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Solid effect in the electron spin dressed state: A new approach
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We describe a new type of solid effect for dynamic nuclear polarization~DNP! that is based on
simultaneous, near resonant microwave~mw! and radio frequency~rf! irradiation of a coupled
electron nuclear spin system. The interaction of the electron spin with the mw field is treated as an
electron spin dressed state. In contrast to the customary laboratory frame solid effect, it is possible
to obtain nuclear polarization with the dressed state solid effect~DSSE! even in the absence of
nonsecular hyperfine coupling. Efficient, selective excitation of dressed state transitions generates
nuclear polarization in the nuclear laboratory frame on a time scale of tens ofms, depending on the
strength of the electron–nuclear coupling, the mw and rf offset and field strength. The experiment
employs both pulsed mw and rf irradiation at a repetition rate comparable toT1e

21, whereT1e is the
electronic spin lattice relaxation time. The DSSE is demonstrated on a perdeuterated BDPA radical
in a protonated matrix of polystyrene. ©2000 American Institute of Physics.
@S0021-9606~00!01340-4#

I. INTRODUCTION

Dynamic nuclear polarization~DNP! is a technique that
transfers the substantial Boltzmann polarization of unpaired
electron spins to nuclear spins thereby enhancing the nuclear
polarization by two or three orders of magnitudes in favor-
able cases. The sample under investigation must contain a
stable or transient paramagnetic species and mw irradiation
is applied at or close to the electron Larmor frequency. De-
pending on the nature of the electron–nuclear interactions,
the electron spin polarization is transferred either directly to
the nuclei or via an intermediate state in which the electron–
electron magnetic dipole couplings play an important role.1–6

In all cases, however, electron–nuclear coupling—Fermi
contact and/or magnetic dipolar coupling—is necessary to
drive the transfer of electron spin polarization/coherence into
nuclear spin polarization/coherence. Currently, the two pri-
mary applications of DNP are the production of polarized
targets for nuclear scattering experiments7 and the enhance-
ment of signal to noise in nuclear magnetic resonance
~NMR! experiments.8–12

In studies of solids three classes of mechanisms domi-
nate the polarization transfer,thermal mixing ~TM!,4 the
Overhauser effect~OE!,5 and thesolid effect~SE!.1–3 TM is
based on a three spin process involving flips of two electrons
and one nuclear spin and requires a homogeneous EPR line
or an inhomogeneous EPR line at sufficiently high radical
concentration to allow electron–electron cross relaxation be-
tween individual spin packets.13 Overhauser DNP takes ad-
vantage of selective relaxation pathways due to a time de-
pendent electron–nuclear interaction modulated at the
electron Larmor frequency. The standard SE uses the excita-

tion of forbidden electron paramagnetic resonance~EPR!
transitions and is described in the electronic laboratory
frame. Its efficiency for a given mw excitation field strength
is proportional toB0

22, whereB0 is the laboratory Zeeman
field, because it relies on nonsecular hyperfine coupling
which does not scale with the Zeeman field. Although all
three mechanisms—TM, OE, and the SE—lead, under the
correct circumstances, to substantial nuclear polarizations,
they do so at a rate that is approximately proportional to
T1n

21, whereT1n is the nuclear spin lattice relaxation time.
~This rate describes the build up of the bulk nuclear magne-
tization which is a result of an initial fast electron–nuclear
polarization transfer step and subsequent nuclear spin diffu-
sion dispersing the polarization throughout the sample. In
this paper, however, we only consider the initial electron–
nuclear transfer step.! Concurrently, in DNP experiments, it
is desirable to have longT1n , typically >30 s, to suppress
leakage in the polarization process and thereby to achieve
large signal enhancements. This requirement leads in turn to
mw irradiation periods of>120 s, and to slow rates of data
accumulation. This is a situation reminiscent of that which
exists in solid state NMR~SSNMR! of dilute spins—13C,
15N, etc.—whereT1n is long and prevents reasonable rates of
data acquisition. In the case of SSNMR, the problem is ad-
dressed by utilizing polarization transfer from abundant to
dilute spins—1H to 13C, 15N, etc.—because the1H’s can be
arranged to have a shortT1n . At present this transfer can be
accomplished in a number of ways, but usually involves
some form of Hartmann–Hahn cross polarization.14 In par-
ticular, rf fields satisfying the conditionv1I5v1S are applied
to the abundant and dilute spins to accelerate the polarization
transfer rate and enhance the polarization.15

The experiments described here are a first step toward
utilizing similar ideas to perform electron–nuclear polariza-
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tion transfers. In particular, we employ the fact that the elec-
tron spin lattice relaxation time,T1e , is several orders of
magnitudes shorter thanT1n and can be employed to accel-
erate the polarization transfer process. In addition, we apply
mw and rf fields to both the electrons and nuclear spins to
perform polarization transfer. Based on this approach we
propose a new type of SE in an electron spin dressed
state16–19 for which the presence of nonsecular hyperfine
coupling is not required. Instead, the electron–nuclear spin
system is subjected to simultaneous mw and rf irradiation.
The mw field interacts with the electron spin to create a
dressed state20 in which nuclear magnetic resonance~NMR!
transitions, which would be degenerate or forbidden in the
absence of the mw field, are selectively excited. Excitation of
these transitions transfers electron spin polarization to nuclei
in the laboratory frame as is shown in the following sections.
The mechanism does not depend explicitly on the Zeeman
field and may therefore find application in high field mag-
netic resonance spectroscopy.

In the following we briefly review the theory of the labo-
ratory frame solid effect, and then present a theoretical de-
scription, experimental results, and numerical simulations for
the dressed state solid effect~DSSE!.

II. THEORY

A. Laboratory frame solid effect „LFSE…

The conventional LFSE is understood with the four level
system of an electron and a hyperfine coupled nuclear spin
(I 51/2) displayed in Fig. 1~a!. The laboratory frame Hamil-
tonian in angular frequencies is

H05vSSZ1v I I Z1ASZI Z1BSZI X , ~1!

wherevS and v I are the electron and nuclear Larmor fre-
quencies, respectively.A and B represent the secular and
nonsecular hyperfine coupling. The eigenvalues ofH0 are
given by21

E1/25
vS

2
6

1

2 S v I1
A

2 D cos~ha!7
B

4
sin~ha!,

~2a!

E3/452
vS

2
6

1

2 S v I2
A

2 D cos~hb!6
B

4
sin~hb!,

with

ha5atanS 2B

A12v I
D and hb5atanS 2B

A22v I
D . ~2b!

The effect of mw irradiation is best analyzed in the electron
rotating frame withHmw5v1SSX , wherev1S5geB1S repre-
sents the strength of the linearly polarized mw field,B1S .
Transformation ofHmw into the diagonal frame ofH0 by the
unitary transformationU1 yields21

H̃mw5U1HmwU1
21

5v1S cos~h!•SX1v1S sin~h!•@S1I 21S2I 1#

1v1S sin~h!•@S1I 11S2I 2# ~3a!

with

h5~ha2hb!/2

and

U15exp@2 i ~haSaI y1hbSbI y!#. ~3b!

In Eq. ~3a! the first term represents the allowed EPR transi-
tions, the second~zero quantum! and third~double quantum!

FIG. 1. ~a! Four level energy scheme for an electron
and a spin 1/2 nucleus in the laboratory frame including
the forbidden EPR transitions for the laboratory frame
solid effect. The electron Zeeman interactionvSSZ is
the dominant interaction. The anisotropic hyperfine in-
teractionBSZI X is responsible for the nonzero transition
probabilities on the forbidden transitions.mS andmI are
the quantum numbers for the electronic and nuclear
Zeeman levels with respect to the Zeeman field.~b!
Four level energy scheme for an electron and a spin 1/2
nucleus in the electron spin dressed state. At a Zeeman
field of 5 T and with the available mw power, the two
EPR transitions atVS

eff6Aeff/2 are observable at fre-
quencies close to the electron spin lock field,v1S . The
remaining transitions atṽ I6Aeff/2 ~NMR! and VS

eff

6ṽI ~zero and double quantum! are centered atṽ I and
appear close to the nuclear Larmor frequencyv I .
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terms describe the forbidden EPR transitions, and the polar-
ization operators areSa,b5 1

2 16SZ . In the case ofB50
(h50), only the single quantum transitionsv13,v24 ~al-
lowed EPR transitions! are observable in an EPR experi-
ment. The zero and double quantum transitionsv23,v14 ~for-
bidden EPR transitions! are not excited because of a
vanishing transition dipole moment@sin(h)50#. If the non-
secular hyperfine coupling coefficientB is nonzero, then the
forbidden transitions are weakly allowed and four EPR tran-
sitions are observed. The probabilities for these transitions
are given by22

Pallowed}cos2~h!: Dms561, DmI50,
~4!

Pforbidden}sin2~h!: Dms561, DmI561.

When the four level system is at thermal equilibrium@Fig.
1~a!#, the selective excitation of one of the forbidden transi-
tions results in the creation of nuclear polarization in both
electronic manifolds. The sign of the nuclear polarization is
the same for both NMR transitions and depends on which
forbidden EPR transition is excited. Selective excitation of
only one forbidden transition requires that the excitation
bandwidth of the mw irradiation does not concurrently cover
both forbidden transitions. From Eqs.~2!–~4! it is obvious
that a strong nonsecular hyperfine interaction is required to
achieve significant probabilities for the forbidden transitions.
However, in a DNP experiment where polarization of the
bulk nuclei is the focus, the polarization of strongly hyper-
fine coupled nuclei is an ancillary effect. These nuclei are
‘‘detuned’’ from free bulk nuclei preventing the polarization
from dispersing via1H–1H spin diffusion.23,24 As a conse-
quence, it is necessary to polarize weakly coupled nuclei,
leading to very weak transition probabilities for the solid
effect @Eq. ~4!#. The predictedB0

22 dependence is in rough
agreement with experimental results showing that the LFSE
becomes less efficient at higher Zeeman fields. At a field of 5
T 1H-NMR signal enhancements of approximately 10 were
obtained at room temperature using a mw power of;10 W,9

whereas signal enhancements of;25 were observed under
comparable conditions at 1.4 T and;13 W of mw power.25

B. Dressed state solid effect „DSSE…

Dressed atom states are frequently encountered in opti-
cal experiments using strong laser fields for excitation. When
a two level system is strongly driven and detected with a
weak probe field, a three-peaked spectrum is observed, often
referred to as the Mollow spectrum.16,17 Similarly, a two
level electron spin system behaves as a dressed state under
strong mw excitation. The DSSE is based on such an elec-
tron spin dressed state generated by mw irradiation close to
the electron Larmor frequency. The Hamiltonian in the elec-
tron rotating frame is given by

HDS5H01Hmw5VSSZ1v I I Z1ASZI Z

1BSZI X1v1SSX , ~5!

whereVS5vS2vmw is the electron Zeeman frequency off-
set. The Hamiltonian is transformed into the frame which
diagonalizesH0 and in whichHmw is given by Eq.~3!. In a

second step, we diagonalize the part of the total Hamiltonian
which considers allowed EPR transitions,$This is a good
approximation for the experiments described here sincev I

@B andh is close to zero for a Zeeman field of 5 T@see Eq.
~3!#.% i.e., H̃01H̃mw

allowed. This is achieved by the unitary
transformationU2 ,21

U25exp@2 i ~uaSYI a1ubSYI b!#,

ua5atanS 22v1S

A12VS
D for A12VS>0

and

ub5atanS 22v1S

2VS2AD for 2VS2A>0, ~6!

ua52p1atanS 22v1S

A12VS
D for A12VS,0,

and

ub52p1atanS 22v1S

2VS2AD for 2VS2A,0.

In this frame the effective Hamiltonian,Heff, is expressed as

Heff5U2~H̃01H̃mw
allowed!U2

215VS
eff1ṽ I I Z1AeffSZI Z ~7!

with the eigenvalues

E1/251
VS

eff

2
6S ṽ I

2
1

Aeff

4 D , ~7a!

E3/452
VS

eff

2
6S ṽ I

2
2

Aeff

4 D . ~7b!

In the caseh50, VS
eff , ṽ I , andAeff are given by

ṽ I5v I ,

VS
eff5

1

2 F S VS1
A

2 D cos~ua!2v1S sin~ua!

1S VS2
A

2 D cos~ub!2v1S sin~ub!G , ~8!

Aeff5F S VS1
A

2 D cos~ua!2v1S sin~ua!

2S VS2
A

2 D cos~ub!1v1S sin~ub!G .
The corresponding level scheme of the electron spin dressed
state is shown in Fig. 1~b!. At 5 T (v I /2p5211 MHz) the
nuclear Zeeman interactionṽ I is the dominant contribution
whereasVS

eff , Aeff, andv1S are of the order of a few MHz.
Therefore, the two EPR transitions (v13,v24) at VS

eff

6Aeff/2 are expected to be observable at frequencies close to
the mw field strengthv1S . The remaining four transitions at
ṽ I6Aeff/2(v12,v34) anduVS

eff6ṽIu (v14,v23) are centered at
ṽ I and therefore at frequencies higher than the EPR transi-
tions.

The level scheme is highly simplified in the case of
strong mw irradiation fieldsv1S@uVSu,uAu, for which the
EPR transitions are determined solely by the mw field
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strength with an effective Zeeman splitting ofv1S . Re-
cently, these transitions were detected experimentally in
X-band EPR~9 GHz, 0.3 T! using a weak rf probe field with
a polarization parallel to the external Zeeman field.20 Of the
four remaining transitions in the electron–nuclear four level
system, the NMR transitions are degenerate atv I while the
zero and double quantum transitions appear atuv1S6v I u
~see Table I!.

1. Radio frequency Hamiltonian of the electron
dressed state

We now consider the effect of an additional rf irradiation
and the possibility of creating nuclear polarization by selec-
tive excitation of particular transitions in the electron spin
dressed state. The rf irradiationv1I5g IB1X

I is taken as par-
allel to the nuclear rotating framex-axis given by H rf

5v1I I X , where g I is the nuclear gyromagnetic ratio. To
simplify the analytical expressions, we choose the nonsecu-
lar hyperfine constantB50 ~h50, U15U1

2151!. The
transformations forBÞ0 are described elsewhere.21 After
transformation into the diagonal frame ofHeff, the radio fre-
quency Hamiltonian is

H rf
eff5U2H rfU2

215v1I cos~u!•I X1
v1I

2
sin~u!

•$@S1I 21S2I 1#2@S1I 11S2I 2#%

5v1I cos~u!•$SaI X1SbI X%1
v1I

2
sin~u!

•$@S1I 21S2I 1#2@S1I 11S2I 2#% ~9!

with u5(ua2ub)/2 andua ,ub given by Eq.~6!.
Clearly, the rf field introduces zero and double quantum

terms similar to the mw Hamiltonian in the laboratory frame
@Eq. ~3!#. However, in contrast to Eq.~3!, the angleu is
determined by parameters that can be adjusted in the experi-
ment such as the mw offsetVS and the electron spin lock
field, v1S @Eq. ~6!#. It is therefore possible to adjust the
NMR transition probabilities given by cos2(u) and sin2(u)
@compare Eq.~4!#.

2. Generation of nuclear polarization

In this section we derive an analytical solution for the
nuclear laboratory frame polarization assuming on resonant
mw irradiation (VS50) and purely secular hyperfine inter-
action (B50). We consider only electron spin Boltzmann
polarization (SZ) prior to the experiment so that the density

matrix in the laboratory frame is given byr05cSZ , wherec
is a constant. The initial electron spin polarization^SZ& is
therefore given bŷSZ&5Tr(SZ•r0)5c•Tr(SZ

2)5c. In addi-
tion, we apply an ideal mwp/2-pulse with phasey to create
a stater15c Sx prior to the evolution under mw and rf. The
applied mw spin locking field with phasex @Eq. ~5!# and
strengthv1S creates a low Zeeman field condition for the
excited electron spin packets. This condition can also be cre-
ated by applying a mw pulse sequence consisting of ap/2-
pulse, a short free evolution period and a spin lock pulse of
the same phase. During an ideal spin lock pulse the quanti-
zation axis and the electron Zeeman splitting are given by
the orientation and the strength of the mw field.

The time evolution ofr1 under simultaneous mw and rf
irradiation is calculated in the diagonal frame of the Hamil-
tonian Heff @see Eq.~7!# and the nuclear rotating frame ac-
cording to the following scheme:

r15cSX ——→
U2U1r1U1

21U2
21

r̃1 ——→
time evolution

under
mw and rf
Hamiltonian

r̃2 ——→
U1

21U2
21r̃2U2U1

r2

→^I Z&5Tr~r2•I Z!.

U1 and U2 represent the unitary transformations of Eq.~3!
and Eq. ~6!, respectively. Of particular interest is the
calculation of laboratory frame nuclear polarization
^I Z(v1I ,u,tSL)& as a function of the spin lock time,tSL ,
under simultaneous mw and rf irradiation, since it contains
information about polarization transfer time and efficiency.
The Hamiltonian of interest in the nuclear rotating frame is

H5VS
effSZ1V I I Z1AeffSZI Z1H rf

eff ~10!

with V I5v I2v rf being the nuclear Zeeman frequency off-
set. To understand the effect of the radio frequency irradia-
tion during the evolution of the density matrixr̃1 , it is con-
venient to consider on resonant mw irradiation~VS50,
⇒ub52p2ua , u5p/21ua! for which the Hamiltonian
of Eq. ~10! simplifies to

H5V I I Z1 1
2 @A cos~ua!22v1S sin~ua!#SZ1H rf

eff . ~11!

Although analytical solutions for̂I Z& can be derived for the
general case, they are not convenient for understanding the
spin physics of the experiment. Equations~12a!–~12d! sum-
marize the analytical calculations obtained for^I Z& upon se-
lective excitation of one of the four possible transitions
u i &↔u j &:

u1&↔u4&: r̃1→^I Z&51
c

2
sin~ua!

3$12cos@v1I tSL cos~ua!#%,

~12a!

u2&↔u3&: r̃1→^I Z&52
c

2
sin~ua!

3$12cos@v1I tSL cos~ua!#%,

~12b!

u1&↔u2&: r̃1→^I Z&50, ~12c!

TABLE I. Summary of the transition frequencies and amplitude factors of
the dressed state transitions relevant to the generation of nuclear polariza-
tion. The results are obtained in the limit ofVs50,v1S@uAu.

Transition Transition frequency Amplitude factor

u1&↔u2& UṽI6
Aeff

2 U5vI
0

u3&↔u4&

u1&↔u4& uVs
eff6ṽIu5uvI6v1Su usin(ua)u51

u2&↔u3&
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u3&↔u4&: r̃1→^I Z&50. ~12d!

It can be seen that nuclear polarization is generated if one of
the pathways in Eqs.~12a! and ~12b! is selectively excited.
Selective excitation is practically always possible since the rf
excitation bandwidth is smaller than the spectral separation
of the zero and double quantum transitions given byuv14

2v23u52VS
eff52A(A/2)21v1S

2 . The sign of the polariza-
tion depends on the transition selected. Both pathways dis-
play an oscillatory behavior intSL with a frequency
v1I cos(ua). In comparison, a fully allowed NMR transition
would exhibit a nutation frequency ofv1I . Therefore, the
results of Eq.~12! can be interpreted in terms of allowed and
forbidden NMR transitions in a manner similar to the EPR
transitions used in the LFSE@Eq. ~4!#. It is this analogy that
leads to the term dressed state solid effect~DSSE!.

The results indicate the importance of the mw irradiation
field strength,v1S . If v1S is reduced, the angleua decreases
and reduces the amplitude factors in Eqs.~12!. In the limit of
v1S→0, no nuclear polarization is generated for any value of
tSL .

Clearly, maximum electron spin polarization is trans-
ferred to the nuclei for rf pulse durations oftSL

5p/(v1I cos(ua)). Unfortunately, the build-up time for the
polarization approaches infinity if the amplitude factor is
maximized. For realistic DNP applications, however, the po-
larization must be accumulated within the electronic relax-
ation time during spin lockT1r which is typically 10–100
ms. A faster polarization transfer rate can only be achieved
by a reduction in the amplitude of the maximum value for
^I Z&.

To illustrate this idea we discuss the situation encoun-
tered in the experimental section. mw is irradiated on reso-
nance (VS50) with a field strengthv1S larger than the hy-
perfine couplings of the nuclei (v1S@A). For this case, the
values for the transition frequencies and the amplitude fac-
tors are given in Table I. As mentioned previously, two
dressed state transitions are degenerate at the free nuclear
Larmor frequencyv I . This is due to the effect of the strong
mw irradiation which decouples the hyperfine interaction to
the nuclei (Aeff50). These transitions are not useful for a
DNP experiment since their amplitude factors vanish under
the given conditions and do not allow for the build up of
nuclear polarization. The remaining two transitions~zero and
double quantum! are symmetrically positioned aroundv I

with a distance corresponding to the mw field strengthv1S .
Using Eqs.~12a! and~12b! it can be shown that the transfer
of the entire electron spin polarization would require an in-
finite time tSL and is therefore not practicable. However, for
typical proton rf field strengths (v1I /2p;100 kHz), transfer
times of 10ms allow a transfer of up to;85% of the initial
electron spin polarization depending on the ratio ofv1S

andA.
Finally we want to emphasize that the above expressions

are derived under the assumption of purely secular hyperfine
coupling, which is a reasonable approximation for the hyper-
fine interaction in solid samples at high Zeeman fields. In the
case of a liquid with short correlation times, the isotropic
hyperfine interaction represents the exact description at any

Zeeman field. This suggests that the DSSE should be observ-
able in liquid solution.

III. EXPERIMENT

The experiments were performed with a custom design
pulsed EPR spectrometer operating at 139.5 GHz/5 T. An
IMPATT diode network~Donetsk Physico Technical Insti-
tute! permits mw power amplification and fast amplitude
modulation ~,10 ns rise and fall times! as well as phase
switching ~0°, 90°, 180°, 270°! of the 36–38 mW output
power.26 mw p/2-pulses are;120 ns using a helical multiple
frequency resonator.27 The rf ~NMR! circuit consists of a
parallel LC circuit with a series matching capacitor. During
the rf sweep tuning and matching is maintained with a com-
puter controlled stepping motor recently developed for
ENDOR experiments.26

DSSE experiments were performed on a powder sample
of perdeuterated bis-diphenylene-phenyl-allyl~BDPA! dis-
persed at a level of;1% by weight in a protonated polysty-
rene matrix. Deuteration of the BDPA molecule insures that
no strong hyperfine couplings are present. The samples were
evacuated on a high vacuum line to remove oxygen in order
to lengthenT1e . For 0.7 mm o.d. sample tubes, the volume
in the active cavity amounts to 0.3ml. Because of the small
sample the1H signal was detected indirectly by monitoring
the attenuation of the electron spin echo intensity. All experi-
ments were performed at room temperature.

Figure 2 displays the pulse sequence to detect the DSSE.
The electron spin echo intensity was monitored after an elec-
tron spin lock of durationtSL and a refocusingp-pulse at a
time t after the spin lock. The echo intensities observed in
the two sequences with and without the rf pulse during the
electron spin lock were subtracted to yield the positive ab-
sorption line shape in Fig. 4. The echoes were recorded as a
function of the rf frequency, and at each setting 200 tran-
sients were averaged.

IV. RESULTS AND DISCUSSION

A. EPR and ENDOR

The 139.5 GHz EPR spectrum~not shown! of the
BDPA-d21 consists of a nearly axially symmetricg-tensor

FIG. 2. Pulse sequence for the dressed state solid effect~DSSE!. The elec-
tron spin echo intensity is monitored after an electron spin lock sequence of
durationtSL and a refocusingp-pulse at a timet after the spin lock pulse.
The echo intensities of two sequences with and without rf pulse during the
electron spin lock are subtracted and recorded as a function of the rf fre-
quency,v rf .
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with a span of 6.5 G. The corresponding proton DAVIES
ENDOR spectrum is shown in Fig. 3 and displays a single
line at the free proton Larmor frequency~211.85 MHz!, in-
dicating that no hyperfine couplings of more than 1.2 MHz
are present. The strong intensity of the matrix peak~at the
free proton Larmor frequency! is due to the large number of
distant protons.28

B. Dressed state solid effect

Experimental results obtained with the pulse sequence of
Fig. 2 are shown in Fig. 4 for various settings of the mw and
rf field strengths, respectively. The Zeeman field was set to

be on resonance with the maximum of the EPR line. The
electron spin lock time,tSL , was constant during the experi-
ments at 3ms. For large mw field strengths, the typical three
peaked dressed state spectra are observed. They consist of
two peaks symmetrically about the1H free larmor frequency
and an additional peak atv I5211.85 MHz. The positions of
the satellites are mw power dependent and shift towardsv I

when the mwB1S-field is reduced~full mw power, v1S/2p
561.75 MHz; 26 dB, v1S/2p560.91 MHz; 212 dB,
v1S/2p560.51 MHz!. In fact, their shift is almost linear in
B1S , which can be understood in the DSSE model. In the
caseVS50,v1S@uAu the zero and double quantum transi-
tions are located atv I6v1S . Thus, reducing the mw field
strengthv1S results in a linear shift of these transitions to-
wardsv I . The fact that the observed shift is not perfectly
linear is attributed to the relatively weak spin lock field
which does not fulfill the conditionv1S@uAu. In addition to
the line shift, the width of the satellite peaks is clearly re-
duced by reducing theB1S-field. A reduction of the rf power
only results in an overall signal decrease without additional
effects. Experimental results are shown in Fig. 4 for three rf
power settings of 350, 120, and 50 W~v1H/2p;100 kHz at
350 W!.

In addition to the satellite peaks, a signal is observed at
the free1H Larmor frequency which corresponds to the de-
generateu1&–u2& and u3&–u4& transitions in the limit VS

50,v1S@uAu. This peak intensity shows a pronounced de-
pendence on the mwB1S-field strength which is not observed
for the satellite transitions, indicating that the central peaks
are driven more efficiently by the applied rf irradiation due
to a larger transition dipole moment as compared to the sat-
ellite peaks. Indeed, this is consistent with the effective rf
HamiltonianH rf

eff of Eq. ~9! in the limit VS50,v1S.uAu. For
uuau,p/4 (2v1S,A) the u1&–u4& and u2&–u3& transitions
have higher transition probabilities than theu1&–u2& and u3&–
u4&. In contrast, for 2v1S.A, the zero and double quantum
transitions are driven less efficiently which is the situation
for the perdeuterated sample. In addition, this behavior was
confirmed in numerical simulations discussed in the next
section. It should be mentioned that two other mechanisms
can give rise to a signal contribution atv I . First, an ENDOR
matrix peak of weakly coupled protons can occur, although
the pulse sequence is not typical of ENDOR experiments. It
is well known that ENDOR effects are observable for mw
and rf pulses which deviate significantly from the ideal
p-pulses used in the Davies Endor sequence. Second, it was
recently stated21 that a nonideal mw pulse can generate
nuclear coherence even without rf irradiation. This is, how-
ever, only possible in the presence of nonsecular hyperfine
coupling,BÞ0. In this case, the rf pulse during electron spin
lock might transform the nuclear coherence into nuclear po-
larization thereby affecting the EPR polarization.

C. DSSE simulations

Numerical simulations of the DSSE experiment were
performed with the complete Hamiltonian (B50) using the
GAMMA ~Ref. 29! simulation platform. In addition to the
experimental data, we calculated both the EPR signal^SX& as

FIG. 3. 1H Davies ENDOR spectrum of perdeuterated bis-diphenylene-
phenyl-allyl ~BDPA! in a protonated polystyrene matrix at 5 T (v I /2p
5211.8 MHz). The structure of the BDPA radical is shown in the inset. The
pulse lengths were 280 ns for a mwp pulse and 4.5ms for the1H rf pulse.

FIG. 4. DSSE experiment on perdeuterated BDPA for various settings of the
mw spin lock field~0 dB, 6 dB, and 12 dB attenuation! and the rf power
level ~350 W, 120 W, and 50 W! for a spin lock timetSL53 ms. The mw
p/2 pulse length was 140 ns and the1H field during electron spin lock;100
kHz at 350 W.
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well as the NMR signal̂ I Z&. The simulations were per-
formed by calculating datasets with and without rf irradiation
and subsequently subtracting the two datasets. The density
matrix prior to the pulse sequence contained only electron
spin polarizationSZ . An isotropicg-factor as well as isotro-
pic hyperfine coupling are assumed and electron offset ef-
fects were taken into account by integrating over a Gaussian
EPR line shape. In order to reduce computational time, the
signals were determined with the density matrix immediately
after the spin lock pulse. The additional free evolution and
the refocusingp-pulse used in the experiment do not need to
be considered in the simulation since their purpose is only
the creation of a detectable EPR signal. Figure 5 displays a
calculated signal̂ SX& for on resonant mw irradiation (VS

50), v1S/2p51.4 MHz, an isotropic hyperfine coupling of
A50.5 MHz, and a series of spin lock times up to 5ms. It
can be seen that the signal close tov I undergoes several
oscillations with an intensity comparable to the satellite
peaks whose intensity increases monotonically. From the
contour plot@Fig. 5~b!# the fast nutation behavior of the cen-
tral line is more apparent.

As predicted in the Theory, excitation of either satellite
transition allows for build up of nuclear polarization with
opposite sign as demonstrated in Fig. 6 which displays the
time evolution of botĥ SX& and^I Z& for an extended period
of time ~0–250 ms! assuming a hyperfine couplingA
50.2 MHz. The plot shows that the detection of^SX& is an

indirect measure of the nuclear polarization as long as the
satellite peaks are considered. Both signals reach their maxi-
mum values for a spin lock time of;75 ms which is consis-
tent with the timetSL5p/@v1I cos(ua)# derived in the theory
section. With v1I /2p585 kHz, v1S/2p51.4 MHz, andA
50.2 MHz we find a value oftp582ms.

The central transition in thêSX& signal does not allow
for a significant generation of̂I Z& with the parameters cho-
sen in the simulation. This observation is consistent with the
predictions displayed in Table I, which indicate that excita-
tion of the degenerate transitions atv I does not generate
nuclear polarization at any spin lock duration.

The central peak in thêSX& signal deserves a closer
look. Although it is always present in the experiment and
even exceeds the DNP transitions in several cases, it is not
predicted by the theory and not found in the simulations. We
attribute this experimental fact to a strong residual ENDOR
matrix peak involving many weakly hyperfine coupled pro-
tons as detected in the Davies ENDOR experiment~see Fig.
3!. It was recently shown that a simulation of the matrix peak
needs to take into account a large number of weakly coupled
nuclear.28 The simulations presented in this section, how-
ever, were performed on an electron–nuclear two spin sys-
tem. It is therefore not surprising that the matrix peak is not
reproduced in the simulation of the DSSE experiment.

The experiments and calculations demonstrate that

FIG. 5. ~a! Calculated time evolution of the electron spin lock magnetization
^SX& as a function of the radio frequencyv rf/2p and its contour plot~b!.
The simulation was performed as described in the text with the following
parameters:v1S/2p51.4 MHz, v1I /2p585 kHz, A50.5 MHz.

FIG. 6. ~a! Calculated time evolution of the electron spin lock magnetization
^SX&, and the nuclear polarization̂I Z& ~b! as a function of the radio fre-
quencyv rf/2p over an extended time periodtSL50 – 250ms. The simula-
tion was performed with the following parameters:v1S/2p51.4 MHz,
v1I /2p585 kHz, A50.2 MHz.
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nuclear polarization is created by excitation of electron spin
dressed state transitions, and results in a build-up of polar-
ization of opposite sign upon excitation of either satellite
transition. In this respect the experiment is an analogue of
the DNP solid effect in the laboratory frame.

V. CONCLUSIONS

We have shown that the solid state effect in the electron
spin dressed state can be used to create nuclear polarization
based on experiments in which the loss of electron spin po-
larization was detected. Although the experiment does not
directly detect nuclear polarization, we are convinced that it
is generated for several reasons. First, indirect detection of
polarization transfer has been successfully applied in both
nuclear–nuclear14 and electron–nuclear30 polarization trans-
fer schemes. Second, the experimental results are fully sup-
ported by simulations which include the evolution of the full
density matrix. These simulations unambiguously correlate
the observed spectra with the generation of nuclear polariza-
tion. Third, any residual ENDOR effect can be ruled out
because the DSSE transitions appear at positions well out-
side the spectral region of any detected hyperfine coupling.

The available time for the polarization transfer is deter-
mined by the electronic relaxation timeT1r during spin lock.
This time does not impose severe restrictions since the prob-
abilities for the DNP transitions are significantly higher than
in the electron lab frame version of the experiment. In addi-
tion, one can repeat the polarization sequence with a rate in
the order of 1/T1e to accumulate nuclear polarization.

Our results anticipate that the DSSE has a significant
advantage over the LFSE experiment which arises from hy-
perfine decoupling during near resonance mw irradiation.
Nuclei with hyperfine couplingsA, B,v1S are experiencing
a reduced effective coupling due to mw irradiation. In the
limit of A, B!v1S the nuclei are entirely decoupled, result-
ing in NMR frequenciesv I independent of the hyperfine
coupling termsA andB. As a result, we expect the polarized
protons to undergo efficient proton–proton spin diffusion
with the bulk protons since the nuclear dipole–dipole cou-
plings remain unaffected by the mw irradiation.

Finally, the DSSE—in contrast to the LFSE
experiment—does not rely on nonsecular hyperfine coupling
BSZI X . Instead, the off diagonal elements of the Hamil-
tonian are introduced by the mw field. Therefore, the experi-
ment should function in liquids where the anisotropic part of
the hyperfine interaction is averaged to zero by pseudo-
isotropic molecular motion.

To date, the DNP effect was detected indirectly by moni-
toring the attenuation of the spin locked electron magnetiza-

tion. Since the experiment requires a highly efficient probe
for simultaneous mw and rf irradiation, it currently can be
performed only in our 140 GHz pulsed EPR/ENDOR setup
using a mw resonance structure and very small sample.
Work is in progress to increase the sensitivity of the NMR
detection to provide a direct measure of the nuclear polariza-
tion ^I Z&.
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