating the full range of coupling factors into regular
levels ranging from 0 to maxCoup. The loop runs over the full range of coupling factors
and iteratively selects the genomic bins associated to the current level of coupling factors.
In each iteration step, the mean signal and mean coupling factors of all temporarily
selected genomic bins are calculated. Finally, for each processed level of coupling factors,
the calibration curve contains the mean coupling factors and mean MeDIP-Seq signals.

As the calibration curve represents the averaged signals and coupling factors over the
full range of coupling factors, it reveals the experiment speci�c dependency between
signal intensities and CpG densities. Figure 3.8 a shows the scatter plot as shown in
Figure 3.7 but with an X-axis range limit of 50 reads/bin. Therefore, the plot only
shows genomic bins associated to MeDIP-Seq signals of max. 50 reads per bin but it
contains the full range of coupling factors. Moreover, the plot contains the pre-calculated
calibration curve (red line).

In fact, for the low range of coupling factors, the calibration curve in Figure 3.8 a
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Figure 3.8: Calibration curves for MeDIP-Seq and INPUT-Seq data. Each data value

within a calibration plot represents a genomic bin. The x-axis shows the raw signals and the y-

axis shows the coupling factors for the genomic bins. The plots include genomic bins associated to

MeDIP-Seq signals ≤ 50 overlapping short reads per bin, only. The calibration curve (red curve)

is very characteristic for MeDIP-Seq experiments (see panel a). For low levels of CpG coupling

factors, the calibration curve illustrates that the MeDIP-Seq signals, in average, increase just

because of an increasing CpG density. An analogous dependency is, as expected, not observable

for INPUT derived sequencing data (see panel b). The noise of the calibration curve in the high

range of coupling factors results by a decrease of the number of genomic bins associated to high

levels of coupling factors. Therefore, the calculated means for high levels of coupling factors are

in�uenced by single outliers.
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Algorithm 3.5 Calculation of the calibration curve. Column three of the genomeVe-

cObj contains the pre-calculated MeDIP-Seq signals and the third column of the couplingVecObj

contains the pre-calculated coupling factors of the genomic bins.

s i g n a l=as . numeric ( genomeVecObj$genomeVec [ , 3 ] )
coup l ing=as . numeric ( couplingVecObj$genomeCoup [ , 3 ] )
maxCoup=f l o o r (max( coup l ing ) )

mean_signal=rep (NA, t imes = maxCoup+1)
mean_coupling=rep (NA, t imes = maxCoup+1)

f o r ( i in 0 :maxCoup) {
mean_signal [ i +1]=mean( s i g n a l [ coupl ing>=i & coupl ing <( i

+1) ] )
mean_coupling [ i +1]=mean( coup l ing [ coupl ing>=i & coupl ing

<( i +1) ] )
}

indicates that the MeDIP-Seq signals, in average, increase because of an increasing CpG
density. Therefore, an increased signal is not necessarily caused by a higher level of
methylated cytosines but scales with the general CpG density. In contrast, Figure 3.8
b shows the calibration curve calculated for INPUT derived sequencing data. Here, the
described dependency of CpG density and sequencing signals is not observable. There-
fore, the calibration plot is very characteristic for MeDIP data and the quality of the
enrichment step of the MeDIP experiment can be estimated by visual inspection of the
progression of the calibration curve.

For higher levels of CpG densities, the mean MeDIP-Seq signals decrease (see Figure
3.8 a). It is assumed that this decrease is caused by the fact that in biological systems,
regions of higher CpG densities are mainly unmethylated. Interestingly, in biological
systems, cytosine methylation occurs mainly in regions of low CpG density. In contrast,
cytosines located in regions of high CpG density are mainly unmethylated. This cir-
cumstance implicates that the dependency between increased signal intensities caused
by increased CpG densities is visible for regions of low CpG densities, only.

3.3.4 Relative methylation score (rms)

The calibration curve (see subsection 3.3.3) reveals that, on average, an increase of
MeDIP-Seq signals is caused by an increasing CpG density. This approximately lin-
ear dependency is visible for the low range of coupling factors, only (see Figure 3.8 a).
For higher levels of CpG densities, the mean MeDIP-Seq signals decrease. As mentioned
above, it is assumed that this decrease is caused by the fact that in mammalian cells,
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Figure 3.9: MeDIP-Chip signals as a logistic function of the methylation level [80].

Pelizzola and colleagues observed a sigmoidal dependency between CpG density (x-axis, mCpGw)

and MeDIP-chip signals (y-axis, MeDIP log2R) using arti�cially fully methylated samples. Their

signal ratios (R) are calculated by dividing each tiling array derived probe signal of the MeDIP

sample by the corresponding probe signal of an Input sample. For all probes on the tiling array,

Pelizzola et al. have calculated weighted CpG densities (CpGw). Because here they have analyzed

arti�cially fully methylated samples by the MeDIP approach, it is assumed that all CpGs are

methylated, i.e. CpGw=mCpGw [80]. From this it follows that all CpGs in the surrounding

of a probe will contribute to the MeDIP-chip signal. Therefore, the presented sigmoidal curve

represents the dependency of MeDIP-chip signals on the local weighted CpG densities over the

full range of CpG densities.

regions of higher CpG densities are mainly unmethylated.

In agreement with this assumption, Pelizzola and colleagues [80] have shown that the
dependency of MeDIP derived signals and CpG density continues for higher levels of CpG
densities, by analyzing arti�cially fully methylated samples using MeDIP-Chip. Figure
3.9 illustrates their identi�ed sigmoidal dependency between CpG density (x-axis) and
MeDIP-Chip data (y-axis). In agreement with Pelizzola et al., it is assumed that the
signal plateau in the lower range of chip signals is caused by background noise but in
contrast to Pelizzola et al., it is assumed that the signal plateau in the upper range of chip
signals occurs by a saturation of hybridization events and is therefore an array speci�c
artefact.

Motivated by the discussed observations made by Pelizzola et al. [80] and by visual
inspection of the MeDIP-Seq derived calibration curve (see Figure 3.8 a), a continuing
linear dependency of MeDIP-Seq signals for higher levels of CpG densities is assumed.

Analogous to Down et al. [27], the local maximum of mean MeDIP-Seq signals of the
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calibration curve in the lower part of coupling factors is identi�ed. Let

y = y1, ..., yl (3.16)

be the mean coupling factors, and let

x = x1, ..., xl (3.17)

be the according mean MeDIP-Seq signals of the calibration curve, where l is the number
of tested coupling factor levels and i = 1, ..., l, then the smallest level i is identi�ed, where
for all j = i− 3, i− 2, i− 1, i+ 1, i+ 2, i+ 3 it is valid

xi ≥ xj (3.18)

Let imax be the according identi�ed level of i, then

ymax = y1, ..., yimax (3.19)

xmax = x1, ..., ximax (3.20)

are the parts of the calibration curve in the low range of coupling factors, where an
approximately linear dependency between MeDIP-Seq signals and coupling factors is ob-
served.

Here, xmax can be explained by a function of ymax as

xmax = f(ymax) + ε (3.21)

where ε is a non-deterministic error variable (i.e. measurement errors) that is expected to
follow a random distribution with expectation value E(ε) = 0. Because linear dependency
between xmax and ymax is assumed, xmax can be described as

xmax = α+ β · ymax + ε (3.22)

where the parameter α is the intercept, and the parameter β is the slope of the linear
approximation. Based on the pre-calculated xmax and ymax vectors, linear regression
is performed, in order to identify a suitable linear model. Linear regression estimates
regression coe�cients a and b for the parameters α and β so that it is valid:

xmaxi = a+ b · ymaxi + ei (3.23)

where i = 1, ..., imax. Here, the residuum ei re�ects the di�erence between the regression
curve a+ b · ymaxi and the measurements of xmaxi . Moreover, xmaxi can be replaced by
an estimate x̂maxi , where

xmaxi − x̂maxi = ei (3.24)

and therefore, it is valid:

x̂maxi = a+ b · ymaxi (3.25)
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For estimating approximate values for the unknown parameters α and β, the least
squares approach is utilized. In principle, the least squares approach identi�es concrete
regression coe�cients a and b so that the sum of squared residues ei, and therefore, the
di�erences between the xmaxi variables of the calculated calibration curve and the x̂maxi

variables of the resulting regression curve, are minimized as:

imax∑
i=1

e2
i =

imax∑
i=1

(xmaxi − (a+ b · ymaxi))
2 → min (3.26)

In the context of linear regression, estimates for the regression coe�cients a and b can
be directly calculated by:

b =
∑imax

i=1 (ymaxi − ȳmax)(xmaxi − x̄max)∑imax
i=1 (ymaxi − ȳmax)2

=
Sxmaxymax

Symaxymax

(3.27)

and

a = x̄max − b · ȳmax (3.28)

where

x̄max =
1

imax

imax∑
i=1

xmaxi (3.29)

ȳmax =
1

imax

imax∑
i=1

ymaxi (3.30)

are the according averages. Sxmaxymax is the empirical covariance between xmax and
ymax, and is divided by Symaxymax , i.e. the empirical variance of ymax. The estimate
Sxmaxymax
Symaxymax

is called the ordinary least square estimate (OLS). The OLS estimate given in
formula 3.27 can be derived from formula 3.26 (see Appendix 1).

When having calculated estimates for the regression coe�cients according to the de-
rived OLS formula (3.27) and according to formula 3.28, concrete values for the parameter
x̂maxi can be calculated as:

x̂maxi = a+ b · ymaxi (3.31)

where i = 1, ..., imax. For the low range of coupling factors, these estimates model the
observed progression of the calibration curve. As discussed above, a continuing linear
dependency between MeDIP-Seq signals and CpG density is expected for the higher
range of coupling factors. Based on the obtained linear model parameters, concrete
x̂maxi values can be calculated for the full range of coupling factors. Therefore,

x̂ = x̂1, ..., x̂imax , ..., x̂l (3.32)
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are the estimated mean MeDIP-Seq signals over the full range of coupling factor levels
l, calculated with respect to the obtained linear model parameters.

In the following, the obtained x̂i values are considered as the expected MeDIP-Seq
signals of genomic bins associated to the according coupling factor levels of i, where
i = 1, ..., l and l is the number of coupling factor levels. For MeDIP-Seq data normaliza-
tion, x̂ is utilized in order to weight the observed MeDIP-Seq signals of the genomic bins
by the expected MeDIP-Seq signals. This observed

expected ratio serves as a divergence indicator
that allows for estimating the strength of MeDIP-Seq signal enrichments with respect to
local CpG densities.

Let (xbini
, ybini

) be the raw MeDIP-Seq signal of the genomic bin i (i.e. the number of
overlapping extended short reads), and the pre-calculated coupling factor at the genomic
bin i, where i = 1, ...,m and m is the total number of genomic bins, then the normalized
relative methylation score is de�ned as

rmsbini
= log2(

xbini
· 106

(a+ b · ybini
) · n

) = log2(
xbini

· 106

x̂bini
· n

) (3.33)

where x̂bini
= a+ b · ybini

is the estimated weighting parameter obtained by considering
the coupling factor ybini

of the genomic bin i, and n is the total number of short reads
considered for the generation of the genome vector. Based on the total number of short
reads (n), the raw MeDIP-Seq signals are, in parallel, transformed into a reads per mil-
lion (rpm) format in order to assure that rms values are comparable between methylomes
generated from di�ering amounts of short reads.

3.3.5 Absolute methylation score (ams)

We consider the rms values as the normalized MeDIP-Seq signals corrected for the ex-
periment speci�c e�ect of unspeci�c antibody binding. In order to identify an absolute
methylation estimate for any speci�ed region of interest, i.e. either any functional ge-
nomic region like promoters or CpG islands or genome wide windows of arbitrary length,
the raw MeDIP-Seq values can be normalized into absolute methylation scores (ams).
The absolute methylation scores additionally correct for the relative CpG density of the
region of interest and therefore, allow for comparing methylation pro�les of genomic re-
gions having di�erent CpG densities.

This is especially necessary, when local methylation levels are associated to further
functional and regulatory mechanism like e.g. gene expression alterations. As an ex-
ample, it is supposed [85, 80] that methylation levels of proximal promoters in�uence
the transcription rate of the according genes. However, promoters are known to show a
wide spread spectrum of CpG densities. Therefore, a fully methylated high CpG den-
sity promoter will show much higher MeDIP signals than a fully methylated low CpG
density promoter, although in both cases the promoter methylation level in�uences the
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transcription rate in a comparable way. Therefore, it remains inaccurate to conclude an
absolute measure of promoter methylation by comparing MeDIP-Seq derived rpm or rms
signals from promoters having di�erent CpG densities.

Let
ROI = ((xbin1 , ybin1), ..., (xbins , ybins)) (3.34)

be the raw MeDIP-Seq signals and coupling factors of adjacent genomic bins i that de�ne
a region of interest (ROI), where i = 1, ..., s and s is the total number of genomic bins
comprised by the ROI, then the absolute methylation score for the ROI is de�ned as:

amsROI = log2(
1
s

∑s
i=1

(xbini
·106)

(a+b·ybini
)·n

1
s

∑s
i=1 ybini

) (3.35)

Analogous to Pelizzola et al. [80], we interpret the ams values (Pelizzola et al. call
them rms), as the measure of the normalized methylation that is independent of the
CpG density of the corresponding region.

3.3.6 Evaluation of MeDIP-Seq data normalization

As described in section 3.3.4, the rational behind the presented normalization method is
based upon the concept of coupling factors presented by Down et al. [27]. Based on a se-
lected distance function for calculating coupling factors (see section 3.3.2), we estimated
the dependency between increasing total CpG density and increasing mean MeDIP-Seq
signals for the low range of coupling factors.

Instead of transferring the identi�ed normalization parameters to a computationally
demanding Bayesian deconvolution process [27], the raw MeDIP-Seq signals are weighted
with respect to the estimated coupling factor dependent normalization parameters (see
section 3.3). The main impact of this simpli�cation is a signi�cantly reduced run time
for processing MeDIP-Seq data by orders of magnitude. In the following, I demonstrate
the performance of the MEDIPS procedure by comparing available and novel raw and
normalized MeDIP-Seq data to bisulphite sequencing derived methylation values. More-
over, the results of the MEDIPS procedure are compared to the results of the BATMAN
software [27] with respect to normalization and runtime. In addition, raw and normal-
ized MeDIP-Seq derived promoter methylation is evaluated with respect to the e�ect on
expression of downstream genes.

Comparison to bisulphite sequencing data from sperm and to the results of
BATMAN

In order to test the performance of the MEDIPS procedure, I processed MeDIP-Seq data
derived from a sperm sample published by Down et al. [27]. Additionally, I downloaded
normalized methylation values provided by Down et al. [27] as well as benchmark methy-
lation data derived from bisulphite-sequencing of another sperm sample generated by the
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3 Modelling of MeDIP-Seq data

human epigenome project (HEP) [30].

The analysis revealed that both normalization methods improved the poor correlation
of raw data from MeDIP-Seq and bisulphite sequencing from a Pearson correlation of
0.42 (Figure 3.10 a) to 0.83 (MEDIPS ams values, Figure 3.10 b) and 0.82 (BATMAN,
Figure 3.10 c) respectively and that both methods have a high correlation of 0.92 (Figure
3.10 d).

Runtime considerations

Until today, only the BATMAN software [27] was available for normalization of MeDIP-
Seq data. However, processing of MeDIP-Seq data takes approximately three days for
only one chromosome (i.e. human chromosome 1) on a modern-day server. As an example
for the dire need for methods able to process MeDIP-Seq data in a time-e�cient way,
researches in this �eld recently reported that they were not able to normalize their
MeDIP-Seq data in appropriate time [58]. In contrast, normalization of genome-wide
MeDIP-Seq data can now be achieved in only few hours by utilizing the novel software
package MEDIPS (i.e. processing the full human genome on the same server as used for
the BATMAN software).

Comparison to bisulphite sequencing data from intestinal tissue

Genome wide methylation patterns are supposed to be unique for sperm samples and
allow for distinguishing di�erent cell-types [30, 85]. Furthermore, aberrant methylation
can be associated with severe e�ects, for example the induction of cancer [47, 41]. In
order to analyse methylation alterations in intestine tissue emerging during colon cancer
development, in-house MeDIP-Seq data of normal and tumor intestine tissues has been
generated. Subsequently, I identi�ed genomic regions showing di�erential methylation
between normal and tumor tissues by applying MEDIPS. From the identi�ed DMRs, 17
genomic regions were selected for an independent validation of methylation patterns by
bisulphite sequencing.

Table 3.3 lists genomic regions (hg19) tested for methylation patterns in normal and
tumor tissue of three di�erent colon cancer patients. Tested genomic regions have an
average length of 285 bp. For each tested region, correlation was calculated by com-
paring averaged bisulphite derived methylation values from normal and tumor tissues
of the di�erent patients against the correponding averaged MeDIP-Seq derived RPM or
normalized RMS values, respectively. Although median correlation over all 17 genomic
regions is already 0.91 for RPM signals, the accordance between bisulphite and MeDIP
sequencing data is improved to a median correlation of 0.94 when normalized RMS values
are considered (see Table 3.3).

58



3 Modelling of MeDIP-Seq data

Figure 3.10: Normalization of MeDIP-Seq data. I compared the normalization results

of the MEDIPS package by processing available sperm MeDIP-Seq data [27] against bisulphite

sequencing derived methylation data of another sperm sample presented by the human epigenome

project (HEP) [30]. Each data point within the �gures represents a genomic region analyzed by

bisulphite sequencing [30]. The colour code represents four quantiles of the calculated mean

coupling factors (CpG densities) for theses regions. The �gures show the comparison of raw

(a), MEDIPS ams normalized (b), and BATMAN [27] normalized (c) MeDIP-Seq data against

bisulphite data from the HEP project [30]. d Comparison of MEDIPS normalized (ams values)

against BATMAN [27] normalized MeDIP-Seq data for the bisulphite sequenced genomic regions.
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chr start stop Correlation to RPM Correlation to RMS

3 370xxx 370xxx 0.999 0.999
6 133xxx 133xxx 0.893 0.941
17 753xxx 753xxx 0.927 0.973
12 133xxx 133xxx 0.911 0.987
5 134xxx 134xxx 0.928 0.924
10 131xxx 131xxx 0.913 0.919
3 148xxx 148xxx 0.994 0.994
12 101xxx 101xxx 0.852 0.882
2 193xxx 193xxx 0.982 0.963
6 163xxx 163xxx 0.255 0.255
1 356xxx 356xxx 0.969 0.944
4 107xxx 107xxx 0.965 0.943
5 388xxx 388xxx 0.847 0.875
14 100xxx 100xxx 0.850 0.904
20 480xxx 480xxx 0.644 0.659
8 115xxx 115xxx -0.385 -0.437
20 610xxx 610xxx 0.967 0.969

Median: 0.91 Median: 0.94

Table 3.3: Bisulphite validation of MeDIP-Seq data from intestine cancer tissues

of colon cancer patients. Median correlation between bisulphite and MeDIP sequenicng data

over all 17 tested genomic regions is 0.91 when RPM signals are considered and is improved to

0.94 when normalized RMS values are considered instead.
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3 Modelling of MeDIP-Seq data

Figure 3.11: Comparing promoter methylation and transcript expression. Associ-

ation of average intestine promoter methylation with transcript expression level. The boxes

correspond to �ve regular quantiles of the RPM (or RMS, respectively) data range. a For each

RPM bin, the transcript expression boxplot is reported. b Shows the same analysis with nor-

malized AMS data on the X-axis.

Comparison to gene expression patterns

It was previously observed that highly expressed genes show low promoter but elevated
exon methylation level [85]. Promoter DNA methylation is expected to determine tran-
scriptional repression of the downstream gene [80]. In order to test the dependency
between promoter methylation and transcript expression, I have accessed available in-
house RNA-Seq transcript expression data from normal intestine tissue of one colon
cancer patient and compared expression to MeDIP-Seq derived methylation levels of the
same tissue and patient. Figure 3.11a shows that association between promoter methy-
lation (X-axis) and transcript expression (Y-axis) does not reveal a general trend when
averaged RPM signals are considered. In contrast, averaged normalized AMS values of
promoters show improved negative correlation with the expression of downstream tran-
scripts (see Figure 3.11b).

In summary, the impact of MeDIP-Seq data normalization by the MEDIPS procedure
is demonstrated with respect to various aspects. First, improved concordance of nor-
malized MeDIP-Seq and bisulphite sequencing data is shown for available sperm and
for novel intestine tissue data. Moreover, the performance of MEDIPS is compared to
the BATMAN software with respect to normalization results and runtime. Finally, it is
shown that negative correlation of promoter methylation and gene expression regulation
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is improved when MeDIP-Seq data is processed and normalized by the MEDIPS proce-
dure. Therefore, MEDIPS is the �rst standard pipeline for MeDIP-Seq data analysis able
to cope with the inherent complexity of MeDIP-Seq data and out performs computation
time of existing methods by orders of magnitude with similar performance.

3.4 Identi�cation of di�erentially methylated regions
(DMRs)

Identi�cation of DMRs is essential for determining local di�erences in the methylation
pro�les of diverse biological samples. While there exist several methods for determining
statistically signi�cant enriched genomic regions from ChIP-on-Chip [59, 99, 17, 46] and
ChIP-Seq experiments [45, 101, 67, 14, 88], the identi�cation of di�erentially methylated
regions from MeDIP-Seq data remains an open problem. The main di�erence between
the ChIP-Seq and MeDIP-Seq approaches is that TFBSs are of short length (8-16bp) and
therefore, ChIP-Seq speci�c methods intend to identify isolated short genomic regions
of high short read enrichments. In contrast, CpGs are spread more widely along the
chromosomes and are partly accumulated in CpG islands of length >300bp. Moreover,
methylation alterations may occur only at few CpG locations and therefore, no sharp
TFBSs like ChIP-Seq peaks are expected. Subsequently, in order to identify DMRs,
comparatively longer genomic stretches have to be considered and methylation alter-
ations have to be determined in a more sensitive way.

For identi�cation of DMRs, there are two alternative approaches. First, it is of inter-
est to specify pre-de�ned genomic regions of interest (ROIs) like CpG islands, promoters
etc., and to speci�cally compare methylation patterns for these regions. Second, it is of
interest to calculate di�erential methylation for genome wide frames of arbitrary length.
However, in both cases I call any prede�ned genomic region as ROI. Here, I present a sta-
tistical approach for calculating di�erential methylation for any prede�ned ROIs, based
on sequencing data from two di�erent MeDIP treated samples (control and treatment)
and with respect to an additional input sequencing data set (input).

Let C, T , and I be the genome vectors (see section 3.1) generated based on the se-
quencing data from control, treatment, and input sequencing data using an arbitrary bin
size b and let ROI be a set of prede�ned ROIs, where ROI = ROI1, ..., ROIi, ..., ROIn,
and n is the number of ROIs to be tested and the ROIs are of length m1, ...,mn. In the
following, identi�cation of DMRs is only supported for any ROIi of length mi ≥ 5 · b.
Therefore, each ROIi includes at least �ve genomic bins bij , where bi1, ..., bij , ..., biki

∈
ROIi and ki =x (mi

b )y. For each ROIi, mean rpm (see subsection 3.3.1) and mean rms
(see subsection 3.3.4) values are calculated based on C and T as:

C.RPMROIi =
1
ki

ki∑
j=1

rpm(C.bi,j)
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C.RMSROIi =
1
ki

ki∑
j=1

rms(C.bi,j)

T.RPMROIi =
1
ki

ki∑
j=1

rpm(T.bi,j)

T.RMSROIi =
1
ki

ki∑
j=1

rms(T.bi,j)

where rpm(C.bi,j), rms(C.bi,j), rpm(T.bi,j), and rms(T.bi,j) are the pre-calculated
rpm (see subsection 3.3.1) and rms (see subsection 3.3.4) values of the genomic bins
from the control and treatment samples. In addition, for each ROIi, mean rpm values
are calculated based on I as:

I.RPMROIi =
1
ki

ki∑
j=1

rpm(I.bi,j)

where rpm(I.bi,j) are the pre-calculated rpm (see subsection 3.3.1) values of the ge-
nomic bins from the Input sample.

Based on the mean rms values of the control and of the treatment sample, for each
ROIi the following ratios are calculated:

r.rmsROIi =
C.RMSROIi

T.RMSROIi

In addition, by considering the mean rpm values of the control or of the treatment
sample, respectively, the following ratios are calculated with respect to rpm values of the
input sample:

r.rpm.CROIi =
C.RPMROIi

I.RPMROIi

r.rpm.TROIi =
T.RPMROIi

I.RPMROIi

Because local background sequencing signals are variable along the chromosomes due
to di�ering DNA availability, a global background rpm signal threshold is estimated
based on the distribution of all calculated I.RPMROIi values. This is done by de�ning a
targeted quantile qt (e.g. qt = 0.95) and by identifying the I.RPMROIi value (t), where
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qt% of all I.RPMROIi values are < t. This estimated global minimal mean rpm thresh-
old t will serve as an additional parameter for selecting genomic regions that show a
mean MeDIP-Seq derived rpm signal of at least t in the control or the treatment sample,
respectively.

In addition, statistical testing is utilized in order to rate whether the obtained rms
data series of the genomic bins within any ROIi signi�cantly di�er in the control sam-
ple compared to the treatment sample. As explained in section 2.2, for each ROIi it
is tested, whether the rms values of the genomic bins bi1, ..., bij , ..., biki

∈ ROIi of the
control sample signi�cantly di�er from the rms values of the according genomic bins of
the treatment sample. For this, the MEDIPS package (see section 3.5) utilizes the t.test()
and wilcox.test() functions of the R environment (www.R-project.org) with default pa-
rameter settings (two-sided tests in both cases). Therefore, for each tested ROIi, two
p-values (ROI.p.value.ti and ROI.p.value.wi) will be calculated and serve as a further
level for discriminating between local methylation pro�les.

For identifying ROIi's that show di�erential methylation between the control and the
treatment sample with respect to the input sample, based on the pre-calculated param-
eters, a �ltering procedure is performed. The following �ltering procedure also discrim-
inates between increased methylation in the control sample compared to the treatment
sample (control>treatment, a) and vice versa (treatment>control, b):

1. ROIi's where C.RMSROIi = T.RMSROIi = 0 are neglected,

2. ROIi's where ROI.p.value.ti> p and ROI.p.value.wi> p are neglected, where p is
any targeted level of signi�cance (e.g. p = 0.01),

3. �ltering for the ratio:

a) ROIi's where r.rmsROIi < h are neglected, where h is an upper ratio threshold
(e.g. h = 1.33),

b) ROIi's where r.rmsROIi > l are neglected, where l is a lower ratio threshold
(e.g. l = 0.75),

4. �ltering for global input derived background signals:

a) ROIi's where C.RPMROIi < t are neglected,
b) ROIi's where T.RPMROIi < t are neglected,

5. �ltering for local input derived background signals:

a) ROIi's where r.rpm.CROIi < h are neglected,
b) ROIi's where r.rpm.TROIi < h are neglected.

The remaining ROI's are considered as candidate genomic regions where events of dif-
ferential methylation can be deduced from the data in a sophisticated statistical way.
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As mentioned above, a set of ROI's can be de�ned as adjacent genome wide windows of
an arbitrary constant length (e.g. a frame size frame = 500 bp). Moreover, neighboring
ROI's are allowed to overlap by any arbitrary constant length (e.g. by an overlap of
overlap = 250 bp), where it must be guaranteed that overlap ≥ 0 and overlap ≤ frame.
Whenever an overlap > 0 was de�ned, signi�cant overlapping DMRs can be received.
Therefore, the MEDIPS package (see section 3.5) merges identi�ed overlapping DMRs
into one supersized region.

3.5 MEDIPS software package

The MEDIPS software package was developed for analyzing data derived from methylated
DNA immunoprecipitation (MeDIP) experiments followed by sequencing (MeDIP-Seq).
Nevertheless, functionalities like the saturation analysis (see subsection 3.2.1) may be
applied to other types of sequencing data (e.g. ChIP-Seq).

MEDIPS incorporates all of the developed methods in the context of MeDIP-Seq data
analysis as presented in sections 3.1-3.4. Moreover, MEDIPS simpli�es processing of
MeDIP-Seq data as it starts where the mapping tools stop and allows for exporting of
the results for visualization in common genome browsers. MEDIPS is available as an R
package, is suitable for any arbitrary genome available via BioConductors [33] annota-
tion libraries [77] and provides comprehensive functionalities for accelerated processing
of MeDIP-Seq data.

The main features of the package are:

� calculating genome wide MeDIP-Seq signal densities at an user speci�ed resolution
(see section 3.1),

� estimating the reproducibility for obtaining full genome methylation pro�les with
respect to the total number of given short reads and with respect of the size of the
reference genome (see subsection 3.2.1),

� analyzing the coverage of genome wide DNA sequence pattern (e.g. CpGs) by the
given reads (see subsection 3.2.2),

� calculating CpG enrichment factors as a quality control for the immuno-precipitation
(see subsection 3.2.3),

� calculating genome wide sequence pattern densities (e.g. CpGs) at an user speci�ed
resolution (see subsection 3.3.2),

� plotting of calibration plots as a data quality check and for a visual inspection of
the dependency between local sequence pattern (e.g. CpG) densities and MeDIP
signals (see subsection 3.3.3)
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� normalization of MeDIP-Seq data with respect to local sequence pattern (e.g. CpG)
densities (see subsections 3.3.4 and 3.3.5),

� summarizing methylation values for genome wide windows of a speci�ed length or
for user supplied regions of interest (ROIs),

� calculating di�erentially methylated regions on raw or normalized data comparing
two sets of MeDIP-Seq data with respect to input-Seq data (see section 3.4),

� export rpm (see subsection 3.3.1) and normalized rms (see subsection 3.3.4) data
for visualization in common genome browsers (e.g. the UCSC genome browser
[86]).

� annotation of identi�ed DMRs with respect to given annotation �les containing
genomic coordinates of e.g. promoter regions, exons, introns, CpG islands, etc.

A schematic diagram of a typical work�ow for processing MeDIP-Seq data by the MEDIPS
software package is shown in Figure 3.12. The package comes along with a manual de-
scribing all steps of the work�ow. Therefore, I refer to the manual (see appendix 2) for a
detailed description on the usage of the functionalities provided within the MEDIPS soft-
ware package. Software and example data are available at http://medips.molgen.mpg.de.
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Figure 3.12: Schematic diagram of the MEDIPS software package. After having spec-

i�ed the reference genome, output resolution, and further normalization parameters, MEDIPS

imports short read information, and subsequently, quality control metrics can be calculated.

Genome wide short read coverages can be exported for visualization in common genome browsers

in RPM format and after normalization in RMS format, respectively. Di�erential methylation

is calculated by comparing methylation pro�les of di�erent samples. Identi�ed DMRs can be

exported or annotated for functional known genomic regions, like e.g. promoters, exons, introns

or CpG islands.
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4 Genetic and epigenetic dependencies

during endodermal di�erentiation of

human embryonic stem cells

An additional important aim of this study is the comparative analysis of genetic and
epigenetic regulatory dependencies during di�erentiation of human embryonic stem cells
along the endodermal lineage. Especially the coherences of genome-wide DNA methy-
lation pro�les, transcription factor binding sites (e.g. OCT4), altered gene expressions,
and di�erentially methylated genomic regions emerging upon initiation of di�erentiation
along the endodermal lineage will be evaluated. Finally, DNA methylation and gene
expression alterations will be shown in detail for a reconstructed core OCT4 network
controlling pluripotency in hESCs.

In order to analyse genetic and epigenetic dependencies during endodermal di�eren-
tiation of human embryonic stem cells, it was necessary to derive de�nitive endoderm
(DE) from hESCs and to measure the resulting gene expression and DNA-methylation
pro�les of both cell types. This has been done using the Illumina beadarray (see also
section 2.1) and MeDIP-Seq (see also sections 2.3 and 2.5) technologies.
Here, it is necessary to mention that these wet-lab experiments are not the direct con-
tent of this thesis and were performed by co-workers as a request for this thesis. Because
detailed informations on the wet-lab experimental approaches are indispensable for in-
terpretation of the results, section 4.2 describes the wet-lab experiments and protocols
performed by the co-workers. However, all aspects of data analysis, cross-linking, and
interpretation were performed exclusively by the author.

4.1 Identifying a core regulatory network of OCT4
controlling pluripotency

The TF OCT4 is known as a key regulator for maintaining pluripotency in the mam-
malian embryo [73, 81] and functional data on OCT4 regulatory action is available
from heterogeneous sources: ChIP-on-chip experiments [13], promoter sequence anal-
ysis [93, 18, 87], and RNA interference [6] provide complementary pieces of information
on OCT4 transcriptional dependencies (see also section 1.2). In order to identify a core
OCT4 regulatory network in hESCs, I have performed [17] an integrated analysis of such
high-throughput data along with promoter sequence analysis.
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Figure 4.1: Overlap of individual studies. Overlap of the re-analyzed OCT4 ChIP-on-chip

experiment, the OCT4 RNAi experiment and the motif mapping results with the octamer and

sox-oct joint motifs.

Analysis of individual experimental methods

I performed a re-analysis of available OCT4, SOX2 and NANOG ChIP-on-chip data
from hESCs [13] including mapping of the 60 mer oligonucleotide probes of utilized DNA
tiling arrays to an updated NCBI build (v36.1). Processing of uniquely-mapped probes
includes background correction, normalization, fold-enrichment and peak identi�cation
and resulted in 308 potential OCT4 target genes.

Because protein-DNA binding events do not give information on the direction of the
regulatory in�uence of the TF with respect to the transcription rate of its target genes,
I complemented the results of the OCT4 ChIP-on-chip experiment with the results of
the RNAi mediated OCT4 silencing in hESCs performed by Babaie et al. [6]. Identi�er
mapping of the di�erent chip platforms (Agilent oligochips and cDNA microarrays) re-
sulted in 10,065 genes that were represented as cDNA clones on the microarray and that
had promoter regions covered by the Agilent tiling arrays. From the originally published
623 OCT4 target genes [13], 472 were also represented on the cDNA microarray. From
the 1,104 genes that show signi�cantly altered expression 72 hours after the OCT4 knock
down, 40 genes (<4%) were also identi�ed as direct OCT4 target genes.

In order to obtain an even more stringent set of OCT4 target genes, I searched the
promoter sequences of the targets for the occurrence of known OCT4-related octamer
and SOX-OCT joint motifs within a distance of 8 kb upstream of the respective TSSs.
Even though I neglect information on binding events caused by OCT4-DNA interactions
mediated by unknown cofactors and heterodimer complexes, the results re�ect con�rmed
functional circuitries dependent on direct OCT4 and SOX-OCT binding. Combination
of the three approaches resulted in a set of 33 genes (see �gure 4.1).
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OCT4 target genes

Among the 33 genes, several well-known targets of OCT4 can be found as well as genes
whose regulatory interaction with OCT4 is less well-described. In general, OCT4 binds
to and regulates diverse classes of genes encoding for example transcription factors
(TGIF2, EOMES, FOXD3, GSC, TSC22D1, GATA6, OCT4, SOX2, NANOG, PAX6,
CDX2, TCF4), transcriptional regulators (SSBP2), regulators of kinase, transferase, and
catalytic activity (GAP43, TDGF1), members of the Wnt receptor signalling pathway
(SFRP2, FRAT2, DKK1), and growth factors (FGF2, LEFTY2, TDGF1).

OCT4 core regulatory network

The resulting OCT4 core regulatory network, also incorporating the information on direct
target genes from the re-analyzed SOX2 (red lines) and NANOG (blue lines) ChIP-on-
chip experiments, is shown in �gure 4.2.

The network distinguishes genes that are suppressed (left side) from those that are
activated (right side) by OCT4. Among the 33 genes a high fraction is annotated with
transcription factor activity (GO:0003700, indicated as rhombuses). Furthermore, a clas-
si�cation in hESCs speci�c genes (red boxes) and genes that are associated with the
process of di�erentiation (green boxes) was performed by accessing several further public
sources [6, 2, 75, 5]. White boxed genes could not be annotated using these sources,
but the information about up or down regulation after the OCT4 knock-down indicates,
whether the respective gene is functional connected to the process of di�erentiation or
to the maintenance of pluripotency.

An additional level of gene regulation has been added to this core OCT4 target net-
work by further literature and database mining (see section 1.2). Figure 1.2 shows the
core network extended by known up- and downstream target genes of the respective TFs
as given by TRANSFAC [68] and by another published work [34].

By this integrative approach, I reconstructed the OCT4 dependent functional tran-
scriptional regulatory network important in the analysis of human stem cell character-
istics and cellular di�erentiation. Functional information is largely enriched using an
overlay of di�erent experimental results [17].

4.2 Experimental procedures and analysis methods

Di�erentiation of human embryonic stem cells (hESCs) into de�nitive endoderm
(DE)

Upon treatment with Activin A (100ng/ml) for 5 days, undi�erentiated human ES cells
(H1, passage 53) changed morphology from typical, de�ned, tight colonies (�gure 4.3 a)
into less dense, �atter cells (�gure 4.3 b) [24].
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Figure 4.2: OCT4 core regulatory network. Core OCT4 transcriptional regulatory net-

work identi�ed by the integrative analysis of the re-analysed ChIP-on-Chip data, the OCT4

RNAi knock-down and the sequence-based octamer and sox-oct motif mapping. Green boxes

represent genes associated with di�erentiation and red boxes indicate genes being speci�c for

hESCs as annotated by several further public sources. For white boxed genes no detailed an-

notation about di�erentiation or stemness characteristics was found by literature research. The

network also incorporates the information on direct target genes from the re-analyzed SOX2 (red

lines) and NANOG (blue lines) ChIP-on-chip experiments.
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In order to con�rm the di�erentiation into de�nitive endoderm (DE), we detected the
expression SOX17 using immunostaining (�gure 4.3 c) and investigated lineage-speci�c
genes expression patterns by real-time RT-PCR (�gure 4.3 d). After 5 days of Activin
A treatment, the majority of the cells were devoid of the pluripotent marker OCT4 but
however showed expression of the transcription factors SOX17 and FOXA2 which are
markers of DE.

Importantly, there was low level expression of the transcription factor SOX7 (expressed
in primitive endoderm but not in DE). This implies that the induction of SOX17 and
FOXA2 expression was not a result of di�erentiation into primitive endoderm. PAX6
expression is detectable, demonstrating the presence of some ectodermal cells. Moreover,
Brachyury (T) expression was also detected, which might imply a transition through the
primitive streak stage of development. Furthermore, HNF4A is up-regulated therefore
indicative, of early hepatic-like characteristics of the Activin A treated cells.

Library preparation

Genomic DNA was sonicated for 2 h as described previously [78] to a size range of 100-400
bp. Fragmented DNA was puri�ed using QIAquick spin columns and bu�er QG (Qiagen)
according to the manufacturer's protocol. 5 µg of fragmented DNA were subjected to
single end library preparation using the genomic DNA sample prep kit (#FC-102-1002,
Illumina) according to the manufacturer's instructions with the following modi�cations:
2.4 times increased amount of enzymes were used for end-repair and A-tailing.

End repair was performed in the presence of 0,25 mM dNTPs Mix in a total volume
of 317 µl, A-tailing was performed in a total volume of 88 µl. Adapters were ligated to
the DNA fragments using 29 µl of `Adapter oligo mix' and 2 times excess concentration
of ligase in a total reaction volume of 98 µl. The sequencing libraries were subjected to
immunoprecipitation (see below).

The ampli�cation was performed after immunoprecipitation prior to gel-size selection.
20 % of the immunoprecipitated DNA or 40 ng of sheared DNA (input) were ampli�ed
using 6 ampli�cation cycles in a total volume of 30 µl. Ampli�ed libraries were size
selected on a 2 % agarose gel to fragments of 150-400 bp (corresponding to insert sizes
of 80-330 bp). Libraries were quanti�ed on a Qubit �uorometer using the QuantIt dsHS
Assay Kit (Invitrogen).

Immunoprecipitation of methylated DNA (MeDIP)

MeDIP was adapted from a previously published protocol [103]. 10 µl of monoclonal an-
tibody against 5-methylcytosine (#BI-MECY, Eurogentec) were coupled overnight with
40 µl Dynabeads M-280 sheep anti-mouse IgG (Invitrogen) in 500 µl 0.5% BSA/PBS,
washed two times with 0.5% BSA/PBS and once with IP-bu�er (10 mM sodium phos-
phate (pH7.0), 140 mM NaCl, 0.25 % Triton X100).
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Figure 4.3: Derivation of de�nitive endoderm from human ES cells. a Phase contrast

image of undi�erentiated human ES cells and b cells after 5 days of Activin A treatment. c

Immuno�uorescence labeling of di�erentiated cells demonstrating SOX17 expression. Scale bar

= 100µm. d E�ect of Activin A treatment on the gene expression of selected genes during

di�erentiation of human ES cells. The ratios represent the mean of two independent biological

replicates. Bars indicate standard errors (SE) between the biological replicates.
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The sequencing libraries were denatured for 1 min at 95 °C. 4 µg of library was immuno-
precipitated for 4 h at 4 °C with the 5-methylcytosine antibody coupled to Dynabeads
in 230 µl IP-bu�er, then washed three times with 700 µl IP-bu�er. The beads were
treated with 50 mM Tris-HCl, pH 8.0; 10 mM EDTA, 1 % SDS for 15 min at 65 °C and
collected using a magnetic rack. The supernatant containing the methylated DNA (200
µl) was diluted with 200 µl 10 mM Tris pH 8,0, 1 mM EDTA, treated with proteinase
K (0.2 µg/µl) for 2 h at 55 °C, followed by phenol-chloroform-extraction and ethanol
precipitation. The precipitated DNA was resuspended in 20 µl of 10 mM Tris pH 8.5.

Illumina Genome Analyzer sequencing

After library quanti�cation at a Qubit (Invitrogen) a 10 nmol stock solution of the
ampli�ed library was created. 12 pM of the stock solution were loaded onto the channels
of a 1.4 mm �ow cell and cluster ampli�cation was performed. Sequencing-by-synthesis
was performed on a Illumina Genome Analyser (GAIIx). After quality control of the �rst
base incorporation (signal intensities, cluster density) the run was started. All MeDIP
and input samples were subjected to 36 b single read sequencing run.

Gene expression beadarray experiments

Biotin-labeled cRNA was produced by means of a linear ampli�cation kit (Ambion,
Austin, TX, USA) using 500ng of quality-checked DNase-free total RNA as input. Chip
hybridisations, washing, Cy3-streptavidin staining, and scanning were performed on an
Illumina BeadStation 500 platform (Illumina, San Diego, CA, USA) using reagents and
following protocols supplied by the manufacturer. cRNA samples were hybridised on
Illumina human-8 BeadChips. We hybridised undi�erentiated and Activin A-treated
(de�nitive endoderm-di�erentiated) H1 cell line (passage 53) samples in biological trip-
licates.

4.3 MeDIP-Seq quality control metrics

The raw sequencing data processing was done using Illuminas proprietary image analysis
and base calling pipeline version 1.4. After mapping [57] of the generated reads against
the human genome hg19 build downloaded from UCSC [86] (http://genome.ucsc.edu/),
we obtained ∼25,9 million unique high quality (MAQ [57] quality score ≥10) mapping
hits for pluripotent hESCs and ∼32,6 million for DE. Additionally, we obtained ∼22,6
million unique high quality mapping hits from input samples of both conditions.

Based on the high quality mapping hits of the generated short reads from hESCs,
DE, and input, we �rst performed saturation analyses resulting in genome-wide coverage
saturation of 0.94 for hESCs and 0.96 for DE (see �gures 4.4 a and b).
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Figure 4.4: Saturation and CpG coverage analysis. The �gure shows the results of the

saturation analysis (see subsection 3.2.1) of the MEDIPS package analyzing MeDIP-Seq data

from hESCs (a), DE (b), and from the input samples (c). Additionally, the �gure shows the

results of MEDIPS coverage analysis (see subsection 3.2.2) for the MeDIP-Seq data from hESCs

(d), DE (e), and from the input samples (f).
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Figure 4.5: Scatter plots comparing raw MeDIP-Seq data from hESCs against DE.

The �gure shows scatter plots comparing raw MeDIP-Seq data sampled at genome wide 50bp

bins for hESCs (control) and DE (treatment) in normal (a) and log2 (b) scale.

Because the constellation of DNA-fragments that have to be sequenced is much higher
for input samples than for immunoprecipitated samples, the estimated saturation for the
input sequences is lower (0.75) (see �gures 4.4 c). Coverage analysis shows a good CpG
coverage saturation of the ∼28.2 million CpGs of the human genome. In the hESCs
sample 22.4 million CpGs (79%), in the DE sample 23,2 million CpGs (82%), and in the
input sample 25.4 million CpGs (90%) were covered at least once (see �gures 4.4 d-f).

The genome wide Pearson correlation obtained when comparing MeDIP-Seq data from
the hESCs and DE samples is 0.9 (see �gures 4.5 a and b).

Moreover, we tested the enrichment of CpG-rich short reads derived from the immuno-
precipitation step and found a relative enrichment for CpG rich short reads from the
hESC sample (2.11) and DE sample (2.59) compared to the reference genome, whereas,
as expected, the relative CpG enrichment is close to one (1.16) for the combined input
samples (see also Table 3.2).

Finally, the calibration curves clearly reveal the dependency between increasing MeDIP-
Seq signals and increasing local total CpG densities for the hESCs and DE samples
resulting from immunoprecipitation, but not for the input sample (see �gures 4.6 a-c).
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Figure 4.6: Calibration plots. The �gure shows the calibration plots generated by the

MEDIPS package after processing of the full-genome MeDIP-Seq data from hESCs (a), DE (b),

and from the input samples (c). Each data point within the calibration plot represents a 50bp

bin. The calibration curve (red line) represents the dependency between MeDIP-Seq signals and

local CpG densities over the full range of coupling factors. The green lines in Figs. a and b show

the estimated normalization curve calculated from the lower lever of coupling factors. For input

samples (c), no CpG density dependent normalization was performed. The plots show the full

range of coupling factors but are limited on the signal range (x-axis) showing only genomic bins

associated to a maximum signal of 50 reads per bin.

4.4 Comparing MeDIP-Seq and WGSBS derived
methylation pro�les

Recently, Lister et al. [64] presented full genome DNA methylation of hESCs at base
resolution generated from 1.16 billion short reads of a whole-genome shotgun bisulphite
sequencing (WGSBS) approach. Moreover, Lister et al. [64] showed that 25% of all
methylated cytosines in hESCs exist in a non-CpG context. Although MeDIP derived
methylation signals are not at a base resolution level, we were interested in comparing
mean MeDIP-Seq and mean WGSBS methylation values for de�ned regions of interest.

For all Ensembl [10] transcript promoters (-1kb to +0.5kb around their TSSs) of chro-
mosome 1 that contain MeDIP-Seq derived short-reads or WGSBS data (10,633), we
calculated meanWGSBS derived CpG methylation values and compared them against ac-
cording mean un-normalized (rpm, see subsection 3.3.1) MeDIP-Seq values from hESCs.

The scatter plot in �gure 4.7 a shows the resulting low correlation of 0.33. Figure 4.7
b shows that the low correlation is increased to 0.72 by normalizing the rpm MeDIP-Seq
signals into absolute methylation signals (ams) using MEDIPS. For CpG islands [97], the
correlation between mean rpm MeDIP-Seq and mean WGSBS values is 0.54 (see �gure
4.7 c) and is increased to 0.65 when considering MEDIPS normalized ams values (see
�gure 4.7 d).
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Figure 4.7: Promoter and CpG islands methylation and comparison to WGSBS. For

10,637 Ensembl [10] transcript promoters of chromosome 1, the mean WGSBS and rpm MeDIP-

Seq signals show a correlation of 0.33 (a). The WGSBS vs. MeDIP-Seq correlation is increased

to 0.71 after MEDIPS normalization of the MeDIP-Seq signals into absolute methylation signals

(ams) (b). For CpG islands, the correlation between mean rpm MeDIP-Seq and mean WGSBS

values is 0.59 (c) and is increased to 0.65 after MEDIPS normalization of the MeDIP-Seq signals

into absolute methylation signals (ams) (d).
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4.5 Promoter methylation

We have, in particular, analyzed CpG density and methylation distributions in proximal
promoter sequences (-1kb to +0.5kb around the TSSs) of 96,016 Ensembl [10] transcripts.
Figure 4.8 a shows the well known bimodal CpG density distribution present in human
promoters. By visual inspection of the plot, we de�ne the coupling factor = 40 as
threshold for discriminating between low CpG density (LCP, 48,021 transcripts) and
high CpG density (HCP, 47,995 transcripts) promoters.

Whereas bimodal promoter methylation is not obvious when considering non-normalized
rpm (see subsection 3.3.1) MeDIP-Seq signals from hESCs (see �gure 4.8 b), MEDIPS
normalized ams (see subsection 3.3.5) MeDIP-Seq values reveal the bimodal promoter
methylation distribution present in hESCs (see �gure 4.8 c) and in DE (see �gure 4.8 d).

For hESCs, a large fraction of LCPs (22,104, 46%) is highly methylated (mean ams ≥
600) whereas only 3,488 (7%) LCPs show low methylation levels (mean ams ≤ 400). For
HCPs, this observation is reversed: 33,196 (69%) HCPs are lowly methylated, whereas
only 189 (< 1%) HCPs are highly methylated. For DE, a similar trend was observed
(data not shown).

4.6 Methylation patterns of transcription factor binding
sites

We tested the ChIP-Seq derived transcription factor binding sites (TFBSs) of six tran-
scription factors (TFs) as presented by Lister et al. [64] for their mean CpG densities
and absolute methylation values (ams) in hESCs.
Interestingly, OCT4 TFBSs show bimodal CpG density and methylation distributions

(see �gures 4.9 a and b). In addition to OCT4, the binding sites of KLF4, and TAF1
show bimodal CpG density and absolute methylation signal distributions (see �gures
4.9 c-f) but in contrast to OCT4 and KLF4 binding sites and in contrast to promoters,
the majority of TAF1 binding sites are associated with high CpG densities and low
methylation values.
Another class of transcription factors are NANOG, SOX2 and p300 as their binding

sites cannot be distinguished into two groups of CpG densities or absolute methylation
signals (see �gure 4.9 g-l).

4.7 Identi�cation of di�erentially methylated regions
(DMRs)

Based on the MeDIP-Seq data from hESCs, DE and input, respectively, we calculated
the short read coverage (extend value=400) at genome wide 50bp bins using MEDIPS
(see also section 3.1). In order to identify di�erentially methylated regions, MEDIPS
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Figure 4.8: Promoter CpG density and methylation distributions. DNA sequences

underlying human promoters [10] (-1kb to + 0.5kb around their TSSs) show a bimodal distribu-

tion of CpG densities (calculated as means of CpG coupling factors, a). By setting the coupling

factor = 40, we de�ne a threshold for discriminating between LCPs and HCPs. The bimodal

methylation distribution present within promoters of human transcript cannot be revealed by

accessing un-normalized MeDIP-Seq data (rpm, see subsection 3.3.1) (b). MEDIPS normalized

absolute methylation scores (ams, see subsection 3.3.5) reveal the bimodal promoter methylation

distributions present in hESCs (c) and in DE (d).
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Figure 4.9: CpG densities and absolute methylation scores of TFBSs. OCT4 binding

sites [64] show bimodal CpG density (a) and absolute methylation score (ams, see subsection

3.3.5) (b) distributions in hESCs. In addition to OCT4 binding sites, bimodal CpG density and

absolute methylation score distributions can be observed for KLF4 and TAF1 binding sites [64]

(c-f). No bimodal CpG density and absolute methylation score distributions can be observed

for NANOG, p300 and SOX2 binding sites [64] (g-l).
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Figure 4.10: Global rpm signal distributions. The �gure illustrates histograms for the

mean rpm values of all genome-wide overlapping 500bp windows for the hESCs (control, red

curve), DE (treatment, green curve), and input (blue line) samples. The grey lines indicate three

possible global rpm thresholds obtained by setting qt = 0.9, qt = 0.95, and qt = 0.99 (grey lines).

calculates mean rpm (for hESCs, DE and input) and mean rms (for hESCs and DE,
only) values for overlapping genome wide 500bp windows where neighboring windows
overlap by 250bp (see also section 3.4).

Figure 4.10 shows histograms of mean rpm signals of the processed genomic windows
for the input (blue curve), hESCs (control, red curve), and for the DE (treatment, green
curve) sample. In order to estimate a minimal global background signal threshold, the
distribution of the mean rpm values derived from the input sample is examined. For this,
MEDIPS calculates the 0.9 quantile (qt) of these pre-calculated mean rpm input values
(see also section 3.4). By this approach, a rpm threshold of t = 0.2566 is identi�ed.
Therefore, 90% of all mean rpm input signals are ≤ t. Figure 4.10 indicates three
alternative rpm thresholds identi�ed by the parameter settings qt = 0.9, qt = 0.95, and
qt = 0.99 (grey lines).
Additionally, we calculated p-values by comparing the rms signal distributions of the

50bp bins of the hESCs and DE samples within each of the 500bp windows (see also
section 3.4). Finally, de-methylation events (hESCs>DE) were identi�ed by �ltering for
windows associated with a p-value ≤ 0.001, with a mean hESCs rpm value ≥ t (de�ned
by qt = 0.9), with a mean local rpm hESCs/input ratio ≥ 1.333333, and with a mean rms
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hESCs/DE ratio ≥ 1.333333. De-novo methylation events (DE>hESCs) were identi�ed
by �ltering for windows associated with a p-value ≤ 0.001, with a mean DE rpm value
value ≥ t (de�ned by qt = 0.9), with a mean local rpm DE/input ratio ≥ 1.333333, and
with a mean rms hESCs/DE ratio ≤ 0.75 (see also section 3.4).

Because we have executed the accordingMEDIPS.di�Methyl() function of the MEDIPS
package for overlapping 500bp windows, we partly received overlapping signi�cant frames.
Therefore, we �nally merged overlapping regions into one super sized region using the
MEDIPS.mergeFrames() function of the MEDIPS package.

Finally, we identi�ed 62,142 distinct genome wide regions that become de-methylated
during the di�erentiation of hESCs into DE. On the other hand, we identi�ed 10,435
genomic regions where de-novo methylation occurs during early di�erentiation along the
endodermal linage.

The comparatively higher number of de-methylated regions compared to de-novo methy-
lated regions emphasizes the important role of de-methylation during embryonic di�er-
entiation. As a comparison, Lister et al. [64] identi�ed approx. 6 million cytosines with
higher levels of methylation in hESCs compared to di�erentiated fetal lung �broblasts
and only 124,162 thousand cytosines with higher levels of methylation in fetal lung �-
broblasts compared to hESCs. From the 491 regions that are hypo-methylated in hESCs
compared to fetal lung �broblasts [64], we also identi�ed 62 regions (13%) where a de-
novo methylation event occurs during the di�erentiation into DE and only 5 regions (1%)
that appear more methylated in hESCs compared to DE.

4.8 Genome wide distribution of DMRs

The heatmap in �gure 4.11 a shows mean rpm MeDIP-Seq values for the three biological
replicates of hESCs, DE, and of the input samples for a subset of the identi�ed DMRs
(selected by the highest variance over the samples). This clustering approach clearly sep-
arates the hESCs, DE, and input samples into distinct groups. Additionally, the heatmap
contains scaled CpG coupling factors of the DMRs.

Interestingly, DMRs that become de-methylated during the di�erentiation of hESCs
are associated with low CpG densities and DMRs that become de-novo methylated are
associated with higher CpG densities (see �gure 4.11 a). In addition to this observation,
we calculated CpG observed/expected [32] ratios as a measure for CpG density with
respect to the amount of cytosines present in both strands of the DNA for both sets of
DMRs, separately. Whereas the majority of de-methylated regions are associated with
very low CpG obs/exp ratios, de-novo methylated regions tend to be associated with
higher CpG obs/exp ratios indicating higher densities of CpGs (see �gure 4.11 b).

For the identi�ed de- (�gure 4.11 c) and de-novo (�gure 4.11 d) methylated regions,
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Figure 4.11: Di�erentially methylated regions (DMRs). a Heatmap of 100 DMRs in-

cluding mean raw (rpm) MeDIP-Seq signals for the three biological replicates of hESCs, and DE

cells, the input sample from hESCs, the input sample from DE, and the mean CpG coupling fac-

tors. Di�erential methylation was calculated based on the pooled sets for hESCs, DE and input.

b Distributions of CpG observed/expected [32] ratios for de-methylated regions (hESCs>DE)

and de-novo methylated regions (DE>hESCs). The identi�ed de-methylated (c) and de-novo

(d) methylated regions were annotated for Ensembl [10] transcript promoters (-2kb to +0.5kb

regions around their TSSs; divided into LCPs and HCPs), CpG islands [97] and their shores

(-0.5kb form the start or +0.5kb from the end of a CpG island), exons, introns, and intergenic

regions (no overlap with promoters and transcript bodies). Regions can be associated to more

than one annotation (e.g. exon and CpG island).
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we tested, if they overlap with HCPs (high CpG promoters) or LCPs (low CpG pro-
moters), (here, we tested an overlap with the -2kb to +0.5kb regions around the TSSs),
CpG islands [97], CpG island shores, exons, and introns, or if they are located intergenic .

Interestingly, a higher percentage of de-novo methylated regions overlap with promot-
ers (17.23%) or CpG Islands (37.15%) compared to the percentage of de-methylated
regions (6.09% and 8.85%, respectively). We observed that <1% of all de-methylation
events occur within HCPs, whereas 12.33% of all de-novo methylated regions overlap
with HCPs. The percentage of de-methylated regions that overlap with introns is con-
siderably higher (56.28%) compared to the percentage of de-novo methylated regions
(31.43%).

In total, an overwhelming 78.53% of all genome-wide de-methylation events can be
associated with transcript bodies or proximal promoters associated with 12,930 unique
Ensembl [10] gene names (including miRNAs and others) whereas 53% of all de-novo
methylation events can be associated with gene regions or proximal promoters of 4,787
unique Ensembl genes.

4.9 Di�erential methylation at TFBSs

We have tested the TFBSs of six transcription factors in hESCs as published by Lister
et al. [64] for overlaps with regions identi�ed as di�erentially methylated during endo-
dermal di�erentiation of hESCs. In total, DMRs are not signi�cantly enriched for any of
the sets of TFBSs.

However, de- and de-novo methylation occur within genomic regions identi�ed as bind-
ing events of the TFs. For example, from the 3,889 OCT4 binding sites [64], there are 130
regions that become de-novo and only 14 regions that become de-methylated. Interest-
ingly, although there are in total six times more DMRs that become de-methylated than
de-novo methylated, the majority of DMRs that overlap with the TFBSs are associated
with de-novo methylation for all six TFs (see Table 4.1).

Binding regions of the class of TFs that show bimodal methylation distributions (these
are OCT4, KLF4, and TAF1), overlap more than twice as much with DMRs than TFBSs
targeted by NANOG, SOX2, and p300.

4.10 Enrichment analysis associates de-methylation events
to functional histone modi�cations

In order to further examine the identi�ed DMRs, we have performed overrepresenta-
tion analyses for the de- and de-novo methylated regions separately, using the statistical
analysis software EpiGRAPH [11]. Regions that become de-methylated during the di�er-
entiation of hESCs into de�nitive endoderm are among others signi�cantly enriched for
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TF #TFBS [64] Ov. DMRs Ov. DMRs (%) Ov. hESCs>DE Ov. DE>hESCs

OCT4 3,889 144 3.70 14 130
KLF4 3,794 128 3.37 48 80
TAF1 12,362 320 2.59 25 295
SOX2 5,682 60 1.06 19 41

NANOG 25,071 321 1.28 117 204
p300 3,093 35 1.13 4 31

Table 4.1: Overlaps of TFBSs and DMRs. For the six TFs [64] OCT4, KLF4, TAF1, SOX2,

p300, and NANOG, the table lists the number of TFBSs that overlap with the identi�ed DMRs

(separated into de- and de-novo methylated regions). Ov. DMRs=number of TFBSs that overlap

with DMRs; Ov. hESCs>DE=number of TFBSs that overlap with events of de-methylation;

Ov. DE>hESCs=number of TFBSs that overlap with events of de-novo methylation.

several distinct sequence patterns, known gene and transcript bodies [10], RefSeq gene
bodies [84], predicted miRNAs [56], conserved regions [86], and for regions associated
with selected histone modi�cation events [7].

Table 4.2 shows all histone modi�cations that are highly signi�cantly (Bonferroni cor-
rected) enriched (or underrepresented, respectively) for the identi�ed de- and de-novo
methylated regions (here, EpiGRAPHSs [11] overlapRegionsCount annotation was con-
sidered). DNA de-methylation is highly enriched for high signals of the gene activating
monomethylations H3K27me1, H3K9me1, H4K20me1, and H2BK5me1 [7]. Moreover,
de-methylation events are enriched for high levels of H3K4me1 and H3K4me2 which are
positively correlated with transcriptional levels but occur in regions more downstream
of TSSs, for high levels of H3K36me3 which were identi�ed sharply after TSSs of active
genes, for H3R2me1 which is modestly correlated with gene activation although no en-
richment of H3R2me1 was found in the promoters of active genes over silent genes and
for Pol II islands which are again positive correlated with gene expression [7].

On the other hand, events of DNA de-methylation are strongly underrepresented in
regions connected to higher signals of H3K27me3, H3K9me3, and H3K9me2 which are
connected to gene silencing [7]. Furthermore, de-methylation events are underrepresented
in regions showing high levels of H2A.Z, whose e�ect to gene expression is controversial
because its association with promoter regions is correlated with gene activity but its
association within gene-bodies is correlated with gene silencing [7].

As already stated previously, the identi�ed DMRs are not enriched for any set of the
TFBSs of the six TFs analyzed by Lister et al [64], and moreover, EpiGRAPHs [11]
enrichment analysis (performed for the TFBSs provided as custom annotations) shows
that NANOG binding sites are even underrepresented in DNA de-methylation events.
Interestingly, CpG islands are also no enriched targets of DNA de-methylation during
endodermal di�erentiation of hESCs.
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Histone modi�cation Gene regulation hESCs>DE DE>hESCs

H2BK5me1 + 1 0
H3K27me1 + 1 -1
H3K36me3 + 1 0
H3K4me1 + 1 1
H3K4me2 + 1 0
H3K9me1 + 1 0
H3R2me1 + 1 0
H4K20me1 + 1 0

PolII + 1 0
H3K27me3 - -1 0
H3K9me3 - -1 0
H3K9me2 - -1 0
H3K27me2 - 0 -1
H2A_Z controversial -1 0

Table 4.2: Overrepresented histone modi�cations in DMRs. The table shows all hi-

stone modi�cations [7] that are highly signi�cantly (Bonferroni corrected) enriched (or under-

represented, respectively) within the identi�ed de- and de-novo methylated regions. Statistical

analysis was performed using EpiGRAPH [11] (here, EpiGRAPHSs overlapRegionsCount anno-

tation was considered). Table legend: + associated with gene activation [7]; - associated with

silent genes [7]; controversial no distinct e�ect [7]; 0 not associated to DMRs; 1 over-represented

in DMRs; -1 underrepresented in DMRs.

87



4 Genetic and epigenetic dependencies during endodermal di�erentiation of human embryonic stem cells

In contrast, de-novo DNA methylation events are strongly enriched in CpG islands.
Moreover, de-novo methylation is predominantly present in Ensembl [10] transcript pro-
moters (-2kb to +0.5kb around their TSSs) and in TFBSs conserved in human, mouse
and rat [86]. For histone modi�cations, events of de-novo methylation are only enriched
in regions associated to the gene activating monomethylation H3K4me1.

4.11 Di�erential methylation and gene expression
alterations

In order to analyze the interplay between DNA-methylation and gene expression changes,
we performed microarray-based gene expression analysis of hESCs and derived DE cells.
Raw gene expression data was obtained employing the manufacturer's software BeadStu-
dio 3.0.19.0. Subsequently, raw data was imported into the Bioconductor environment
[33] and quantile normalization was performed using the beadarray package [29]. Figures
4.12 a and b show box plots of raw and normalized data. In order to test for global
gene expression similarities within biological replicates and between di�erent treatments,
pair-wise Pearson correlation coe�cients were calculated for all samples. Correlations
within the groups are all >0.99 and correlations between the groups are from 0.92 to
0.93 (see �gure 4.12 c). Finally, the dendrogram in �gure 4.12 d shows that the biolog-
ical replicates of hESCs (control) and of DE (treatment) can be clearly separated into
distinct groups.

Di�erential gene expression was calculated using the limma [105] package, and by set-
ting the level of signi�cance to 0.01. There were 2,129 genes signi�cantly down-regulated
and 1,661 genes up-regulated after di�erentiation.

A gene name-based comparison revealed 15,947 genes common on the utilized Illumina
arrays and within the Ensembl [10] gene annotations used for annotating the identi�ed
DMRs. Based on these common genes, �gure 4.13 shows the overlap between genes that
contain at least one identi�ed DMR (de- or de-novo methylation) in any of their associ-
ated transcript- exons, introns or promoter regions with expression either up-regulated
(�gure 4.13 a) or down-regulated (�gure 4.13 b).

In general, events of di�erential methylation are signi�cantly associated with up-
regulated (p-value=3.58e-06) and down-regulated (p-value=4.78e-49) gene expression
patterns. For testing these enrichments, we used the hypergeometric distribution func-
tion phyper provided within the R framework (www.R-project.org).

However, the histograms in �gures 4.13 a and b show similar location distributions
over the tested gene-associated functional units of de- and de-novo methylation events
in both, up- and down regulated genes. Although gene expression changes cannot, in
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Figure 4.12: Gene expression quality controls. The box plots show raw (a) and quantile

normalized (b) Illumina beadarray signal distributions for the three biological replicates of hESCs

(control) and DE (treatment). Correlations within groups are always >0.99 and between groups

range between 0.92 to 0.93 (c). Gene expression pro�les of the biological replicates show a good

clustering behaviour (d).
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Figure 4.13: Genetic and epigenetic dependencies. The �gures show the number of up-

regulated (a) and down-regulated (b) genes with respect to the number of genes associated to

di�erentially methylated regions. For the genes that are di�erentially expressed and contain a

DMR, the histograms show an overview of the number and location of de- and de-novo methylated

regions (LCP=low CpG density promoter; HCP=high CpG density promoter).
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general, be linked to distinct patterns of di�erential methylation, �gure 4.14 shows two
examples of de-novo methylation events located within the promoter regions of the TFs
OCT4/POU5F1 (�gure 4.14 a) and STAT5A (�gure 4.14 b), which appear along with
down-regulation of gene expression in both cases.

4.12 Epigenetic e�ects on the OCT4 regulatory network

In section 4.1, I have presented a core gene regulatory network of OCT4 within the con-
text of maintaining pluripotency in hESCs [17]. I have speci�cally tested the e�ect of
Activin A treatment on the induction of endodermal di�erentiation [24] by associating
gene expression and DNA methylation for the members of the network (see �gure 4.15).

The network illustrates that transcript body associated de- and de-novo methylation
events occur along with both, up- and down-regulation of gene expression. The re-
sults suggest more complex dependencies in the interplay between gene regulation and
DNA methylation during endoderm di�erentiation and of course gastrulation. However,
within the context of the network, de-novo promoter methylation can be unequivocally
associated with OCT4 only and occurs in combination with downregulation of OCT4
expression. Therefore, methylation in the promoter of this core transcription factor may
lead to downregulation of OCT4 and subsequently to loss of pluripotency.

91



4 Genetic and epigenetic dependencies during endodermal di�erentiation of human embryonic stem cells

Figure 4.14: De-novo methylation events in the promoter regions of OCT4 and

STAT5A. The �gures show example promoter regions of di�erentially expressed genes visualized

by a local copy of the UCSC genome browser [86] (hg19). Included tracks are rpm (blue curves)

and rms (grey blocks) values for hESCs and DE, rpm values for input (red curves), de-and de-

novo methylated regions (black blocks), CpG islands de�ned by UCSC [86] (dark green blocks

at the bottom) and by Takai et al. [97] (light green blocks at the top), CpG densities along

the chromosome (green curves, calculated by MEDIPS based on the CpG coupling factors),

TFBSs of six TFs [64] (orange blocks; genomic regions were transformed from hg18 to hg19

using UCSCs liftover software [86]), repeat masked regions (black boxes at the bottom), and

Ref-Seq [84] and Ensembl [10] transcripts. a The promoter region of the down-regulated TF

OCT4/POU5F1 including an identi�ed promoter de-novo methylation event. b The promoter

region of the down-regulated TF, STAT5A, including an identi�ed de-novo methylation event.
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4 Genetic and epigenetic dependencies during endodermal di�erentiation of human embryonic stem cells

Figure 4.15: Epigenetic e�ects on the core OCT4 network. Core OCT4 network iden-

ti�ed within the context of maintaining pluripotency in hESCs [17]. The network illustrates the

e�ect of Activin A treatment as an inducer of endodermal di�erentiation [24] on gene expression

and promoter and transcript body DNA methylation of the individual genes.
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DNA methylation is a crucial epigenetic mechanism involved in normal organismal devel-
opment and cellular di�erentiation. Reversible cytosine methylation allows for modifying
the DNA without changing the DNA sequence itself and can be passed to successor cells
in order to maintain a memory of the cellular state.

Sequencing-based derived DNA methylation data is an emerging source for analyzing
epigenetic modi�cations [54]. The generation of genome-wide methylation data derived
from methylated DNA immunoprecipitation followed by sequencing (MeDIP-Seq) has
become a major tool for epigenetic studies in health and disease. Although MeDIP-
Seq lacks the ability to discriminate between CpG and non-CpG methylation, it covers
nearly as many CpGs per sample genome as the more expensive whole-genome shotgun
bisulphite sequencing (WGSBS) approach [54]. An advantage of the MeDIP approach is
the generation of unbiased, cost-e�ective and full-genome methylation levels without the
limitations associated with methylation-sensitive restriction enzymes.

However, there was a lack of computational analysis methods of such data, especially
in the context of accuracy, sensitivity and speed. As mentioned in section 1.4, it has
been shown that MeDIP-derived data needs to be corrected for local CpG densities in
order to estimate valid methylation levels [27, 80]. Although there are applicable software
available for analyzing MeDIP-Chip data [27, 80], the normalization of MeDIP-Seq data
is in principle solved [27] but remained disproportional time-consuming. Moreover, there
remained several open questions for the analysis of MeDIP-Seq data like estimating the
number of reads necessary for obtaining a su�ciently covered methylome relative to the
size of the genome of interest, the analysis of genome wide covered CpGs, the enrichment
of CpG rich short reads relative to the genomic background, as well as the statistical
identi�cation of di�erentially methylated regions between di�erent conditions.

Here, an alternative approach for normalizing MeDIP-Seq data was presented that is
based on the valuable concept of coupling factors presented by Down et al. [27] but
out performs computation time by orders of magnitude. In fact, processing of the hu-
man chromosome 1 by the BATMAN algorithm [27] takes approximately three days on
a modern day one processor server. In contrast, MEDIPS normalizes the full human
genome in approximately one hour on the the same hardware. As a proof of principle,
we processed the available MeDIP-Seq sperm data from Down et al. [27], compared our
results to the bisulphite sequencing derived sperm data from the HEP project [30], and
show comparable concordance to the results of Down et al [27]. The developed statis-
tical methods are able to cope with the inherent complexity of MeDIP-Seq data and
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out performs computation time of existing methods by orders of magnitude with similar
performance. In addition to the normalization approach, novel quality control methods
were developed that deal with all of the open questions in the context of MeDIP-Seq
data as mentioned above.

The developed methods were implemented as an R library (www.R-project.org) named
MEDIPS (http://medips.molgen.mpg.de), is suitable for any arbitrary genome available
via Bioconductors annotation libraries [33, 77], includes the novel MeDIP-Seq speci�c
quality controls, performs data normalization, and enables the identi�cation of di�eren-
tially methylated regions. MEDIPS o�sets the imbalance of sequencing data production
and analysis by a simpli�ed and accelerated construction and comparison of full-genome
methylation pro�les and will hopefully assist further studies aiming to understand and
characterize the function of DNA-methylation.

In order to further demonstrate the e�ectiveness of our analysis tool, we employed
human embryonic stem cells (hESCs) as a model for cellular di�erentiation. Because
hESCs and induced pluripotent stem cells (iPSCs) can be induced to di�erentiate into a
wide variety of cell types, these cells hold promise for cell replacement therapy [4]. The
transcription factor OCT4 is known as a key regulator for maintaining pluripotency in
the mammalian embryo [73, 81]. In order to identify a core OCT4 regulatory network
controlling pluripotency in hESCs, I have performed [17] an integrated analysis of het-
erogeneous high-throughput data along with promoter sequence analysis.

Di�erentiation of hESCs along the endodermal lineage is induced by treatment with
Activin A, a member of the TGFβ family of ligands [3, 24], resulting in de�nitive endo-
derm (DE). Gene expression and DNA-methylation pro�les of both cell types were ana-
lyzed using the Illumina beadarray platform and MeDIP-Seq technologies. Methylomes
for hESCs and DE, as well as di�erentially methylated genomic regions were identi�ed
using the presented software. Analogous to Lister et al. [64], we identi�ed a large num-
ber of de-methylation events, emphasizing an important role of de-methylation during
the di�erentiation of hESCs. Furthermore, it was shown that in contrast to de-novo
methylation events, de-methylation is mainly associated with regions of low CpG densi-
ties. Finally, I have shown DNA methylation and gene expression alterations in detail
for the previously reconstructed core OCT4 network. Here, promoter associated de-novo
methylation is only observed for OCT4 and occurs in combination with downregula-
tion of OCT4 expression. These observations suggest that OCT4 promoter methylation
may lead to downregulation of this core transcription factor and subsequently to loss of
pluripotency.

Although in-vivo liver development is speci�cally characterized by substantial de-
methylation, Brunner et al. [15] reported controversial observations on the number of de-
methylation and on the enrichment of de- and de-novo methylation events at H3K27me3-
bound regions and within LCPs when comparing in-vitro and in-vivo hepatic di�erentia-
tion by a methyl-sensitive restriction enzyme based sequencing approach. However, based
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on the normalized full-genome MeDIP-Seq data of hESCs and DE, consistently with in-
vivo hepatic di�erentiation [15], we observe high numbers of de-methylation events and
especially LCPs are speci�c targets for de-methylation compared to de-novo methylation.
Although we compared our DMRs to histone modi�cation signals obtained from human
T-Cells [7], accordingly to Meissner et al. [72], we observed that H3K4 methylation
events (activating mark) are associated with de-methylation events in hESCs.

CpG density and methylation analysis revealed two classes of TFs, namely OCT4,
KLF4, and TAF1 on the one hand, and NANOG, SOX2, and p300 on the other hand,
thus suggesting distinct mechanisms in the interplay between transcription factor bind-
ing and DNA methylation. This observation is accompanied by the results obtained
when investigating genomic regions identi�ed as TFBSs [64] and as DMRs. Here, TFs
whose binding sites show bimodal methylation distributions (these are OCT4, KLF3, and
TAF1) overlap more than twice as much with DMRs compared to the TFBSs of the other
class of TFs (i.e. NANOG, SOX2, and p300). However, it has to be more extensively
analyzed in the future, if these observations indeed re�ect di�erent epigenetic regulatory
dependencies for di�erent classes of TFs.

As expected, di�erential methylation is signi�cantly associated with di�erential gene
expression. However, in spite of previous theories [85, 80] suggesting distinct depen-
dencies of methylation changes on gene expression, we did not observe a general trend
of gene-associated, region-speci�c methylation alterations that could explain up- and
down-regulation of gene expression. Therefore, we propose that the e�ect of di�erential
methylation on gene expression has to be further examined with respect to gene-speci�c
locations of putative functional enhancer or silencer regions.

Full genome and base-speci�c methylomes of hESCs have been previously generated
based on >1 billion short reads [64]. In contrast, we have shown that MeDIP-Seq cou-
pled with MEDIPS enables the generation of full genome methylation pro�les based
on approximately 20-30 million uniquely mapped short reads. Although MeDIP-Seq
data is not base-speci�c and therefore does not permit distinguishing cytosine methy-
lation in CpG and non-CpG context, we have shown that for regions of interest, the
methylation pro�les obtained by WGSBS can be correlated to normalized MeDIP-Seq
data. Nevertheless, Lister and colleagues [64] have shown that in human embryonic stem
cells, methylation occurs at cytosines that are not within the CpG context. They have
shown that cytosine methylation in none-CpG context accounts for 25% of all methyla-
tion events in hESCs. In principle, MEDIPS allows to examine the dependency of the
MeDIP-Seq signals and any other arbitrary sequence pattern. Therefore, it might be
worthwhile to include all cytosines within the reference genome into the normalization
process. For this, in addition to CpG speci�c coupling factors, a coupling vector can
be calculated with respect to all cytosines in the reference genome. Testing the e�ect
of MeDIP-Seq data normalization based on a coupling vector generated as a weighted
combination between e.g. CpG and C coupling factors on the overall data accordance
between immunocaptured and bisulphite dependent techniques is only one possible ex-
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tension that can be immediately approached by the developed MEDIPS software package.

Taken together, in our opinion and in line with D'Amour et al. [24], we propose to
further consider in-vitro di�erentiation of hESCs along the endodermal lineage as a model
for endodermal in-vivo development and suggest that MeDIP-Seq coupled with MEDIPS
is a cost- and time- e�ective methodology for full genome DNA methylation analysis.
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Zusammenfassung

Reversible DNA Methylierung, d.h. die reversible kovalente Bindung einer CH3 Gruppe
an die 5'-Position des Pyrimidinderivats Cytosin, ist ein wichtiger epigenetischer Mech-
anismus bereits während der frühen Di�erenzierung humaner embryonaler Stammzellen
(hESCs), wie auch im weiteren Verlauf humaner Entwicklung. Diese DNA Modi�zierung
kann an Tochterzellen weitergegeben werden und ermöglicht es dem biologischen System
somit, ein Gedächtnis zu etablieren. Hierdurch können die Zustände der verschiedenen,
aus hESCs hervorgegangenen, Zelltypen langfristig determiniert werden, ohne jedoch das
Erbgut auf der Sequenzebene zu verändern. In diesem Zusammenhang ist es ersichtlich,
dass der reversiblen DNA Methylierung eine wichtige Funktion während der von aussen
induzierten Reprogrammierung von bereits ausdi�erenzierten adulten Zellen zurück in
hESCs ähnliche Zellen zu kommt. Die Messung von DNA Methylierungszuständen ist
durch verschiedene biotechnologische Methoden möglich.

Methylierte-DNA Immunopräzipitation (MeDIP) macht Gebrauch von einem Antikör-
per, welcher spezi�sch methylierte Cytosine bindet. Durch die anschliessende Fragmen-
tierung der DNA durch z.B. Ultraschallbehandlung, kann mit Hilfe des Antikörpers eine
Anreicherung solcher DNA Fragmente erreicht werden, auf denen bevorzugt methylierte
Cytosine lokalisiert sind. Hierauf ist es notwendig, die gefällten DNA-Fragmente ein-
deutig zu identi�zeren und deren Position im Referenzgenom zu ermitteln. Dies ist
durch die Sequenzierung der gefällten DNA-Fragmente und einem anschliessenden Se-
quenzvergleich mit dem Referenzgenom möglich (MeDIP-Seq). Nichtsdestotrotz kön-
nen Methylierungsmuster nicht direkt aus MeDIP-Seq Daten abgeleitet werden. Eine
vorliegende unspezi�sche Bindungsa�nität des verwendeten Antikörpers, insbesondere
innerhalb genomischer Regionen mit geringen Konzentrationen methylierter Cytosine,
führt zu einer Verzerrung der gemessenen Signale.

Während es in den letzten Jahren zu einer rapiden Weiterentwicklung solcher biotech-
nologischer Techiken gekommen ist, fehlen häu�g anwendbare algorithmische Ansätze,
welche hoch experimentspezi�sche Daten verarbeiten können. Im Zusammenhang mit
MeDIP-Seq Daten gab es bis heute nur eine entwickelte Methodik, welche jedoch weder
reproduzierbar noch in angemessener Zeit auf die Menge der notwendigen Daten ange-
wandt werden kann.

Die vorliegende Arbeit stellt die erste praktikable Lösung zur Analyse genomweiter
Methylierung auf Basis der MeDIP-Seq Technologie vor. Die dargelegten Methoden um-
fassen unterschiedliche Ansätze zur Qualitätskontrolle der generierten Daten, die Nor-
malisierung der MeDIP-Seq Signale unter Berücksichtigung lokaler Sequenzkompositio-
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Zusammenfassung

nen, als auch statistische Verfahren zur Identi�zierung di�erentiell methylierter Regio-
nen zwischen unterschiedlichen biologischen Proben und unter Berücksichtigung globaler
Hintergrundsmessungen. Alle entwickelten Methoden wurden in Laufzeit optimierten
Implementierungen realisiert und in einem Softwarepaket (MEDIPS) zusammengefasst.
MEDIPS ist somit die erste standardisierte Lösung, die eine umfangreiche und repro-
duzierbare Prozessierung von MeDIP-Seq Daten ermöglicht. Die Implementierung er-
laubt die Analyse von Sequenzdaten beliebiger Genome und es wurden bereits über 2
Milliarden Sequenzen aus Mensch und Maus prozessiert. Durch die Anwendung von
MEDIPS konnte bereits eine Vielzahl von Methylierungsänderungen während der Dif-
ferenzierung humaner embryonaler Stammzellen, sowie während der intestinalen En-
twicklung von Adnemon bzw. Tumoren in Mäusen und in Darmkrebspatienten iden-
ti�ziert werden. Durch die Bereitstellung der entwickelten Methoden durch die MEDIPS
Software, egalisiert die vorliegende Arbeit das Ungleichgewicht zwischen der MeDIP-Seq
Datengenerierung und Datenanalyse.

Im zweiten Teil dieser Arbeit wird die erste systematische Untersuchung genomweiter
Methylierungsänderungen während der induzierten Di�erenzierung humaner embryonaler
Stammzellen entlang der endodermalen Linie vorgestellt. Hierbei werden die entwickel-
ten Methoden der MEDIPS software auf MeDIP-Seq Daten angewandt, welche speziell
für diese Arbeit generiert wurden. Methylierungsdaten wurden zum einen aus hESCs
und zum anderen aus de�nitivem Endoderm gewonnen. De�nitives Endoderm (DE)
entsteht durch in-vitro Behandlung von hESCs mit dem zur Gruppe der TGF-β Proteinen
gehörendem Activin A. Es wird angenommen, das Activin A die Di�erenzierung humaner
emryonaler Stammzellen entlang der endodermalen Linie induziert. Somit untersucht die
vorliegende Arbeit frühe Methylierungsänderungen während der endodermalen Di�eren-
zierung von hESCs. Die identi�zierten Methylierungsänderungen werden mit bekannten
funktionellen genomischen Regionen, wie z.B. Promoterregionen, CpG Inseln, Exons, In-
trons, Histonmodi�kationen etc. in Verbindung gebracht und Zusammenhänge zwischen
lokalen Methylierungsänderungen und bekannten regulatorisch wirkenden DNA-Protein
Verbindungen werden dargelegt. Mit Hilfe zusätzlich bereit gestellter Genexpressions-
daten aus hESCs und aus DE wird der E�ekt der Methylierungsänderungen auf die Gen-
expression untersucht. Im zweiten Teil dieser Arbeit wird ausserdem die Rekonstruktion
eines OCT4 zentrierten transkriptionellen Netzwerks präsentiert, welches zur Aufrechter-
haltung der Pluripotenz von humanen embryonalen Stammzellen verantwortlich ist. Für
das identi�zierte transkriptionelle Netzwerk wird abschliessend der Zusammenhang von
Methylierungs- und Genexpressionsänderungen exemplarisch aufgezeigt.

113



Appendix 1

In section 3.3.4, the ordinary least square estimate (OLS) is presented (see formula 3.27).
Formula 3.27 can be derived from formula 3.26. Formula 3.26 requires to minimize the
sum of squared residua ei. Such a local extremum is identi�ed by di�erentiating formula
3.26 with respect to a and b, and by setting the resulting partial derivatives to 0. First,
formula 3.26 is simpli�ed as∑imax

i=1 e2
i =

∑imax
i=1 (xmaxi − (a+ bymaxi))

2

=
∑imax

i=1 (x2
maxi

− 2xmaxi(bymaxi + a) + (bymaxi + a)2)

=
∑imax

i=1 (x2
maxi

− 2bymaxixmaxi − 2axmaxi + b2y2
maxi

+ 2baymaxi + a2)

and the partial derivatives with respect to a and b are generated as follows:

∂R
∂a =

∑imax
i=1 (−2xmaxi + 2bymaxi + 2a)

= 2
imax∑
i=1

(bymaxi + a− xmaxi) (5.1)

∂R
∂b =

∑imax
i=1 (−2ymaxixmaxi + 2by2

maxi
+ 2aymaxi)

= 2
imax∑
i=1

ymaxi(−xmaxi + bymaxi + a) (5.2)

By setting formula 5.1 to zero, it is valid:

∂R
∂a = 2

∑imax
i=1 (bymaxi + a− xmaxi) = 0

2
∑imax

i=1 bymaxi + 2
∑imax

i=1 a− 2
∑imax

i=1 xmaxi = 0

2
∑imax

i=1 bymaxi + 2imaxa− 2
∑imax

i=1 xmaxi = 0

2imaxa = 2
∑imax

i=1 xmaxi − 2
∑imax

i=1 bymaxi

a =
Pimax

i=1 xmaxi
imax

−
Pimax

i=1 bymaxi
imax
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a = 1
imax

∑imax
i=1 xmaxi − b 1

imax

∑imax
i=1 ymaxi

and because of formulas 3.29 and 3.30, it is valid:

a = x̄max − bȳmax (5.3)

Subsequently, formula 5.3 is introduced into formula 5.2 (i.e. the partial derivative of
formula 3.26 with respect to b), and this partial derivative is also set to 0:

∂R
∂b = 2

∑imax
i=1 ymaxi(bymaxi + (x̄max − bȳmax)− xmaxi) = 0∑imax

i=1 ymaxi(bymaxi + (x̄max − bȳmax)− xmaxi) = 0∑imax
i=1 ((by2

maxi
− bymaxi ȳmax)− ymaxixmaxi + ymaxi x̄max) = 0∑imax

i=1 (by2
maxi

− bymaxi ȳmax) =
∑imax

i=1 ymaxixmaxi −
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b
∑imax

i=1 (y2
maxi

− ymaxi ȳmax) =
∑imax

i=1 ymaxixmaxi − x̄max
∑imax

i=1 ymaxi

b =
Pimax
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Pimax

i=1 ymaxiPimax
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maxi
−ymaxi ȳmax)

b =
∑imax

i=1 ymaxixmaxi − x̄maximaxȳmax∑imax
i=1 y2

maxi
− 1

imax

∑imax
i=1 ymaxiymaxi

(5.4)

The displacement law shows for the covariance∑imax
i=1 (ymaxi − ȳmax)(xmaxi − x̄max) =

∑imax
i=1 (ymaxixmaxi)− x̄maximaxȳmax

and for the variance∑imax
i=1 (ymaxi − ȳmax)2 = (

∑imax
i=1 y2

maxi
)− 1

imax
(
∑imax

i=1 ymaxi)
2

Therefore, formula 5.4 can be notated as:

b =
∑imax

i=1 (ymaxi − ȳmax)(xmaxi − x̄max))∑imax
i=1 (ymaxi − ȳmax)2

=
(Sxmaxymax)
(Symaxymax)

�
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Appendix 2

In section 3.5, the MEDIPS software package is presented. MEDIPS is the �rst stan-
dard pipeline for comprehensive analysis of MeDIP-Seq data. The entire computational
approach, including data processing, quality control, normalization, statistical analysis
of di�erential methylation and methods for simulation of read coverage and saturation
has been made available as an R software package. In order to allow other researchers
to make use of the functionalities of the MEDIPS software package, I have prepared an
extensive manual which is included in this thesis as Appendix 2 (see below).
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MEDIPS Tutorial

Lukas Chavez

May 26, 2010

1 Introduction

MEDIPS was developed for analyzing data derived from methylated DNA im-
munoprecipitation (MeDIP) experiments [Weber et al., 2005] followed by se-
quencing (MeDIP-Seq). Nevertheless, functionalities like the saturation analysis
may be applied to other types of sequencing data (e.g. ChIP-Seq). MEDIPS
adresses several aspects in the context of MeDIP-Seq data analysis. These are:

• estimating the reproducibilty for obtaining full genome methylation pro-
files with respect to the total number of given short reads and to the size
of the reference genome,

• analyzing the coverage of genome wide DNA sequence patterns (e.g. CpGs)
by the given reads,

• calculating an CpG enrichment factor as a quality control for the immuno-
precipitation,

• calculating genome wide MeDIP-Seq signal densities at a user specified
resolution,

• calculating genome wide sequence pattern densities (e.g. CpGs) at a user
specified resolution,

• plotting of calibration plots as a data quality check and for a visual in-
spection of the dependency between local sequence pattern (e.g. CpG)
densities and MeDIP signals

• normalization of MeDIP-Seq data with respect to local sequence pattern
(e.g. CpG) densities,

• summarized methylation values for genome wide windows of a specified
length or for user supplied regions of interest (ROIs),

• calculating differentially methylated regions on raw or normalized data
comparing two sets of MeDIP-Seq data,

• export of raw and normalized data for visualization in common genome
browsers (e.g. the UCSC genome browser).

MEDIPS starts directly where the mapping tools stop and can be used for
any genome of interest, limited only by the available genomes within Biocon-
ductors BSgenome package.

i



2 Preparations

In order to execute MEDIPS, you need to have some other packages installed in
your R library. These are BSgenome and gtools, as well as the packages they
depend on. You can check this, by starting R and typing

> packageDescription("BSgenome")

> packageDescription("gtools")

R will inform you in case you do not have these packages installed. In case
you do not have these necessary packages installed, start R and try typing

> source("http://bioconductor.org/biocLite.R")

> biocLite("BSgenome")

> biocLite("gtools")

Please be aware of having the latest BSgenome version installed (>1.14.2). The
version number is returned by the packageDescription() command. Please
note, unfortunatley, there is a bug in the R distributions versions<=2.10.1 that
sometimes causes errors when interacting with the BSgenome package. This bug
should be fixed in R versions >2.11.0. Therefore, it is recommended to update
your R environment to the latest version.

Next, it is necessary to install the MEDIPS package into your R environment.
Currently, the MEDIPS package MEDIPS_1.2.tar.gz can be downloaded from
http://medips.molgen.mpg.de/. In order to install MEDIPS, download the
package to your R working environment and type

> install.packages("MEDIPS_1.2.tar.gz", dependencies = TRUE, repos = NULL)

In case, the downloaded MEDIPS package is not in your current working
directory, you have to specify the file name together with the full path.
In order to reproduce the presented MEDIPS workflow, we recommend
to download the example data sets MeDIP_hESCs_chr1-3.txt.gz (35M),
MeDIP_DE_chr1-3.txt.gz (42M), and Input_StemCells_chr1-3.txt.gz

(34M) from http://medips.molgen.mpg.de/ and gunzip the files. The files
contain genomic regions from chromosomes 1, 2, and 3 only, as covered by
short reads obtained from a MeDIP experiment of human embryonic stem cells
(hESCs), a MeDIP experiment of differentiated hESCs (definitive endoderm,
DE), and of INPUT experiments [Chavez et al., 2010].

As input, MEDIPS requires tab-separated files without headers containing
four columns:

• the first coulumn is of type character and contains the chromosome of the
region (e.g. chr1).

• the second column is of type numeric and contains the start position of
the mapped read.

• the third column is of type numeric and contains the stop position of the
mapped read.

• the fourth column is of type character and contains the strand information
of the mapped read.
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Each row represents a mapped read. These informations can be extrcated
from the output file(s) of common mapping tools. MEDIPS counts chromosome
sequence positions starting at 1. Some alignment tools output the mapped
regions by interpreting the first base of a chromosome as 0. MEDIPS requires
one input file for each condition that has to be analyzed. Region informations
from several mapping results have to be pooled into one file. Furthermore, it
might be worthwhile to filter out some mapped reads of low quality or to exclude
artifical short read pile-ups from the results of the mapping procedure. Please
note, any such data pooling, further filtering or correction for the start and stop
positions has to be done by yourself before using MEDIPS.

Next, you need to have your genome of interest available. As soon as you
have the BSgenome package insalled and the library loaded using

> library("BSgenome")

you can list all available genomes by typing

> available.genomes()

[1] "BSgenome.Amellifera.BeeBase.assembly4"

[2] "BSgenome.Amellifera.UCSC.apiMel2"

[3] "BSgenome.Athaliana.TAIR.01222004"

[4] "BSgenome.Athaliana.TAIR.04232008"

[5] "BSgenome.Btaurus.UCSC.bosTau3"

[6] "BSgenome.Btaurus.UCSC.bosTau4"

[7] "BSgenome.Celegans.UCSC.ce2"

[8] "BSgenome.Cfamiliaris.UCSC.canFam2"

[9] "BSgenome.Dmelanogaster.UCSC.dm2"

[10] "BSgenome.Dmelanogaster.UCSC.dm3"

[11] "BSgenome.Drerio.UCSC.danRer5"

[12] "BSgenome.Ecoli.NCBI.20080805"

[13] "BSgenome.Ggallus.UCSC.galGal3"

[14] "BSgenome.Hsapiens.UCSC.hg17"

[15] "BSgenome.Hsapiens.UCSC.hg18"

[16] "BSgenome.Hsapiens.UCSC.hg19"

[17] "BSgenome.Mmusculus.UCSC.mm8"

[18] "BSgenome.Mmusculus.UCSC.mm9"

[19] "BSgenome.Ptroglodytes.UCSC.panTro2"

[20] "BSgenome.Rnorvegicus.UCSC.rn4"

[21] "BSgenome.Scerevisiae.UCSC.sacCer1"

[22] "BSgenome.Scerevisiae.UCSC.sacCer2"

In the given example, we mapped the short reads against the human genome
build hg19. Therefore, we download and install this genome build:

> source("http://bioconductor.org/biocLite.R")

> biocLite("BSgenome.Hsapiens.UCSC.hg19")

This takes some time, but has to be done only once for each necessary reference
genome.
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3 MEDIPS Workflow

3.1 Create a MEDIPS SET from the input file

First, you have to load MEDIPS into your R environment. Herewith, the de-
pendent libraries BSgenome and gtools as well as the packages they depend on
will be loaded, additionally.

> library(MEDIPS)

In the given example, we mapped the short reads against the human genome
build hg19. Therefore, we load the pre-installed (see chapter 2) hg19 library:

> library(BSgenome.Hsapiens.UCSC.hg19)

Next, a MEDIPS SET is created by reading the input file. For this, you
have to state the reference genome build and your input file (in this example:
MeDIP_hESCs_chr1-3.txt). You can also state the full directory path together
with the file name. In case you know the number of rows within your input file,
you can specify the numrows parameter. This will accelerate the reading of your
file. Otherwise just skip the numrows parameter. In our example file, there are
5,461,263 Mio regions within the input file (here, only chromosomes 1, 2, and 3
are included).

> CONTROL.SET = MEDIPS.readAlignedSequences(BSgenome = "BSgenome.Hsapiens.UCSC.hg19",

+ file = "MeDIP_hESCs_chr1-3.txt", numrows = 5461263)

MEDIPS now created a MEDIPS SET from the input. The current content
of a MEDIPS SET can be viewed at any time by typing the name of your
MEDIPS SET object.

> CONTROL.SET

S4 Object of class MEDIPSset

=======================================

Regions informations

=======================================

Regions file: MeDIP_hESCs_chr1-3.txt

Organism: BSgenome.Hsapiens.UCSC.hg19

Chromosomes: chr1 chr2 chr3

Chromosome lengths: 249250621 243199373 198022430

Number of regions: 5461263

Regions chromosomes: chr1 chr1 chr1...

Regions start positions: 100001075 10000155 10000178...

Regions stop positions: 100001111 10000191 10000214...

Regions strand: - - -...

=======================================

Genome vector signals informations

=======================================

Genome wide bin size:

Reads extended by:

Genome vector chromosomes: NA NA NA...
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Genome vector positions: NA NA NA...

Genome vector signals: NA NA NA...

=======================================

Pattern informations

=======================================

Pattern:

Number of patterns:

Pattern chromosomes: NA NA NA...

Pattern positions: NA NA NA...

=======================================

Genome vector coupling factor informations

=======================================

Distance function:

Distance file:

Fragment length:

Genome vector coupling factors: NA...

=======================================

Calibration informations

=======================================

Calibration curve mean signals: NA...

Calibration curve mean coupling factors: NA...

Calibration curve variance: NA...

Intercept:

Slope:

Calibration chromosome:

=======================================

Genome vector normalized signal informations

=======================================

Normalization output interval: [0:1000]

Genome vector normalized signals: NA...

After reading the input file, the MEDIPS SET contains only the information
about the input regions, like the input file name, the dependent organism, the
chromosomes included in the input file, the length of the included chromosomes
(automatically loaded), the number of regions, and the start, stop and strand
informations of the regions. All further slots, for example for the weighting
parameters and normalized data are still empty and will be filled during the
workflow.

3.2 Creating the Genome Vector and Export of RPM Sig-
nals

Based on the given regions, a genome-wide coverage has to be calculated. In
order to calculate the genome wide short read coverage, the user has to specify
a targeted data resolution using the parameter bin_size (default: 50bp). In
principle, a bin_size=1 can be specified. Because the resolution of MeDIP-Seq
data is restricted by the size of the sonicated DNA fragments after amplification
and size selection (that often is between 0.2-1kb), it might not be necessary to
specify very small bin sizes. Moreover, the smaller the bin size, the higher the
need for memory of your computer and the higher the runtime will be. We
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consider a bin size of 50bp as a reasonable compromise on data resolution and
computational costs.

Each chromosome inside the MEDIPS SET will then be divided into bins of
size 50bp and the short read coverage will be calculated on this resolution. In
the following, we call the bin representation of the genome the genome vector.

Moreover, short reads generated by modern-day sequencers do not represent
the full DNA fragments but are of shorter length (e.g. 36bp). Therefore, a
smoothing of the data is recommended by extending the reads. This can be
achieved by setting the parameter extend (default: 400bp). With this, each
region is extended to a length of 400bp either along the + or along the - direction
as specified by the dependent strand information. The extend value will not be
added to the given length of the short reads but the final length of the extended
reads will be the length as specified by the extend parameter.

You can create the genome vector by typing

> CONTROL.SET = MEDIPS.genomeVector(data = CONTROL.SET, bin_size = 50,

+ extend = 400)

For each pre-defined genomic bin, the genome vector stores the number of
provided overlapping extended short reads and these are interpreted as the raw
MeDIP-Seq signals. After having called the MEDIPS.genomeVector function,
the slots of the MEDIPS SET associated to the genome vector are occupied.
For example, there is a slot that contains the raw signals for each genomic bin.

Based on the total number of provided short reads (n), the raw MeDIP-
Seq signals can be transformed into a reads per million (rpm) format in order
to assure that coverage profiles derived from different biological samples are
comparable, although generated from differing amounts of short reads. Let
xbini

be the raw MeDIP-Seq signal of the genomic bin i, where i=1,...,m and
m is the total number of genomic bins, then the rpm value of the genomic bin is
simply defined as:

rpmbini
=
xbini

·106

n

It is already possible to export the raw signals in a reads per million (rpm)
format as a wiggle (WIG) file by typing:

> MEDIPS.exportWIG(file = "output.rpm.control.WIG", data = CONTROL.SET,

+ raw = T, descr = "hESCs.rpm")

At this point, it is necessary to set the parameter raw=T. Otherwise, the
export function tries to write out the normalized data that does not exist yet.
The descr parameter contains an arbitrary description for the wiggle file and
will be visualized by a suitable genome browser. It is recommended to gzip the
WIG file before you upload it to e.g. the UCSC browser.

3.3 Saturation Analysis

The saturation analysis addresses the question, whether the number of input
regions is sufficient to generate a saturated and reproducible methylation pro-
file of the reference genome. The main idea is that an insufficent number of
short reads will not result in a saturated methylation profile. Only if there is a
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sufficient number of short reads, the resulting genome wide methylation profile
will be reproducible by another independent set of a similar number of short
reads.

You can start the saturation analysis by typing

> sr.control = MEDIPS.saturationAnalysis(data = CONTROL.SET, bin_size = 50,

+ extend = 400, no_iterations = 10, no_random_iterations = 1)

For the saturation analysis, the total set of available regions is divided into
two distinct random sets (A and B) of equal size. In our example, both sets A

and B will contain approx. 2,730,631 randomly selected regions. Both sets A

and B are again divided into random subsets of equal size where the number of
subsets is determined by the parameter no_iterations (default=10). In our
example, each subset of A (A1,A2, ..,A10) and of B (B1,B2, ..,B10) will contain
approx. 273,063 randomly selected reads. For each set, A and B, the saturation
analysis iteratively selects an increasing number of subsets and creates according
genome vectors as described in section 3.2. Here, the parameters bin_size

and extend fulfill the same tasks as described in section 3.2. In case, these
parameters remain un-specified, MEDIPS accesses the parameter settings as
specified previously for generating the genome vector.

In each iteration step, the resulting genome vectors for the subsets of A and
B are compared using pearson correlation. As the number of considered regions
increases during each iteration step, it is assumed that the resulting genome
vectors become more similar, a dependency that is expressed by an increased
correlation.

Because such a saturation analysis can be performed on two independent
sets of short reads only, a true saturation can only be calculated for half of the
available short reads. As it is of interest to examin the reproducibility of the
MeDIP-Seq experiment for the total set of available short reads, the saturation
analysis is always followed by an estimated saturation analysis. For the esti-
mated saturation analysis, the full set of given regions is doubled by considering
each region twice and then the described saturation analysis is performed on
the artificially doubled set of regions.

The saturation analysis does not modify the MEDIPS SET object but the
results are stored at the specified saturation results object (here sr.control).
The results of the saturation and of the estimated saturation analysis can be
viewed by typing

> sr.control

$distinctSets

[,1] [,2]

[1,] 0 0.0000000

[2,] 273063 0.3799416

[3,] 546126 0.5542248

[4,] 819189 0.6516593

[5,] 1092252 0.7123595

[6,] 1365315 0.7561200

[7,] 1638378 0.7883925

[8,] 1911441 0.8131249

[9,] 2184504 0.8327547
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[10,] 2457567 0.8484666

[11,] 2730631 0.8615709

$estimation

[,1] [,2]

[1,] 0 0.0000000

[2,] 273063 0.3928754

[3,] 546126 0.5642490

[4,] 819189 0.6592182

[5,] 1092252 0.7198565

[6,] 1365315 0.7626495

[7,] 1638378 0.7944703

[8,] 1911441 0.8188825

[9,] 2184504 0.8382251

[10,] 2457567 0.8537813

[11,] 2730630 0.8663862

[12,] 3003693 0.8768716

[13,] 3276756 0.8859742

[14,] 3549819 0.8937129

[15,] 3822882 0.9004610

[16,] 4095945 0.9063411

[17,] 4369008 0.9116466

[18,] 4642071 0.9165601

[19,] 4915134 0.9209637

[20,] 5188197 0.9247189

[21,] 5461263 0.9281537

$numberReads

[1] 5461263

$maxEstCor

[1] 5.461263e+06 9.281537e-01

$maxTruCor

[1] 2.730631e+06 8.615709e-01

The maximal obtained correlation of the saturation analysis is stored at the
maxTruCor slot and the maximal obtained correlation of the estimated satura-
tion analysis is stored at the maxEstCor slot of the saturation results object
(first column: total number of considered reads, second column: obtained cor-
relation). The results of each iteration step are stored in the distinctSets and
estimation slots for the saturation and estimated saturation analysis, respec-
tively (first column: total number of considered reads, second column: obtained
correlation).

These results can be visualized by typing

> MEDIPS.plotSaturation(sr.control)
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Because the artificially doubled set of short reads, as utilized for the esti-
mated saturation analysis, does not represent a true outcome of a MeDIP-Seq
experiment, the calculated correlations will overestimate the true reproducibil-
ity. It is assumed that the true correlation for the full set of available short
reads will be between the results of the true (0.86) and of the estimated (0.93)
saturation analyis.

As an example, the results show that a number of approx. 1.09 million
reads will result in a genome wide methylation profile that has a correlation of
only 0.71 compared to a methylation profile obtained by another independent
set of approx. 1.09 million reads. On the other hand, it can be deduced that
two independent sets of approx. 4.3 million reads return methylation profiles
having a correlation of 0.91 when compared. Even when the total set of reads
is increased to e.g. 5.4 million, the resulting correlation only increases to 0.93.
Therefore, it might be necessary to produce a total number of approximately 4
million reads for the chromosomes 1, 2, and 3 of the human genome. Obviously,
the quality of a reconstructed methylome always increases by an increasing
number of generated short reads. However, the saturation analysis assists for
rating whether the costs of additional sequencing runs is in proportion to the
impact on the quality of the reconstructed methylome. Please note, the results
of the saturation analysis are dependent on the size of the examined reference
genome (here, only the chromosomes 1, 2, and 3 are considered).

Further parameters that can be specified for the saturation analysis are:

• no_random_iterations: approaches that randomly select data entries
may be processed several times in order to obtain more stable results. By
specifying the no_random_iterations parameter (default=1) it is possi-
ble to run the saturation analysis several times. The final results returned
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to the saturation results object are the averaged results of each random
iteration step.

• empty_bins: can be either TRUE or FALSE (default TRUE). This pa-
rameter effects the way of calculating correlations between the resulting
genome vectors. A genome vector consists of concatenated vectors for each
included chromosome. The size of the vectors is defined by the bin_size

parameter. If there occur genomic bins which contain no overlapping re-
gions, neither from the subsets of A nor from the subsets of B, these bins
will be neglected when the paramter is set to FALSE.

• rank: can be either TRUE or FALSE (default FALSE). This parame-
ter also effects the way of calculating correlations between the resulting
genome vectors. If rank is set to TRUE, the correlation will be calculated
for the ranks of the bins instead of considering the counts. Setting this
parameter to TRUE is a more robust approach that reduces the effect
of possible occuring outliers (these are bins with a very high number of
overlapping regions) to the correlation.

3.4 Receiving DNA Sequence Pattern Positions

The idea of a MeDIP experiment is to identify methylated cytosins. For this,
an antibody is used that recognices methylated cytosines. However, it has been
shown [Down et al., 2008], [Pelizzola et al., 2008] that MeDIP signals scale with
local densities of CpGs and are not necessarily influenced by only methylated
cytosines. In order to integrate the information about CpG densities into the
following analysis, it is necessary to identify the genomic positions of all CpGs.
This can be achieved by typing

> CONTROL.SET = MEDIPS.getPositions(data = CONTROL.SET, pattern = "CG")

MEDIPS returns all start positions of CpGs on the plus strand of the refer-
ence genome. As the CG pattern is reverse complementary, it is only necessary
to scan the plus strand. The pattern dependent slots of the MEDIPS SET object
now store the necessary informations. (Have a look by just typing the name of
your MEDIPS SET object). In principle, it is possible to identify the positions
of any other sequence pattern. For example, Lister and colleagues [Lister et al.,
2009] have shown that in human embryonic stem cells, methylation occurs at
cytosines outside of the CpG context. Therefore, it might be worthwhile to scan
for all cytosines within the reference genome. Please note, for sequence patterns
that are not reverse complementary, the function returns all start positions of
the pattern within the plus and the minus strand. But for now, we will continue
using the CpG pattern.

3.5 Sequence Pattern Coverage Analysis

The main idea of the coverage analysis is to test the number of CpGs (or any
other predefined sequence pattern, see section 3.4) covered by the given short
reads and to have a look at the depth of coverage. Before the coverage analysis
can be executed, it is necessary to previously excecute the MEDIPS.getPositions
function (see section 3.4). Afterward, the coverage analysis can be started by
typing
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> cr.control = MEDIPS.coverageAnalysis(data = CONTROL.SET, extend = 400,

+ no_iterations = 10)

For the coverage analysis, the total set of available regions is divided into
random subsets of equal size where the number of subsets is determined by
the parameter no_iterations (default=10). The coverage analysis iteratively
selects an increasing number of subsets and and tests how many CpGs are
covered by the available regions. Moreover, it is tested how many CpGs are
covered at least 1x, 2x, 3x, 4x, 5x, and 10x. These levels of coverage depths can
be adjusted by setting the coverages parameter (see below). As the regions
are typically of short length (e.g. 36bp), it is recommended to extend the region
length by an extend value (see section 3.2).

The coverage analysis does not modify the MEDIPS SET object but the
results are stored at the specified coverage results object (here cr.control).
The results of the coverage analysis can be viewed by typing

> cr.control

$matrix

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0 1 2 3 4 5 10

[2,] 0 0 0 0 0 0 0

[3,] 546126 2097269 847574 377219 184123 95411 6539

[4,] 1092252 3010805 1662745 967507 587349 372199 58255

[5,] 1638378 3547168 2259513 1493952 1011684 703592 159041

[6,] 2184504 3905094 2703969 1930840 1402334 1036397 287440

[7,] 2730630 4164582 3045604 2291119 1746627 1346337 433922

[8,] 3276756 4360966 3317412 2588334 2044827 1628592 591036

[9,] 3822882 4517744 3537046 2837652 2302032 1881432 751913

[10,] 4369008 4645500 3721016 3049667 2526159 2107248 914502

[11,] 4915134 4750439 3875031 3230211 2722222 2307880 1073293

[12,] 5461263 4839588 4007430 3388306 2896087 2487659 1227601

$maxPos

[1] 6072451

$pattern

[1] "CG"

$coveredPos

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1.0 2.00 3.00 4.00 5.00 10.0

[2,] 4839588.0 4007430.00 3388306.00 2896087.00 2487659.00 1227601.0

[3,] 0.8 0.66 0.56 0.48 0.41 0.2

For example, the maxPos slot shows the total number of CpGs within the
chromosomes 1, 2, and 3 of the reference genome. Moreover, the matrix slot
shows the results of the coverage analysis for each iteration and for each of the
tested coverage depths. Here, the first row shows the tested levels of coverage.
The first column contains the number of considered short reads in each iteration.
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The following columns show the number of sequence patterns covered (at least)
by the according coverage depths.

The results of the coverage analysis can be visualized by typing

> MEDIPS.plotCoverage(cr.control)
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The plot shows that a number of approx. 1.09 million extended short reads
cover 3 million of the 6,072,451 CpGs at least one time. On the other hand,
approx. 4.3 million reads cover 4.6 million of all CpGs at least one time. This
number of covered CpGs can be increased to approx. 4.8 million, by increasing
the total number of short reads to 5.4 million.

Further parameters that can be specified for the coverage analysis are:

• no_random_iterations: approaches that randomly select data entries
may be processed several times in order to obtain more stable results. By
specifying the no_random_iterations parameter (default=1) it is possi-
ble to run the coverage analysis several times. The final results returned
to the coverage results object are the averaged results of each random
iteration step.

• coverages: default is c(1, 2, 3, 4, 5, 10). The coverages define the depth
levels for testing how often a sequence pattern was covered by the given
regions. Just specify any other vector of coverage depths you would like
to test.

Although an increase of short reads will always improve the sequence pat-
tern coverage, the coverage analysis, together with the saturation analysis, allow
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for gaining an impression on the overall sequence pattern coverage and repro-
ducibility of reconstructing a methylome based on the total number of MeDIP-
Seq derived short reads. These data quality controls assist in deciding whether
the costs of additional experimantal runs are in due proportion to the expected
improvements on coverage and reproducibility.

3.6 CpG Enrichment

As a quality check for the enrichment of CpG rich DNA fragments obtained
by the immunoprecipitation step of a MeDIP experiment, MEDIPS provides
the functionality to calculate CpG enrichment values. The main idea is to
check, how strong the regions are enriched for CpGs compared to the refer-
ence genome. For this, MEDIPS counts the number of Cs, the number of Gs,
the number CpGs, and the total number of bases within the specified reference
genome. Subsequently, MEDIPS calculates the relative frequency of CpGs and
the observed/expected ratio of CpGs present in the reference genome. Addition-
ally, MEDIPS calculates the same for the DNA sequences underlying the given
regions. The final enrichment values result by dividing the relative frequency
of CpGs (or the observed/expected value, respectively) of the regions by the
relative frequency of CpGs (or the observed/expected value, respectively) of the
reference genome. (See also Supplementary Material in [Chavez et al., 2010].)

You can start the CpG enrichment analysis by typing

> er.control = MEDIPS.CpGenrich(data = CONTROL.SET)

The CpG enrichment analysis does not modify the MEDIPS SET object but
the results are stored at the specified enrichment results object (here er.control).
You can access the results by typing

> er.control

$regions.CG

[1] 3796311

$regions.C

[1] 47803260

$regions.G

[1] 47926519

$regions.relH

[1] 1.878741

$regions.GoGe

[1] 0.3348291

$genome.C

[1] 592445731

$genome.G

[1] 592804204
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$genome.CG

[1] 28670425

$genome.relH

[1] 0.9903856

$genome.GoGe

[1] 0.2363220

$enrichment.score.relH

[1] 1.896980

$enrichment.score.GoGe

[1] 1.416834

The enrichment results object contains several slots that show the number
of Cs, Gs, and CpGs within the reference genome and within the given regions.
Additionally, there are slots that show the relative frequency as well as the ob-
served/expected CpG ratio within the reference genome and within the given re-
gions. Finally, the slots enrichment.score.relH and enrichment.score.GoGe

indicate the enrichment of CpGs within the given regions compared to the ref-
erence genome. For short reads derived from an INPUT experiment (that is
sequencing of none-enriched DNA fragments), the enrichment values should be
close to 1 (see an example in section 3.11). In contrast, a MeDIP-Seq exper-
iment should return CpG rich sequences what will be indicated by increased
enrichment scores. In our example, the enrichment score for the relative CpG
enrichment is 1.896980, indicating an enrichment of CpG rich regions.

In case you would like to examine not only the regions defined by the short
reads, but also the DNA sequences of the putative longer DNA fragments from
where the short reads were derived, it is possible to increase the length of the
regions by specifying the extend (default NULL) parameter. By setting the
extend to any positive value, the regions will be extended to the plus or to
the minus dircetion (dependent on the strand information of the reads) and
afterwards the CpG enrichment will be calculated for the extended regions.

3.7 Creating the Coupling Vector

The need for MeDIP-Seq data correction occurs through an unspecific binding
of the utilized antibody to unmethylated cytosines, especially in the context of
low densities of methylated cytosines. Similar to other MeDIP normalization
methods [Down et al., 2008], [Pelizzola et al., 2008], MEDIPS tries to correct
for this effect by incorporating local CpG densities into the MeDIP-Seq sig-
nals. In order to correct for local CpG densities, it is necessary to calculate
a coupling vector first. The coupling vector is of the same size as the prede-
fined genome vector (see also section 3.2) but contains local CpG denisties (also
called coupling factors) instead of the raw signals for each genomic bin. Before
the coupling vector can be created, it is necessary to previously excecute the
MEDIPS.getPositions function (see section 3.4).
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The coupling vector is created and attached to the MEDIPS SET object by
typing e.g.

> CONTROL.SET = MEDIPS.couplingVector(data = CONTROL.SET, fragmentLength = 700,

+ func = "count")

For each pre-defined genomic bin, the density of surrounding CpGs (or of
another pre-defined sequence pattern, respectively, see section 3.4) is calcu-
lated. For this, first a maximal distance has to be defined by specifying the
parameter fragmentLength. Only CpGs within the range of [(bin_position-
fragmentLength), bin_position+fragmentLength] will contribute to the fi-
nal local coupling factor. The optimized value for the fragmentLength param-
eter will reflect the estimated size of your sonicated DNA fragments. There are
several ways for calculating a coupling factor for a genomic bin. The simplest
way is to count the number of CpGs within the maximal defined distance around
a genomic bin. Another approach is to weight each CpG by its distance to the
current genomic bin. CpGs further away from the current genomic bin will re-
ceive smaller weights, whereas CpGs close to the genomic bin will receive higher
weights. Again, there are several possible ways for such a weghting function.
MEDIPS supports setting the weighting function parameter func to:

• count: simply count the number of CpGs within the predifined maximal
distance to the current bin

• linear: the weights for CpGs decreases in a linear way and end at 0 at
the predifined maximal distance to the current bin

• exp: the weights for CpGs decreases in an exponential way [Pelizzola et al.,
2008]

• log: the weights for CpGs decreases in a logarithmic way [Pelizzola et al.,
2008]

• custom: by setting the parameter to custom, it is required to spec-
ify a custom distance weights file using the parameter distFile. For
example, [Down et al., 2008] have generated distance weights in an
empirical way. From their results of the empirical approach, we
have created the file flat_400_700.tab that can be downloaded from
http://medips.molgen.mpg.de. You can create any of such a distance
file by your own and specify it here. Here, the fragmentLength parameter
will be neglected and the maximal distance within your provided distance
file will be the limit.

We have systematically calculated coupling factors with varying fragmentLength

and func parameters and compared the resulting coupling vectors to DNA-
methylation values derived from bisulphite experiments performed by the human
epigenome project (HEP) [Eckhardt et al., 2006]. The best negative correlation
(that is the higher the CpG density, the lower the bisulfite derived methylation
values) was achieved by setting the parameters to fragmentLength=700 and
func=count (see Supplementary Material in [Chavez et al., 2010]).

The coupling vector can be exported into a wiggle file by typing
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> MEDIPS.exportWIG(file = "PatternDensity.WIG", data = CONTROL.SET,

+ pattern.density = TRUE, descr = "Pattern.density")

The exported Wiggle file can be uploaded into common genome browsers and
allows for visualizing the density of the specified sequence pattern (e.g. CpGs)
along the chromosomes. We recommend to gzip the file before uploading it to
the genome browser.

3.8 Calibration Curve and Linear Regression

As we have created a genome vector containing the raw signals at each genomic
bin as well as an according coupling vector containing coupling factors at each
genomic bin (both stored within the MEDIPS SET object), we can now examine
the dependency of local MeDIP-Seq signal intensities and local CpG densities.
This dependency can be made tangible by calculating the calibration curve:

> CONTROL.SET = MEDIPS.calibrationCurve(data = CONTROL.SET)

Calculation of the calibration curve is achieved by first dividing the total
range of coupling factors into regular levels. Second, all genomic bins are parti-
tioned into these levels by considering their associated coupling factors. Finally,
for each level of coupling factors, MEDIPS calculates the mean raw signal and
mean coupling factor of all genomic bins that fall into this level. (For a detailed
description see Supplementary Material in [Chavez et al., 2010].)

The calibration curve represents averaged signals and coupling factors over
the full range of coupling factors. It indicates the experiment specific depen-
dency between local signal intensities and CpG densities. The results of the
calibration curve calculation can be visulized by typing e.g.

> MEDIPS.plotCalibrationPlot(data = CONTROL.SET, linearFit = T,

+ plot_chr = "chr1", rpm = T, xrange = 10)

Because the amount of data to be plotted can become very huge when plot-
ting full genome data, it is strongly recommended to call a e.g. png("plot.png")
function before calling this plot command. The plot will be available in the spec-
ified file (do not forget the dev.off() commmand after the plotting command).
Otherwise, R might not be able to visualize the plot in reasonable time. Each
data value within the calibration plot represents a genomic bin. The x-axis
shows the raw signals and the y-axis shows the coupling factors for the genomic
bins. The red curve represents the calibration curve.

The calibration curve reveals that, in average, an increase of MeDIP-Seq
signals is caused by an increasing CpG density. This approximately linear de-
pendency is visible for the low range of coupling factors, only. For higher levels
of CpG densities, the mean MeDIP-Seq signals decrease. It is assumed that
this decrease is caused by the fact that in mammalian cells, regions of higher
CpG densities are mainly unmethylated. In agreement with this assumption,
Pelizzola and colleagues [Pelizzola et al., 2008] have shown that the dependency
of MeDIP derived signals and CpG density continues for higher levels of CpG
densities, by analyzing articially fully methylated samples using MeDIP-Chip.
In detail, they have identified a sigmoidal dependency between CpG density
and MeDIP-Chip data. In agreement with Pelizzola et al. [Pelizzola et al.,
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2008], it is assumed that their signal plateau in the lower range of chip signals
is caused by background noise, but in contrast to Pelizzola et al., it is assumed
that their signal plateau in the upper range of chip signals occurs by a saturation
of hybridization events and is therefore an array specic artefact. Motivated by
the observations made by Pelizzola et al. [Pelizzola et al., 2008] and by visual
inspection of the MeDIP-Seq derived calibration curve, a continuing linear de-
pendency of MeDIP-Seq signals for higher levels of CpG densities is assumed.
Analogous to Down et al. [Down et al., 2008], the local maximum of mean
MeDIP-Seq signals of the calibration curve in the lower part of coupling factors
is identied. Let

y = y1,...,yl

be the mean coupling factors, and let

x = x1,...,xl

be the according mean MeDIP-Seq signals of the calibration curve, where l is
the number of tested coupling factor levels and i = 1,...,l, then the smallest
level i is identied, where

xi−3 ≤ xi−2 ≤ xi−1 ≤ xi ≥ xi+1 ≥ xi+2 ≥ xi+3

Let imax be the according identified level of i, then

ymax = y1, ..., yimax

xmax = x1, ..., ximax
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are the parts of the calibration curve in the low range of coupling factors, where
an approximately linear dependency between MeDIP-Seq signals and coupling
factors is observed. Here, xmax can be explained by a function of ymax as

xmax = f(ymax) + ε

where ε is an error variable (i.e. measurement errors) that is expected to spread
by chance and therefore, its expectation value is E(ε) = 0. Because a linear
dependency between xmax and ymax is assumed, xmax can be described as

xmax = α+ β · ymax + ε

where the parameter α is the theoretical y-intercept, and the parameter β is the
theoretical slope. Based on the pre-calculated xmax and ymax vectors, linear
regression is performed, in order to identify a suitable linear model. Linear
regression estimates regression coefficients a and b for the parameters α and β
so that it is valid:

xmaxi
= a+ b · ymaxi

+ ei

where i = 1, ..., imax. Here, the residuum ei reflects the difference between the
regression curve a+ b · ymaxi

and the measurements of xmaxi
. Moreover, xmaxi

can be replaced by an estimate x̂maxi , where

xmaxi − x̂maxi = ei

and therefore, it is valid:

x̂maxi
= a+ b · ymaxi

After having calculated the calibration curve, the MEDIPS.calibrationCurve()
function performs the described linear regression and stores concrete values for
the parameters a (intercept) and b (slope) within the according slots of the
MEDIPS SET. By accessing the received parameters a and b, concrete values
for the parameter x̂maxi

can be calculated by the latter formula. For the low
range of coupling factors, these estimates model the observed progression of the
calibration curve. As discussed above, a continuing linear dependency between
MeDIP-Seq signals and CpG density is expected for the higher range of coupling
factors. Based on the obtained linear model parameters, concrete x̂maxi

values
can be calculated for the full range of coupling factors. Therefore,

x̂ = x̂1, ..., x̂maxi , ..., x̂l

are the estimated mean MeDIP-Seq signals over the full range of coupling factor
levels l, calculated with respect to the obtained linear model parameters.

When the parameter linearFit of the MEDIPS.plotCalibrationPlot()

function was set to TRUE, the calibration plot contains a linear curve (green
curve) that visualizes the results of the performed linear regression. This curve
represents the calculated linear dependency between signals and CpG densities
as estimated from the low range of coupling factors.

Further parameters that can be specified when plotting the calibration curve
are:
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• plot_chr: default="all". Please don’t forget to call a e.g. png("file.png")
function before calling the plot command using all (see above). Alter-
natively, you can specify a selected chromosome (e.g. chr1). Here, the
plot_chr parameter only affects the plot and does not affect the MEDIPS
SET object.

• xrange: The mean signal range of the calibration curve typically falls into
a low signal range. By setting the xrange parameter to e.g. 50 (suitable
for raw data), the calibration plot will only plot genomic bins associated
with signals <=50. Therefore, the effect of an increased CpG density to
an increased signal can be better visualized, especially if the data contains
genomic bins with high signals.

• rpm: can be either TRUE or FALSE. If set to TRUE, the signals will
be transformed into reads per million (rpm) before plotted. Additionally,
the mean signal values of the calibration curve and of the estimated lin-
ear curve will be transformed to rpm scale. The coupling values remain
untouched.

The calibration plot is very characteristic for MeDIP-Seq experiments. The
quality of the enrichment step of the MeDIP experiment can be estimated by
visual inspection of the progression of the calibration curve. Calibration curves
for data derived from INPUT experiments look different (please see an example
in section 3.11).

3.9 Relative Methylation Score and Export of Normalized
Data

As soon as the normalization parameters are calculated (see previous section),
the raw signals will be normalized and the normalized data will be stored within
the MEDIPS SET object.

> CONTROL.SET = MEDIPS.normalize(data = CONTROL.SET)

For MeDIP-Seq data normalization, x̂ (see section 3.8) is utilized in order
to weight the observed MeDIP-Seq signals of the genomic bins with respect to
their associated coupling factors. Let (xbini , ybini) be the raw MeDIP-Seq signal
of the genomic bin i (i.e. the number of overlapping extended short reads), and
the pre-calculated coupling factor at the genomic bin i, where i = 1, ...,m and
m is the total number of genomic bins, then the normalized relative methylation
score is defined as

rmsbini
=

xbini
·106

(a+b·ybini
)·n =

xbini
·106

x̂bini
·n

where x̂bini = a + b · ybini is the estimated weighting parameter obtained by
considering the coupling factor ybini of the genomic bin i, and a and b are
the pre-calculated regression parameters. Based on the total number of short
reads (n), the raw MeDIP-Seq signals are, in parallel, transformed into a reads
per million format in order to assure that rms values are comparable between
methylomes generated from differing amounts of short reads.

The rms values can be exported into a wiggle file by typing
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> MEDIPS.exportWIG(file = "output.rms.control.WIG", data = CONTROL.SET,

+ raw = F, descr = "hESCs.rms")

All slots of the MEDIPS SET are now occupied. You can again have a look
at the MEDIPS SET by typing

> CONTROL.SET

S4 Object of class MEDIPSset

=======================================

Regions informations

=======================================

Regions file: MeDIP_hESCs_chr1-3.txt

Organism: BSgenome.Hsapiens.UCSC.hg19

Chromosomes: chr1 chr2 chr3

Chromosome lengths: 249250621 243199373 198022430

Number of regions: 5461263

Regions chromosomes: chr1 chr1 chr1...

Regions start positions: 100001075 10000155 10000178...

Regions stop positions: 100001111 10000191 10000214...

Regions strand: - - -...

=======================================

Genome vector signals informations

=======================================

Genome wide bin size: 50

Reads extended by: 400

Genome vector chromosomes: chr1 chr1 chr1...

Genome vector positions: 1 51 101...

Genome vector signals: 0 0 0...

=======================================

Pattern informations

=======================================

Pattern: CG

Number of patterns: 6072451

Pattern chromosomes: chr1 chr1 chr1...

Pattern positions: 10469 10471 10484...

=======================================

Genome vector coupling factor informations

=======================================

Distance function: count

Distance file: empty

Fragment length: 700

Genome vector coupling factors: 0 0 0...

=======================================

Calibration informations

=======================================

Calibration curve mean signals: 0.01871272 0.6301572 0.7357637...

Calibration curve mean coupling factors: 0 1 2...

Calibration curve variance: NA NA NA...

Intercept: 0.737575375951728

Slope: 3.24687748777487
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Calibration chromosome: all

=======================================

Genome vector normalized signal informations

=======================================

Normalization output interval: [0:1000]

Genome vector normalized signals: 0 0 0...

3.10 Methylation Profiles and Absolute Methylation Score

A typical question of MeDIP based DNA-methylation experiments is to exam-
ine the methylation state of specific genomic regions, like e.g. CpG islands,
promoters and other regions of interest (ROI).

MEDIPS provides the functionalities to calculate averaged methylation val-
ues for either pre-defined ROIs or for genome wide windows. In order to receive
the methylation state of targeted genomic regions, first a ROI file has to be
created. The required structure of any file containing regions of interest is:

• the first column contains the chromosome of the ROI (e.g. chr1)

• the second column contains the start position of the ROI

• the third column contains the stop position of the ROI

• the fourth column contains an identifier of the ROI

As an example, you can download the file hg19.chr1-3.txt from
http://medips.molgen.mpg.de.

The file contains hg19 promoter regions of Ensembl transcripts located on
the chromosomes 1, 2, and 3 as received from www.biomart.org. Here, the
genomic coordinates start at -1kb of the transcript start sites (TSSs) and stop
at +0.5kb downstream of the TSSs. Mean methylation values for these regions
can be already summarized for the generated MEDIPS SET object by typing:

> promoter = MEDIPS.methylProfiling(data1 = CONTROL.SET, ROI_file = "hg19.chr1-3.txt",

+ math = mean, select = 2)

Further parameters that can be specified are:

• chr: only the specified chromosome will be evaluated (e.g. chr1)

• select: can be either 1 or 2. If set to 1, variances will be calculated based
on the rpm values; if set to 2, variances will be calculated based on the
rms values.

• math: default=mean; Here, you can specify other functions available in R
for summarizing values like median or sum.

• data2: default=NULL; Here, a second MEDIPS SET can be provided, in
case two MEDIPS SETs have to be compared (see also section 3.12)

• input: default=NULL; Here, an INPUT SET can be provided. An IN-
PUT SET is a MEDIPS SET but generated from data derived from an
Input sample. An Input sample is generated by sonication of the DNA
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but without a subsequent immunoprecipitation step. Therefore, Input
data reflects the genomic background. MEDIPS allows for accessing In-
put data (if available) in order to calculate a genomic background signal
distribution. Such genomic background signals can be utilized for iden-
tifying hyper-methylated regions when two MEDIPS SETs are compared
(see also section 3.12).

• frame_size: default=NULL; In spite of calculating averaged methylation
values for given regions of interest, MEDIPS allows for calculating methy-
lation levels for genome wide windows. The frame_size parameter defines
the size of the genomic windows to be tested. Therefore, it is obvious that
either the frame_size or the ROI_file parameter has to be specified.

• step: default=NULL; In case the frame_size parameter is specified, the
step parameter can be specified to any arbitrary positive value. The step

parameter defines the number of bases, by which the genomic windows are
shifted along the chromosomes. If step remains NULL, non overlapping
adjacent genomic windows will be examined. By setting the step param-
eter to e.g. 250 bp and by setting the frame_size parameter to e.g. 500
bp, overlapping genomic windows will be examined, where the overlap of
neighbouring genomic windows is 250 bp (see also the example below).

The results are stored as a list at the specified object (here promoter). All
list objects are vectors of the same length, where the length is defined by the
number of tested ROIs. Please note, as we have so far generated and specified
only one MEDIPS SET object, the results object only contains the results like
the mean rpm and rms values for one MEDIPS SET (provided at data1). The
remaining vectors are empty and will be occupied when two MEDIPS SET
objects will be compared (see section 3.12). Each row refers to a ROI, the row
names contain the IDs of the provided ROIs, and the vectors of the list are:

1. chr: the chromosome of the ROI

2. start: the start position of the ROI

3. stop: the stop position of the ROI

4. length: the number of genomic bins included in the ROI

5. coupling: the mean coupling factor of the ROI

6. input: the mean rpm value of the INPUT MEDIPS SET at input (if a
second MEDIPS SET is provided)

7. rpm_A: the mean rpm value for the MEDIPS SET at data1

8. rpm_B: the mean rpm value for the MEDIPS SET on data2 (if a second
MEDIPS SET is provided)

9. rms_A: the transformed (see below) mean rms value for the MEDIPS SET
at data1

10. rms_B: the transformed (see below) mean rms value for the MEDIPS SET
at data2 (if a second MEDIPS SET is provided)
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11. ams_A: the transformed mean absolute methylation score (see below) for
the MEDIPS SET at data1

12. ams_B: the transformed mean absolute methylation score (see below) for
the MEDIPS SET at data2 (if a second MEDIPS SET is provided)

13. var_A: the variance of the rpm or rms values (please see the parameter
select) of the MEDIPS SET at data1

14. var_B: the variance of the rpm or rms values (please see the parameter
select) of the MEDIPS SET at data2 (if a second MEDIPS SET is
provided)

15. var_co_A: the coefficient of variance of the rpm or rms values (please see
the parameter select) of the MEDIPS SET at data1

16. var_co_B: the coefficient of variance of the rpm or rms values (please
see the parameter select) of the MEDIPS SET at data2 (if a second
MEDIPS SET is provided)

17. ratio: rpm A/rpm B or rms A/rms B, respectively (please see the pa-
rameter select) (if a second MEDIPS SET is provided)

18. pvalue.wilcox: the p.value returned by R’s wilcox.test function for
comparing the rpm values (or rms values, respectively; please see the pa-
rameter select) of the MEDIPS SET on data1 and of the MEDIPS SET
at data2 (if a second MEDIPS SET is provided)

19. pvalue.ttest: the p.value returned by R’s t.test function for compar-
ing the rpm values (or rms values, respectively; please see the parameter
select) of the MEDIPS SET on data1 and of the MEDIPS SET at data2
(if a second MEDIPS SET is provided)

The returned mean rms_A (or mean rms_B, respectively) values are calcu-
lated based on the pre-calculated rms values of the according MEDIPS SET
(see section 3.9). Here, at first, the mean of all pre-calculated rmsbini values of
those genomic bins that fall into the ROI is calculated. Next, MEDIPS trans-
forms these mean rms values into log2 scale and subsequently transforms the
resulting data range into the consistent interval [0, 1000] before finally stored.
Therefore, the minimal transformed mean rms_A (or mean rms_B, respectively)
value will be 0 and the maximal transformed mean rms_A (or mean rms_B, re-
spectively) will be 1000. This transformation assures that the resulting mean
rms values of the tested ROIs will spread over a consistent interval. Therefore,
highly methylated ROIs may be subsequently identified by selecting for those as-
sociated to e.g. rms_A>600. The other way round, lowly methylated ROIs may
be subsequently identified by selecting for those associated to e.g. rms_A<400.
However, methylation levels received by MeDIP-Seq experiments are basically
relative. Therefore, it has to be kept in mind that the received data range
([0, 1000]) reflects the relative methylation levels of the ROIs of the tested sam-
ple.

We consider the rms values as the normalized MeDIP-Seq signals corrected
for the experiment specific effect of unspecific antibody binding. In order to

xxiii



identify an absolute methylation estimate for any specified region of interest,
i.e. either for any functional genomic regions like promoters or CpG islands or
for genome wide windows of arbitrary length, the raw MeDIP-Seq values can be
normalized into absolute methylation scores (ams). The absolute methylation
scores additionally correct for the relative CpG density of the region of interest
and therefore, allow for comparing methylation profiles of genomic regions hav-
ing different CpG densities. This is especially needful, when local methylation
levels are associated to further functional and regulatory mechanism like e.g.
gene expression alterations. As an example, it is supposed that methylation
levels of proximal promoters influence the transcription rate of the according
genes. However, promoters are known to show a wide spread spectrum of CpG
densities. Therefore, a fully methylated high CpG density promoter will show
much higher MeDIP signals than a fully methylated low CpG density promoter,
although in both cases the promoter methylation level influences the transcrip-
tion rate in a comparable way. Therefore, it remains inaccurate to conclude an
absolute measure of promoter methylation by comparing MeDIP-Seq derived
rpm or rms signals from promoters having different CpG densities.

Let

ROI = ((xbin1
, ybin1

), ..., (xbins
, ybins

))

be the raw MeDIP-Seq signals and coupling factors of adjacent genomic bins
i that define a region of interest (ROI), where i = 1, ..., s and s is the total
number of genomic bins comprised by the ROI, then the absolute methylation
score for the ROI is defined as:

amsROI =

1
s

s∑
i=1

xbini
·106

(a+b·ybini
)·n

1
s

s∑
i=1

ybini

After having excectuted the MEDIPS.methylProfiling() function for the
promoter regions of interest file, one can have a look at e.g. the histogram of
CpG densities or methylation levels for the total set of ROIs. Simply call Rs
hist() function and specify the desired column of the matrix. For the mean
coupling factors type e.g.

> hist(promoter$coupling, breaks = 100, main = "Promoter CpG densities",

+ xlab = "%reads/bin")
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The histogram shows a bimodal distribution of promoter CpG densities. For
a histogram of mean rpm values type

> hist(promoter$rpm_A[promoter$rpm_A != 0], breaks = 100, main = "RPM signals",

+ xlab = "%reads/bin")
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RPM signals
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Because there are promoter regions without any signals, we do not consider
them for the histogram. The plot shows that a bimodal methylation distribu-
tion of the promoters is not visible for the rpm signals. Only the rms or even
stronger, the ams values reveal the bimodal distribution of promotor methyla-
tion:

> hist(promoter$ams_A[promoter$ams_A != 0], breaks = 100, main = "AMS signals",

+ xlab = "%reads/bin")
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AMS signals
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We have shown [Chavez et al., 2010] that such summarized methylation
values for ROIs, especially the ams values are most suitable for comparing
MeDIP data to e.g. bisulphite sequencing or whole genome shotgun bisulphite
sequencing data.

Besides summarizing methylation values for pre-defined ROIs, MEDIPS al-
lows for calculating mean methylation values along the full chromosomes. For
this, you have to specify a desired frame size using the parameter frame_size.
Additionally, you can specify the step parameter. The step parameter defines
the number of bases by which the frames are shifted along the chromosome.
If you e.g. set the frame_size parameter to 500 and the step parameter to
250, then MEDIPS calculates mean methylation values for overlapping 500bp
windows, where the size of the overlap will be 250bp for all neighbouring win-
dows. Without specifying the step parameter, MEDIPS will calculate mean
methylation values for all none-overlapping windows of size frame_size.

> frames.frame500.step250 = MEDIPS.methylProfiling(data1 = CONTROL.SET,

+ frame_size = 500, step = 250, math = mean, select = 2)

Please note, the MEDIPS.methylProfiling() function takes a comparable
long processing time when called for genome wide short windows. For example,
the processing of the full human genome using overlapping 500bp windows takes
approx. 10h on our hardware. Therefore, you may want to store the received
matrix afterwards by using R’s write.table() function like:

> write.table(frames.frame500.step250, file = "frames.chr1-3.meth.txt",

+ sep = "\t", quote = F, col.names = T, row.names = F)
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Here, you do not need to store the row.names as genome wide frames will not
have identifiers. When saving results received by testing ROIs provided within
a ROI file, you might want to set row.names=T in order to keep the identifiers.

You can upload the results table at any later time into R by typing

> frames.frame500.step250 = read.table(file = "frames.chr1-3.meth.txt",

+ header = T)

3.11 Additonal MEDIPS SET Objects

Often, it is not only of interest to generate a normalized methylation profile
of a given sample, but to compare and identify differentially methylated re-
gions (DMRs) between different samples or conditions, respectively. In order to
compare two different conditions, first you have to create and process a second
MEDIPS SET. In our example, the file MeDIP_DE_chr1-3.txt contains MeDIP-
Seq data of the chromosomes 1, 2, and 3 derived from human embryonic stem
cells after differentiation along the endodermal lineage into definitive endoderm
(DE) ([Chavez et al., 2010]). We now process the data using the same parameter
settings as for the previously created CONTROL.SET:

> TREAT.SET = MEDIPS.readAlignedSequences(BSgenome = "BSgenome.Hsapiens.UCSC.hg19",

+ file = "MeDIP_DE_chr1-3.txt", numrows = 6709336)

> TREAT.SET = MEDIPS.genomeVector(data = TREAT.SET, bin_size = 50,

+ extend = 400)

> TREAT.SET = MEDIPS.getPositions(data = TREAT.SET, pattern = "CG")

> TREAT.SET = MEDIPS.couplingVector(data = TREAT.SET, fragmentLength = 700,

+ func = "count")

> TREAT.SET = MEDIPS.calibrationCurve(data = TREAT.SET)

> TREAT.SET = MEDIPS.normalize(data = TREAT.SET)

So far, we have the second MEDIPS SET sufficiently processed for the sub-
sequent comparison of two MEDIPS SETs. Nevertheless, here we perform the
quality controls for the TREAT.SET as well:

> sr.treat = MEDIPS.saturationAnalysis(data = TREAT.SET, bin_size = 50,

+ extend = 400, no_iterations = 10, no_random_iterations = 1)

> sr.treat

$distinctSets

[,1] [,2]

[1,] 0 0.0000000

[2,] 335466 0.4931690

[3,] 670932 0.6604831

[4,] 1006398 0.7444448

[5,] 1341864 0.7954130

[6,] 1677330 0.8288391
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[7,] 2012796 0.8528121

[8,] 2348262 0.8709492

[9,] 2683728 0.8850872

[10,] 3019194 0.8963797

[11,] 3354668 0.9056982

$estimation

[,1] [,2]

[1,] 0 0.0000000

[2,] 335466 0.4974937

[3,] 670932 0.6626612

[4,] 1006398 0.7462740

[5,] 1341864 0.7970081

[6,] 1677330 0.8308761

[7,] 2012796 0.8552220

[8,] 2348262 0.8733640

[9,] 2683728 0.8876636

[10,] 3019194 0.8990786

[11,] 3354660 0.9081086

[12,] 3690126 0.9156319

[13,] 4025592 0.9220118

[14,] 4361058 0.9277361

[15,] 4696524 0.9326173

[16,] 5031990 0.9368234

[17,] 5367456 0.9405416

[18,] 5702922 0.9438692

[19,] 6038388 0.9468138

[20,] 6373854 0.9495076

[21,] 6709336 0.9518653

$numberReads

[1] 6709336

$maxEstCor

[1] 6.709336e+06 9.518653e-01

$maxTruCor

[1] 3.354668e+06 9.056982e-01

> MEDIPS.plotSaturation(sr.treat)
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> cr.treat = MEDIPS.coverageAnalysis(data = TREAT.SET, extend = 400,

+ no_iterations = 10)

> cr.treat

$matrix

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0 1 2 3 4 5 10

[2,] 0 0 0 0 0 0 0

[3,] 670933 2458335 1192609 638256 368102 225796 32180

[4,] 1341866 3351535 2084892 1372743 938540 665381 172077

[5,] 2012799 3849122 2670039 1939705 1448180 1099852 360085

[6,] 2683732 4173274 3084394 2373451 1866104 1487336 566598

[7,] 3354665 4407046 3394164 2712381 2210991 1820986 780103

[8,] 4025598 4585530 3637488 2984563 2493062 2105192 990126

[9,] 4696531 4727431 3834195 3207345 2730738 2348315 1192572

[10,] 5367464 4842152 3999174 3396531 2932530 2557265 1384308

[11,] 6038397 4939114 4138255 3557843 3107774 2740592 1561541

[12,] 6709336 5023127 4259222 3698722 3261285 2902361 1726187

$maxPos

[1] 6072451

$pattern

[1] "CG"

$coveredPos
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[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1.00 2.0 3.00 4.00 5.00 10.00

[2,] 5023127.00 4259222.0 3698722.00 3261285.00 2902361.00 1726187.00

[3,] 0.83 0.7 0.61 0.54 0.48 0.28

> MEDIPS.plotCoverage(cr.treat)
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> er.treat = MEDIPS.CpGenrich(data = TREAT.SET)

> er.treat

$regions.CG

[1] 5793412

$regions.C

[1] 60173176

$regions.G

[1] 60327187

$regions.relH

[1] 2.333744

$regions.GoGe

[1] 0.3961865

$genome.C
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[1] 592445731

$genome.G

[1] 592804204

$genome.CG

[1] 28670425

$genome.relH

[1] 0.9903856

$genome.GoGe

[1] 0.2363220

$enrichment.score.relH

[1] 2.356399

$enrichment.score.GoGe

[1] 1.676469

> MEDIPS.plotCalibrationPlot(data = TREAT.SET, linearFit = T, plot_chr = "chr1",

+ rpm = T, xrange = 10)

> MEDIPS.exportWIG(file = "output.rpm.treat.WIG", data = TREAT.SET,

+ raw = T, descr = "DE.rpm")
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> MEDIPS.exportWIG(file = "output.rms.treat.WIG", data = TREAT.SET,

+ raw = F, descr = "DE.rms")

It is recommended (but not necessary) to provide background data from
an INPUT experiment (that is sequencing of non-enriched DNA fragments).
By providing an INPUT data set, MEDIPS will calculate a background data
distribution used for the identification of DMRs. Therefore, we now process the
available INPUT data within the file Input_StemCells_chr1-3.txt:

> INPUT.SET = MEDIPS.readAlignedSequences(BSgenome = "BSgenome.Hsapiens.UCSC.hg19",

+ file = "Input_StemCells_chr1-3.txt", numrows = 5226476)

> INPUT.SET = MEDIPS.genomeVector(data = INPUT.SET, bin_size = 50,

+ extend = 400)

For INPUT data, we do not correct for CpG denstities because no enrichment
for methylated CpG’s was performed. Only the rpm values will be considered.
Therefore, the INPUT MEDIPS SET is already sufficiently processed for beeing
integrated into the process of identifying DMRs. Nevertheless, here we excecute
the quality controls for the INPUT set:

> sr.input = MEDIPS.saturationAnalysis(data = INPUT.SET, bin_size = 50,

+ extend = 400, no_iterations = 10, no_random_iterations = 1)

> sr.input

$distinctSets

[,1] [,2]

[1,] 0 0.0000000

[2,] 261323 0.1090466

[3,] 522646 0.1936847

[4,] 783969 0.2631382

[5,] 1045292 0.3243792

[6,] 1306615 0.3746057

[7,] 1567938 0.4192721

[8,] 1829261 0.4581374

[9,] 2090584 0.4911974

[10,] 2351907 0.5217616

[11,] 2613238 0.5475634

$estimation

[,1] [,2]

[1,] 0 0.0000000

[2,] 261323 0.1270296

[3,] 522646 0.2211747

[4,] 783969 0.2977288

[5,] 1045292 0.3663171

[6,] 1306615 0.4205660

[7,] 1567938 0.4666372

[8,] 1829261 0.5063809

[9,] 2090584 0.5406029
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[10,] 2351907 0.5695202

[11,] 2613230 0.5953838

[12,] 2874553 0.6173923

[13,] 3135876 0.6373237

[14,] 3397199 0.6552688

[15,] 3658522 0.6718705

[16,] 3919845 0.6873005

[17,] 4181168 0.7014073

[18,] 4442491 0.7138681

[19,] 4703814 0.7250462

[20,] 4965137 0.7352415

[21,] 5226476 0.7453617

$numberReads

[1] 5226476

$maxEstCor

[1] 5.226476e+06 7.453617e-01

$maxTruCor

[1] 2.613238e+06 5.475634e-01

> MEDIPS.plotSaturation(sr.input)
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> INPUT.SET = MEDIPS.getPositions(data = INPUT.SET, pattern = "CG")

> cr.input = MEDIPS.coverageAnalysis(data = INPUT.SET, extend = 400,

+ no_iterations = 10)
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> cr.input

$matrix

[,1] [,2] [,3] [,4] [,5] [,6] [,7]

[1,] 0 1 2 3 4 5 10

[2,] 0 0 0 0 0 0 0

[3,] 522647 1773557 347018 55265 8656 2170 629

[4,] 1045294 2945819 1032377 293120 71936 17093 1358

[5,] 1567941 3744506 1771109 693172 236706 73054 1977

[6,] 2090588 4299530 2450276 1181298 503008 192874 3038

[7,] 2613235 4694991 3038012 1694380 842595 380488 5316

[8,] 3135882 4978948 3527319 2192342 1228195 629717 11099

[9,] 3658529 5187075 3931985 2654290 1629181 924391 23418

[10,] 4181176 5342137 4263301 3070787 2028342 1245298 46915

[11,] 4703823 5460063 4532967 3437094 2411224 1581303 84589

[12,] 5226476 5550467 4752851 3756417 2765023 1916799 140957

$maxPos

[1] 6072451

$pattern

[1] "CG"

$coveredPos

[,1] [,2] [,3] [,4] [,5] [,6]

[1,] 1.00 2.00 3.00 4.00 5.00 10.00

[2,] 5550467.00 4752851.00 3756417.00 2765023.00 1916799.00 140957.00

[3,] 0.91 0.78 0.62 0.46 0.32 0.02

> MEDIPS.plotCoverage(cr.input)
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> er.input = MEDIPS.CpGenrich(data = INPUT.SET)

> er.input

$regions.CG

[1] 2042872

$regions.C

[1] 42772505

$regions.G

[1] 42933872

$regions.relH

[1] 1.056405

$regions.GoGe

[1] 0.2151231

$genome.C

[1] 592445731

$genome.G

[1] 592804204

$genome.CG

[1] 28670425
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$genome.relH

[1] 0.9903856

$genome.GoGe

[1] 0.2363220

$enrichment.score.relH

[1] 1.066660

$enrichment.score.GoGe

[1] 0.9102968

> INPUT.SET = MEDIPS.couplingVector(data = INPUT.SET, fragmentLength = 700,

+ func = "count")

> INPUT.SET = MEDIPS.calibrationCurve(data = INPUT.SET)

> MEDIPS.plotCalibrationPlot(data = INPUT.SET, linearFit = F, plot_chr = "chr1",

+ rpm = T, xrange = 10)

> MEDIPS.exportWIG(file = "output.rpm.input.WIG", data = INPUT.SET,

+ raw = T, descr = "INPUT.rpm")

From the saturation analysis of the INPUT data, it can be deduced that
in general, the correlation between the independent genome vectors increases
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more slowly than for MeDIP data. This is due to an increased complexity of
available genomic DNA that has to be sequenced when no specific enrichment
was performed. The CpG enrichment values indicate that INPUT data is not
enriched for CpGs. Additionally, the calibration curve of the calibration plot
allows for discriminating MeDIP from INPUT data.

3.12 Methylation Profiles of Two MEDIPS SET Objects

As we have generated two MEDIPS SETs and one INPUT SET, we will now
calculate mean methylation values for all three sets in parallel, and compare the
methylation signals between the sets. Methylation profiles and comparisons can
be performed for given regions of interest (see section 3.10) or for genome wide
(sliding) frames. This is all done by the MEDIPS.methylProfiling() function.

Here, we process genome wide overlapping 500bp windows:

> diff.meth = MEDIPS.methylProfiling(data1 = CONTROL.SET, data2 = TREAT.SET,

+ input = INPUT.SET, frame_size = 500, step = 250, select = 2)

Please note, the MEDIPS.methylProfiling() function takes a comparatively
long processing time when called for genome wide short windows. In fact, this
is the most time-consuming bottleneck of the whole procedure for identifying
DMRs.

The results are stored as a list at the specified object (here diff.meth). All
list objects are vectors of the same length, where the length is defined by the
number of tested frames. Each row refers to a ROI and the individual vectors
are as described in section 3.10. Here, all vectors are occupied, including mean
methylation values for the two MEDIPS SETs and for the INPUT SET, as well
as ratios and p-values obtained from comparing the two MEDIPS SETs.

While the MEDIPS.methylProfiling() function is running, it is again time
for some theory. Let C, T , and I be the genome vectors generated based on
the sequencing data from the CONTROL.SET, TREAT.SET, and INPUT.SET
objects using an arbitrary bin size b and let ROI be a set of ROIs (e.g. genome
wide windows), where ROI = ROI1, ..., ROIi, ...ROIn, and n is the number
of ROIs to be tested. Let the ROIs be of length m1, ...,mn. In the following,
the identification of DMRs is only supported for any ROIi of length mi ≥
5 · b. Therefore, each ROIi includes at least five genomic bins bini,j , where
bini,1, ..., bini,j , ..., bini,kiεROIi and ki = floor(mi

b ). For each ROIi, mean rpm
and mean rms values are calculated based on C and T as:

C.RPMROIi = 1
ki

ki∑
j=1

rpm(C.bi,j)

C.RMSROIi = 1
ki

ki∑
j=1

rms(C.bi,j)

T.RPMROIi = 1
ki

ki∑
j=1

rpm(T.bi,j)

T.RMSROIi = 1
ki

ki∑
j=1

rms(T.bi,j)
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where rpm(C.bi,j), rms(C.bi,j), rpm(T.bi,j), and rms(T.bi,j) are the pre-
calculated rpm and rms (see sections 3.2 and 3.9) values of the genomic bins
from the Control and Treatment samples. In addition, for each ROIi, mean
rpm values are calculated based on I as:

I.RPMROIi = 1
ki

ki∑
j=1

rpm(I.bi,j)

where rpm(I.bi,j) are the pre-calculated rpm values of the genomic bins
from the Input sample. Based on the mean rms values of the Control and of
the Treatment sample, for each ROIi the following ratios are calculated:

r.rmsROIi =
C.RMSROIi

T.RMSROIi

In addition, by considering the mean rpm values of the Control or of the
Treatment sample, respectively, the following ratios are calculated with respect
to mean rpm values of the Input sample:

r.rpm.CROIi =
C.RPMROIi

I.RPMROIi

r.rpm.TROIi =
T.RPMROIi

I.RPMROIi

Because local background sequencing signals are variable along the chro-
mosomes due to differing DNA availability, a global background rpm signal
threshold is estimated based on the distribution of all calculated I.RPMROIi

values. This is done by defining a targeted quantile qt (e.g. qt = 0.95) and
by identifying the I.RPMROIi value (t), where qt% of all I.RPMROIi values
are < t. This estimated global minimal mean rpm threshold t will serve as an
additional parameter for selecting genomic regions that show a mean MeDIP-
Seq derived rpm signal of at least t in the Control or the Treatment sample,
respectively (see next section).

In addition, statistical testing is utilized in order to rate whether the obtained
rms data series of the genomic bins within any ROIi significantly differ in the
Control sample compared to the Treatment sample. For each ROIi it is tested,
whether the rms values of the genomic bins bini,1, ..., bini,j , ..., bini,ki

εROIi of
the Control sample significantly differ from the rms values of the according
genomic bins of the Treatment sample. For this, the MEDIPS package utilizes
the t.test() and wilcox.test() functions of the R environment with default
parameter settings (two-sided tests in both cases). Therefore, for each tested
ROIi, two p-values (ROI.p.value.ti and ROI.p.value.wi) will be calculated and
serve as a further level for discriminating between local methylation profiles (see
next section).

Please note, the returned mean rms and ams within the diff.meth object
are in log2 scale and were transformed into the consistent interval [0:1000], but
ratios and p.values are calculated based on the non-transformed mean values.
Moreover, ratios and p.values can be calculated based on the rpm values (in-
stead of rms values) by specifying the parameter select=1, when calling the
MEDIPS.methylProfiling() function.

You may want to store the received results matrix by using R’s write.table()
function like:

xxxix



> write.table(diff.meth, file = "diff.meth.txt", sep = "\t", quote = F,

+ col.names = T, row.names = F)

You can upload the results matrix at any later time into R by typing

> diff.meth = read.table(file = "diff.meth.txt", header = T)

3.13 Selecting Candidate DMRs and Annotation

Based on the results returned from the MEDIPS.methylProfiling() function in
section 3.12 (here diff.meth), we now select candidate ROIs that show signifi-
cant differential methylation between the CONTROL.SET and the TREAT.SET
in consideration of the background data included in the INPUT.SET. For this,
MEDIPS offers the possibility to specify the following parameters in order to
apply several filters to the full set of ROIs:

• frames: specifies the results table

• input: default=T; Setting the parameter to TRUE requires that the re-
sults table includes a column for summarized rpm values of an INPUT
SET. In case there is no INPUT data available, the input parameter has
to be set to a rpm value that will be used as a lower threshold during
the subsequent analysis. How to estimate such a threshold without back-
ground data is not yet solved by MEDIPS.

• quant: default=0.9; from the distribution of all summarized INPUT rpm
values, MEDIPS calculates the rpm value that represents the quant quan-
tile of the whole INPUT distribution.

• control: can be either TRUE or FALSE. MEDIPS allows for selecting
ROIs that are higher methylated in the CONTROL SET compared to
the TREAT SET and vice versa but both approaches have to be per-
fomed in two independent runs. By setting control=TRUE, ROIs will be
selected that are higher methylated in the CONTROL SET. By setting
control=FALSE, ROIs will be selected that are higher methylated in the
TREAT SET.

• up: default=1.333333; defines the lower threshold for the ratio CON-
TROL/TREATMENT as well as the lower ratio for CONTROL/INPUT
(if control=T) or TREATMENT/INPUT (if control=F), respectively.

• down: default=0.75; defines the upper threshold for the ratio: CON-
TROL/TREATMENT (only if control=F).

• p.value: default=0.01; defines the threshold for the p-values. One of the
two p-values derived from the wilcox.test and t.test function has to
be <= p.value.

The following command filters for candidate frames that are higher methy-
lated in human embryonic stem cells than in differentiated hESCs:

> diff.meth.control = MEDIPS.selectSignificants(frames = diff.meth,

+ control = T, input = T, up = 2, p.value = 1e-04, quant = 0.99)
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[1] Processing input distribution...

[1] Done.

[1] Total number of frames: 2761891

[1] Number of frames where control or treatment !=0: 2463305

[1] Remaining number of frames with p.value<=1e-04: 275967

[1] Remaining number of frames where control/treatment ratio >= 2: 147137

[1] Estimated rpm threshold for input quantile 0.99 is: 1.68373489134935

[1] Remaining number of frames with control rpm >=1.68373489134935: 17894

[1] Remaining number of frames with control/input ratio>=2: 14559

[1] [Note: There are 0 frames associated to a p-value==0.]

[1] [Note: There are 6 frames, where control/treatment ratio = Inf (i.e. treatment==0).]

For identifying ROIi’s that show differential methylation between the Con-
trol and the Treatment sample with respect to the Input sample, based on the
pre-calculated parameters (see previous section), a filtering procedure is per-
formed. The following filtering procedure also discriminates between increased
methylation in the Control sample compared to the Treatment sample (Con-
trol>Treatment, a) and vice versa (Treatment>Control, b):

1. ROIi’s where C.RPMROIi = T.RPMROIi = 0 are neglected,

2. ROIi’s where ROI.p.value.ti > p.value and ROI.p.value.wi > p are ne-
glected, where p.value is any targeted level of significance (e.g. p.value =
0.01),

3. Filtering for the ratio:

• a) ROIi’s where r.rmsROIi < up are neglected, where up is an upper
ratio threshold (e.g. up = 1.33),

• b) ROIi’s where r.rmsROIi > down are neglected, where down is a
lower ratio threshold (e.g. down = 0.75),

4. Filtering for global Input derived background signals:

• a) ROIi’s where C.RPMROIi < t are neglected,

• b) ROIi’s where T.RPMROIi < t are neglected,

5. Filtering for local Input derived background signals:

• a) ROIi’s where r.rpm.CROIi < up are neglected,

• b) ROIi’s where r.rpm.TROIi < up are neglected.

In our example, there are 14,559 frames of length 500bp that remain
after the MEDIPS.selectSignificants() step. Because we have exce-
cuted the MEDIPS.methylProfiling() function by setting frame_size=500
and step=250, we may have overlapping significant frames stored in our
diff.meth.control results table. Whenever for the parameter settings it is
valid step<frame_size, we may end up with overlapping significant frames.
For these cases it is worthwhile to merge overlapping regions by typing:

> diff.meth.control.merged = MEDIPS.mergeFrames(frames = diff.meth.control)

[1] Number of merged frames: 10375
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Please note, the remaining 10,375 distinct frames are represented only by
their genomic coordinates within the diff.meth.control.merged table (these
are the chromosome names, new start, and new stop positions). The results
table does not contain any merged rpm, rms, variance, p.value, etc. values
any more.

Moreover, it is important to keep in mind, that there are three main reasons
why an analysis of only a subset of the full genome (here only chromosomes 1 , 2,
and 3) will probably end up in a different number of significant DMRs: First, the
calibration parameters were calculated for only three chromosomes. Second, the
total number of given regions differs and therefore, the reads per million values
will differ. Third, the rpm threshold derived from the background INPUT data
distribution was calculated based on data from only three chromosomes.

However, you can write out the obtained regions by typing some suitable R
code like:

> write.table(diff.meth.control.merged, file = "DiffMethyl.Up.hESCs.bed",

+ sep = "\t", quote = F, row.names = F, col.names = F)

You can upload the resulting file into a genome browser and the DMRs will
be visualized as black blocks.

Finally, it might be of interest to annoate the DMRs. We fall back on the
example ROI file hg19.chr1-3.txt that contains pre-defined promoter regions
(-1kb to +0.5kb around the TSSs). We annotate the identified DMRs by the
transcript promoters included in the ROI file by typing

> diff.meth.control.merged.annotated = MEDIPS.annotate(diff.meth.control.merged,

+ anno = "hg19.chr1-3.txt")

The resulting table is of the following format:

1. chr: the chromosome name of the DMR

2. start: the start position of the DMR

3. end: the stop position of the DMR

4. feature: the name of the annotation

For each provided region (DMR), the function returns all overlapping anno-
tations included in the provided annotation file. Note, in case there are several
overlapping annotations, the region (DMR) is returned several times in sparated
rows, each entry associated to one annotation. In order to receive e.g. a unique
list of ensembl transcript names whose promoter regions overlap with a DMR,
you can now easily select for the appropriate entries using standard R com-
mands, e.g.

> length(unique(diff.meth.control.merged.annotated[, 4]))

[1] 714

In our example, the 10,375 non-overlapping identified DMRs can be asso-
ciated to promoter regions of 714 unique transcripts (including genes as well
as pseudogenes and small RNAs). These DMRs can be interpreted as regions
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where de-methylation events occur during the differentiation of hESCs along
the endodermal lineage.

The other way round, we now select for frames higher methylated in differ-
entiated hESCs (DE) than in pluripotent hESCs:

> diff.meth.treat = MEDIPS.selectSignificants(frames = diff.meth,

+ control = F, input = T, up = 2, down = 0.5, p.value = 1e-04,

+ quant = 0.99)

[1] Processing input distribution...

[1] Done.

[1] Total number of frames: 2761891

[1] Number of frames where control or treatment !=0: 2463305

[1] Remaining number of frames with p.value<=1e-04: 275967

[1] Remaining number of frames where treatment/control ratio <= 0.5: 87040

[1] Estimated rpm threshold for input quantile 0.99 is: 1.68373489134935

[1] Remaining number of frames with treatment rpm >=1.68373489134935: 4413

[1] Remaining number of frames with treatment vs. input ratio>=2: 3559

[1] [Note: There are 0 frames associated to a p-value==0.]

[1] [Note: There are 10 frames, where control/treatment ratio = 0 (i.e. control=0).]

> diff.meth.treat.merged = MEDIPS.mergeFrames(diff.meth.treat)

[1] Number of merged frames: 3035

> write.table(diff.meth.treat.merged, file = "DiffMethyl.Up.DE.bed",

+ sep = "\t", quote = F, row.names = F, col.names = F)

> diff.meth.treat.merged.annotated = MEDIPS.annotate(diff.meth.treat.merged,

+ anno = "hg19.chr1-3.txt")

> length(unique(diff.meth.treat.merged.annotated[, 4]))

[1] 893

In our example, there are 3,035 non-overlapping DMRs associated the pro-
moter regions of 893 unique transcripts. These DMRs can be interpreted as
regions where a denovo methylation events occur during the differentiation of
hESCs along the endodermal lineage.

4 Concluding Remarks

In our opinion, MEDIPS provides several helpful functionalities for analysing
MeDIP-Seq data in reasonable time compared to other available approaches.
Nevertheless, there are some limitations that have to be adressed in the future.
The main issues are:

• Because MEDIPS processes full genome data at once, MEDIPS needs a
lot of memory. Especially, when two MEDIPS SETs as well as an INPUT
SET is uploaded and utilized for the identification of DMRs, the need for
memory is very huge.
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• The runtime, especially the calculation of mean methylation values or
DMRs for genome wide short windows remains a bottleneck.

• The MEDIPS.methylProfiling() function is a novel approach for identify-
ing enriched regions, and is especially suitable for MeDIP-Seq data because
DNA methylation is expected to occur on longer DNA stretches compared
to smaller enrichments derived from e.g. ChIP-Seq data. However, the
identification of DMRs is very static. The definition of fixed windows,
although when overlapping windows are defined, is not very flexible.

However, to the best of our knowledge, MEDIPS is currently the most com-
prehensive software for processing MeDIP-Seq data. It starts where the mapping
tools stop, touches several aspects of data quality checks, allows for exporting
raw and normalized methylation profiles, calculates mean methylation values
for any specified ROI and identifies genome wide DMRs when hunting for dif-
ferential DNA-methylation comparing two conditions.

References

Lukas Chavez, Justyna Jozefczuk, Christina Grimm, Joern Dietrich, Bernd
Timmermann, Ralf Herwig, and James Adjaye. Computational analysis of
genome-wide dna-methylation during the differentiation of human embryonic
stem cells along the endodermal lineage. in preparation, 2010.

Thomas A Down, Vardhman K Rakyan, Daniel J Turner, Paul Flicek, Heng
Li, Eugene Kulesha, Stefan Graef, Nathan Johnson, Javier Herrero, Eleni M
Tomazou, Natalie P Thorne, Liselotte Baeckdahl, Marlis Herberth, Kevin L
Howe, David K Jackson, Marcos M Miretti, John C Marioni, Ewan Birney,
Tim J P Hubbard, Richard Durbin, Simon Tavare, and Stephan Beck. A
bayesian deconvolution strategy for immunoprecipitation-based dna methy-
lome analysis. Nat Biotechnol, 26(7):779–785, Jul 2008.

Florian Eckhardt, Joern Lewin, Rene Cortese, Vardhman K Rakyan, John
Attwood, Matthias Burger, John Burton, Tony V Cox, Rob Davies, Thomas A
Down, Carolina Haefliger, Roger Horton, Kevin Howe, David K Jackson,
Jan Kunde, Christoph Koenig, Jennifer Liddle, David Niblett, Thomas Otto,
Roger Pettett, Stefanie Seemann, Christian Thompson, Tony West, Jane
Rogers, Alex Olek, Kurt Berlin, and Stephan Beck. Dna methylation pro-
filing of human chromosomes 6, 20 and 22. Nat Genet, 38(12):1378–1385, Dec
2006.

Ryan Lister, Mattia Pelizzola, Robert H Dowen, R. David Hawkins, Gary Hon,
Julian Tonti-Filippini, Joseph R Nery, Leonard Lee, Zhen Ye, Que-Minh Ngo,
Lee Edsall, Jessica Antosiewicz-Bourget, Ron Stewart, Victor Ruotti, A. Har-
vey Millar, James A Thomson, Bing Ren, and Joseph R Ecker. Human dna
methylomes at base resolution show widespread epigenomic differences. Na-
ture, 462(7271):315–322, Nov 2009.

Mattia Pelizzola, Yasuo Koga, Alexander Eckehart Urban, Michael Krautham-
mer, Sherman Weissman, Ruth Halaban, and Annette M Molinaro. Medme:

xliv



an experimental and analytical methodology for the estimation of dna methy-
lation levels based on microarray derived medip-enrichment. Genome Res, 18
(10):1652–1659, Oct 2008.

Michael Weber, Jonathan J Davies, David Wittig, Edward J Oakeley, Michael
Haase, Wan L Lam, and Dirk Schuebeler. Chromosome-wide and promoter-
specific analyses identify sites of differential dna methylation in normal and
transformed human cells. Nat Genet, 37(8):853–862, Aug 2005.

xlv


