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Extra View

Genetic Instability
The Dark Side of the Hypoxic Response

ABSTRACT
Under low oxygen tension, the activated transcription factor HIF-1α upregulates an

array of hypoxia-inducible genes via heterodimerization with ARNT and binding to the
hypoxia-responsive element in the promoter. Alternatively, HIF-1α regulates hypoxia-
responsive genes by functionally antagonizing the oncoprotein Myc via protein-protein
interactions. This so-called HIF-1α-Myc mechanism apparently not only accounts for the
gene upregulation, but also for the gene downregulation during hypoxia, depending
upon the activating and repressive nature of Myc in gene expression. Indeed, our recent
study demonstrated that both mismatch repair genes, MSH2 and MSH6, are inhibited 
by this mechanism in a p53-dependent manner. In particular, the constitutively bound
transcription factor Sp1 serves as a molecular switch by recruiting HIF-1α in hypoxia to
displace the transcription activator Myc from the promoter. Therefore, our findings shed
light on the mechanisms underlying hypoxia-induced genetic instability, an “adverse”
effect of the hypoxic response, and yet a germane process to tumor survival and 
progression.

The cellular response to oxygen deprivation—hypoxic response—is essential for cell
proliferation and survival. The hypoxia-inducible transcription factor, HIF-1α, apparently
acts as a master regulator of oxygen homeostasis by virtue of its critical role in regulating
an array of hypoxia-responsive genes.1-9 HIF-1α is known to upregulate hypoxia-inducible
genes such as EPO, VEGF and PGK1 through dimerization with ARNT (also known as
HIF-1β),10 recruitment of the transcription coactivator p300/CBP,11-13 and binding to
the hypoxia-responsive element in the promoter.14 Furthermore, our previous study
demonstrated that HIF-1α also utilizes a novel HIF-1α-Myc mechanism to activate
CDKN1A (also known as p21cip1) expression, involving functional antagonism of the tran-
scription repressor Myc via protein-protein interactions.15 Remarkably, this alternative
mechanism is independent of HIF-1α DNA binding and transcriptional activity; instead,
HIF-1α displaces Myc from binding to the CDKN1A promoter, resulting in gene activa-
tion.15

It is noteworthy that cells not only upregulate genes in adaptation to oxygen deprivation,
but downregulate hypoxia-responsive genes to complement the cellular event, both of
which merit equal amount of attention for a comprehensive understanding of the hypoxic
response.16 We have shown recently that the HIF-1α-Myc mechanism also accounts for
hypoxic downregulation of MSH2 and MSH6,17 whose protein products constitute
MutSα, a MSH2-MSH6 heterodimer that is crucial for DNA mismatch repair.18-20 The
fate of the hypoxia-responsive genes in this category seems to be determined by the intrinsic
function of Myc that controls transcription. In stark contrast to its repression of CDKN1A,
Myc activates MSH2 expression.21 Hence, the HIF-1α antagonism of Myc results in MSH2
downregulation.17

Intriguingly, neither HIF-1α nor Myc binds directly to the MSH2 promoter. Rather,
both HIF-1α and Myc discretely interacts with the constitutively bound transcription 
factor Sp1 on the MSH2 promoter, whereas HIF-1α dominates Sp1 binding in hypoxia
by competing against Myc. As a result, Sp1 acts as a molecular switch by recruiting HIF-1α
for the hypoxic repression of MSH2. The identification of Sp1 in the HIF-1α-Myc pathway
may provide a framework for the further understanding of how other hypoxia-responsive
genes are downregulated by hypoxia.

A salient point of this study is the requirement of the tumor suppressor p53 for the
hypoxic downregulation of MSH2 and MSH6. Either deletion or knockdown of TP53
reduced basal expression of MSH2 and MSH6, resulting in a loss of further inhibition by
hypoxia. Conversely, introduction of TP53 into TP53-null cells recapitulated the MSH2 and
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MSH6 inhibition by hypoxia. However, no such regulation was seen
in p53-inactivated cells. Although the p53 core domain has been
reported recently to bind the HIF-1α ODD domain,22 the latter is
not required for HIF-1α repression of MSH2 and MSH6 expression.
Thus, the mechanism by which p53 engages in repressing hypox-
ia-responsive genes remains obscure.

The human DNA mismatch repair system plays a crucial role in
safeguarding the genomic integrity by correcting DNA replication
errors and by blocking recombination events between divergent
DNA sequences.18,23 Mutations in the mismatch repair genes are
associated with the development of both hereditary and sporadic
cancers, and germline mutations in MSH2 or MLH1 are the most
prevalent cause of hereditary nonpolyposis colorectal cancers.20 To
demonstrate the intricate relationships among p53, HIF-1α, and
MSH2 in vivo, we examined the gene expression patterns with
immunohistochemistry in nonhereditary human colon cancers.
Stratified results based on the p53 status manifest a striking inverse
correlation between HIF-1α and MSH2 in the p53-undetectable
group harboring wild-type p53 (Fig. 1). However, no such 
correlation exists in the p53-detectable group harboring p53
mutants. Therefore, these results substantiate the role of HIF-1α in
suppressing MSH2 expression in the presence of wild-type p53.

A highly relevant question about these findings is how the reduc-
tion of MutSα levels by HIF-1α relates to the cellular adaptation to
hypoxia. To that end, we have proposed that balancing the supply
and demand of theintracellular ATP is key to this adaptive response.
In essence, not only does HIF-1α maintain intracellular ATP 

production by stimulating angiogenesis and glycolysis, but also
reduces ATP consumption by inhibiting cell proliferation and DNA
repair. This theory apparently explains why cell populations under
hypoxic stress experience multifaceted consequences, including gene
m u t a t i o n
and cell death, in addition to cell survival. These adverse events 
are seemingly an inevitable price associated with the survival of cell
populations under hypoxic stress. Accordingly, during tumor devel-
opment hypoxic microenvironment is created in the name of cell
survival, at the expense of gene mutation, and even of cell death.
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Figure 1. An inverse correlation of HIF-1α and MSH2 expression in p53
stratified nonhereditary colon cancers. The immunohistochemistry results
from a total of 80 specimens (Unstratified) and from p53 stratified groups
(p53-undetectable and p53-detectable) were plotted in axes, labeled with
the number of cases, MSH2, and HIF-1α respectively. The plus sign indicates
positive staining, and the minus sign negative staining. The green column
depicts specimens stained positive for MSH2 but negative for HIF-1α, where-
as the red denotes the reverse. Likewise, the orange column represents both
MSH2 and HIF-1α positive, and the grey means both negative.


