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Abstract

It has recently been proposed (Dediu, D., Ladd, D.R., 2007. Linguistic tone is related to

the population frequency of the adaptive haplogroups of two brain size genes, ASPM and

Microcephalin. Proc Natl Acad Sci USA 104, 10944-10949) that genetically coded linguistic

biases can influence the trajectory of language change. However, the nature of such biases

and the conditions under which they can become manifest have remained vague. The present

paper explores computationally two plausible types of linguistic acquisition biases in a

population of agents implementing realistic genetic, linguistic and demographic processes.

One type of bias represents an innate asymmetric initial state (Initial Expectation bias)

while the other an innate asymmetric facility of acquisition (Rate of Learning bias). It was

found that only the second type of bias produces detectable effects on language through

cultural transmission across generations and that such effects are produced even by weak

biases present at low frequencies in the population. This suggests that learning preference

asymmetries, very small at the individual level and not very frequent at the population level,

can bias the trajectory of language change through the process of cultural transmission.
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1 Introduction

In their recent paper, Dediu and Ladd (2007) argued for the existence of a correlation between

the population frequency of the derived haplogroups of two brain growth and development

related genes, ASPM and Microcephalin, and the usage of linguistic tone in the language(s)

spoken by that population. To this end, they used a world sample of 49 populations for which

information was collected for 983 alleles and 26 linguistic features, while controlling for

geographical distance and known historical linguistic relationships. The most controversial claim

of the paper concerns the nature of this correlation, which is argued to be causal, due to a

putative genetic bias in the processing of tone induced by the haplogroups concerned.

The exact nature of this genetic bias is not specified, but it is argued that it involves three

components (Dediu and Ladd, 2007):

i. from interindividual genetic differences to differences in brain structure and function,

ii. from differences in brain structure and function to interindividual differences in

language-related capacities, and

iii. from these to typological differences between languages.

Any claim involving a genetic bias manifested in typological differences between languages

must make reference to these three components, which represent the flow of causation from genes

to language. More generally, this same argument applies to any claim of genetic biases causing

cultural differences between human populations. Components (i) and (ii), concerning

interindividual variability, are generally well-established for language either independently

(Bartley et al., 1997; Lenroot et al., 2007; Scamvougeras et al., 2003; Thompson et al., 2001;

Wright et al., 2002) or as a conglomerate in studies involving the heritability of language (Bishop,

2003; Bonneau et al., 2004; Felsenfeld, 2002; Fisher et al., 2003; Plomin and Kovas, 2005;

Stromswold, 2001). Component (iii) concerns interpopulation variability and asserts that

populations with different genetic structures could develop overt linguistic differences. The claim

is that individual biases can be either amplified or hidden by the cultural transmission of

language in a population of biased agents, making them visible or not at the language level.

Previous studies of the cultural transmission of language by biased agents are not numerous

and come mainly from the field of language evolution1. For example, Nettle (1999) uses computer

models and is mainly concerned with explaining language change and the threshold problem, and
1Robert Boyd and Peter Richerson’s (1985) distinction between various types of bias in cultural evolution and

their treatment of directly biased transmission is relevant, but their approach seems too general to answer the
questions of interest for this paper.
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includes the impact of functional biases, suggesting that they are effective in influencing the

trajectory of language change. However, the study is limited to uniform populations with respect

to the strength of these biases. Smith (2004) shows that the evolution of vocabulary is influenced

by the “innate” biases of simulated agents (in favor of, neutral or against homonymy) and the

population structure with respect to the relative frequencies of these different biases.

A new and productive framework for treating language evolution and language change is

represented by the Bayesian approach (Press, 2003), where agents are considered to be Bayesian

learners (Griffiths and Kalish, 2007; Hawkey, 2008; Kirby et al., 2007; Smith and Kirby, 2008),

having a prior distribution over the possible languages, P (h), and updating this distribution to

reflect the observed linguistic data, d, to result in their posterior distribution,

P (h|d) =
PPA(d|h)P (h)

PPA(d)

where h representes a hypothesis (language), PPA(d|h) is the probability of producing the

observed linguistic data, d, under the hypothesis h, and PPA(d) =
∑

h PPA(d|h)P (h). In this

framework, the prior P (h) is equated to the learning bias and the agent selects a single

“winning” hypothesis from the posterior P (h|d) to represent its linguistic knowledge. Griffiths

and Kalish (2007) propose two such learning algorithms, namely the sampling learner which

chooses as the “winner” a random hypothesis with a probability proportional to its posterior

probability, and the maximum a posteriori or MAP learner, which chooses as the “winner” the

hypothesis with the maximum posterior probability. They prove that, if certain assumptions are

met, including identical agents and generations composed of a single agent, iterated learning with

sampling agents is equivalent to a Gibbs sampler and always converges to the prior, while for

MAP agents, the system is equivalent to an expectation-maximization algorithm, and the

behavior is more complex but still largely influenced by the prior.

Kirby et al. (2007) focus on the MAP learner and show that there is a continuum of learning

algorithms by proposing that learners choose the “winning” hypothesis with probability

(PPA(d|h)P (h))r: when r = 1 the learner samples from the posterior (sampler), while for r →∞
the learner picks the hypothesis with the maximum posterior probability (MAP). As opposed to

the sampler, r = 1, which invariably converges to the prior P (h), the learners with r > 1 pick

languages proportional to P (h)r, deviating from the prior. Therefore, they conclude that small

learning biases can be amplified by the process of cultural transmission and made manifest as

universals. Smith and Kirby (2008) analyze the evolutionary stability of sampling and

maximizing (MAP) against invasion by the opposing strategy and conclude that maximizing is
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always preferred over sampling. Moreover, assuming a fitness cost to strong priors, they show

that evolution favors weak biases.

However, there are a number of issues with these studies, including the assumption that the

prior distribution over the languages, P (h) captures all the aspects of the vague concept of a

learning bias or that the human language learning process can be approximated by a Bayesian

formalism (for a critique see, for example, Hawkey, 2008). But, from the point of view of the

present study, two assumptions are very relevant and open to argument: that the agents are

identical and that the linguistic community is degenerated to a single teacher and a single

learner2.

The present study is a computational investigation of the effects of genetic biases on language

change in structured populations of agents. It implements realistic3 demographic, genetic and

linguistic processes and two types of genetic biases on language acquisition. It is well-known that

first language learning represents one of the proposed mechanisms of language change (Campbell,

2004) together with second language acquisition by adult learners (Ostler, 2005) and adult usage

(Croft, 2000), and there is still a debate concerning their relative roles. The biases explored in

this paper refer strictly to first language acquisition, in the vein of the previous studies cited

above, while the effects of biases manifest in adult second language learners and adult usage will

be investigated in a future study.

2 The Model

The model world is composed of m× n regions, arranged in a square grid. Time is discretized in

simulation years. Each region, Rij , 1 ≤ i ≤ m, 1 ≤ j ≤ n, can support a population, Pij , of a given

(constant) optimal size, Sopt
ij . The current population size at time t, St

ij is attracted towards Sopt
ij ,

in the sense that when St
ij > Sopt

ij , both mortality and emigration increase, while when

St
ij < Sopt

ij , mortality decreases and the region becomes a preferential target for immigration. The

unit of the simulation is represented by an agent. Each agent has a limited lifespan, agemax, and

the probability that an agent will die at each time step t is determined by its age, its fitness and

the population pressure St
ij − Sopt

ij . There is a critical period up to agecritical during which

language acquisition takes place. The agent becomes sexually active at agepuberty and can mate

with another mature agent of the opposing sex. All demographic processes (mating and

2Griffiths and Kalish (2007), Section 7, discuss the case of an infinite population of identical agents, where at
each time step a learner sees data produced by a single random teacher, and show that such a model converges to
a state dependent on the prior. However, in this case, there is no social structure and the learning process is still
essentially single teacher-single learner.

3The qualification “realistic” must be understood by comparison with previous models and the hypothesis of
interest.
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migrations) depend on space, in that both involve only immediately neighboring (Moore

neighborhoods) regions.

For this study, m = n = 10, Sopt
ij = 50, agecritical = 5, agepuberty = 15, agemax = 70, and there

are no fitness differences between agents (neutral evolution). Test runs for different world

dimensions (m and n) and optimal population sizes (Sopt
ij ) have shown that the behavior of the

model is qualitatively the same irrespective of these parameters, but for bigger worlds and

optimal sizes the random fluctuations are less important. The model is also robust with respect

to the agent-related parameters agecritical and agepuberty
4.

Each agent has a genome composed of two independent genes, G1 and G2, each with two

alleles, one of which is denoted * and is of “special interest”, akin to the derived haplogroups of

ASPM and Microcephalin. All four alleles are selectively neutral but they can influence the

linguistic development of the agents by coding specific linguistic biases. Concerning the linguistic

aspect of the model, there are two features, denoted F1 and F2, each with two possible values,

one of them denoted *. An agent represents its linguistic world through two probabilities, p1 and

p2, where pi is the probability that Fi has value *. In general, these two linguistic features are

not necessarily independent and the joint probability p1·2 of both F1 and F2 having value * can

represent functional or cognitive relationships between them. Utterances are produced

conforming to these probabilities, containing F ∗1 with probability p1, F ∗2 with probability p2, and

the joint distribution of F ∗1 and F ∗2 being governed by p1·2.

During first language acquisition, an agent samples utterances produced by the agent’s own

mother (nmother utterances), the other linguistically mature (i.e., past agecritical) members of the

agent’s population (nstranger utterances each) and a proportion (fforeigners) of the linguistically

mature members of the neighboring populations (nforeigner utterances each). For the present

study nmother = 100, nstranger = 50, fforeigners = 0.05 and nforeigner = 10, so that the most

influential role is played by the agent’s mother, followed by the agent’s own speech community

and lastly by the neighboring speech communities. Test runs5 have shown that the model is

robust with respect to these parameters.

The agent computes the probabilities p1, p2 and p1·2 based on the frequencies of heard

utterances containing F ∗1 , F ∗2 and (F ∗1 & F ∗2 ), respectively, denoted f1, f2 and f1·2. More

4280 test runs: 54 runs, 27 for m = n = 5 and 27 for m = n = 15; 54 runs, 27 for Sopt
ij = 25 and 27 for Sopt

ij = 100;
81 runs, 27 for agecritical = 1, 27 for agecritical = 3 and 27 for agecritical = 10; 81 runs, 27 for agepuberty = 1,
27 for agepuberty = 5 and 27 for agepuberty = 25. Larger world and population sizes, and critical and puberty ages
have higher computational costs while smaller values tend to be more erratic.

581 runs, 27 for each of the following parameter values: (i). nmother = 0, nstranger = 100, fforeigners = 0.05
and nforeigner = 0 - the agent acquires language only from its own linguistic community; (ii). nmother = 10,
nstranger = 10, fforeigners = 0.5 and nforeigner = 100 - the neighboring linguistic communities have the strongest
impact on language acquisition; and (iii). nmother = 50, nstranger = 50, fforeigners = 0.05 and nforeigner = 50
- equal weighting of all three types of learning models. As expected, for case (ii) the strength of the correlations is
reduced and the bias is manifest only if very strong and infrequent (β ≤ 0.5, ν ≤ 0.5; see below for notations).
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specifically, let us focus on F ∗1 but the same applies to the other two cases, as well: the difference

between the observed frequency, f t
1, and the agent’s internal probability, pt

1, at time t,

∆t
1 = |pt

1 − f t
1|, is used to update the agent’s internal probability at time t + 1, pt+1

1 , by making

pt+1
1 =





pt
1 + ∆t

1 · r+
1 if pt

1 ≤ f t
1

pt
1 −∆t

1 · r−1 otherwise

where 0 ≤ r+
1 , r−1 ≤ 1 are the learning rates adjusting the weight of the evidence in favor of or

against F ∗1 .

The three models for the genetic biases are:

• M0 (No Genetic Biases): no influence from the genome on the computation of the

linguistic probabilities p1, p2 and p1·2. More specifically,

r+
1 = r−1 = r+

2 = r−2 = r+
1·2 = r−1·2 = 1.0 and p1 = p2 = p1·2 = 0.5 initially. For example, if

we consider F ∗1 to represent tone and G∗1 to represent the derived haplogroup of ASPM,

this model describes the case where a carrier of ASPM-D is not different in any relevant

respect from a non-carrier in learning about the tonality of its language;

• M1 (Genes Bias the Initial Expectation): represents the case where genes bias language

acquisition by coding for different initial starting points. G1 influences F1, in the sense that

if an agent has the G∗1 allele, then initially its p1 = 1.0 (very strongly “predisposed” to

expect a language of type F ∗1 ) and, if not, its p1 = 0.0 (very strongly “predisposed” against

such a language). The other parameters are as for M0, namely

r+
1 = r−1 = r+

2 = r−2 = r+
1·2 = r−1·2 = 1.0 and p2 = p1·2 = 0.5 initially. The language learning

process subsequently adjusts these expectancies conforming to the actual language spoken

around the agent. In our example, a carrier of ASPM-D is born expecting its language to

be tonal;

• M2 (Genes Bias the Rate of Learning): represents the case where genes bias language

acquisition by coding for preferential rates of learning. Initially all agents have a neutral

expectancy irrespective of their genomes (p1 = 0.5), but the rate of adjustment of p1 given

the linguistic evidence is asymmetric. If an agent has the G∗1 allele, then it is more ready to

accept that the language is of type F ∗1 than of the opposite type, meaning that evidence

favoring F ∗1 is accepted as stronger than equivalent evidence against F ∗1 . This readiness will

be denoted as the value of the bias, β, varying between 0.0 (extremely strong tendency

towards F ∗1 ) to 1.0 (no tendency towards F ∗1 ). More specifically,
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r+
1 = r+

2 = r−2 = r+
1·2 = r−1·2 = 1.0 and p1 = p2 = p1·2 = 0.5 initially, but r−1 = β. In our

example, a carrier of ASPM-D is born without any special expectancy concerning the

tonality of its language, but it is more inclined to accept the data in favor of tonality than

against it.

There are two parameters of interest:

• the initial frequency of G∗1 in the population6, denoted ν: it can take any value between 0.0

(total absence of the G∗1 allele from the population) to 1.0 (total absence of the alternative

allele, G1, from the population). Due to computational costs, 9 equally-spaced values were

considered, ν ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}, with the extremes of 0.0 and 1.0

excluded as uninteresting due to lack of genetic variation;

• only for model M2, the value of the bias, denoted β. As discussed above, β = r−1 and can

take any value between 1.0 (no bias, fully equivalent to model M0) to 0.0 (extreme

preference for F ∗1 completely discarding any evidence to the contrary). Due to

computational costs, 7 values were considered based on preliminary exploratory runs,

suggesting a denser sampling of weaker biases: β ∈ {0.1, 0.5, 0.8, 0.85, 0.9, 0.95, 0.99}.

It must be highlighted that F2 and G2 are used as controls. The initial frequency of G∗2 is not

a parameter and was fixed at 0.5. The two genes are considered independent, as well as the two

linguistic features. The present paper assumes that the * allele is dominant. Incomplete

dominance of * would mean that the heterozygous phenotype is intermediate, which effectively

means a weaker bias, while the recessiveness of * would lower the effective frequency of the biased

individuals. Therefore, the dominant case was the only one investigated.

For each of the 99 cases (all three models and possible combinations of parameter values), 20

independent runs were performed. For each run, there are two types of measures of interest:

those reflecting the overall correlations between genetic diversity, linguistic diversity and

geography, on one hand, and the specific correlations between the frequencies of the alleles and

the frequencies of linguistic features across populations, on the other. For the first type of

measures, Mantel correlations (Mantel, 1967)7 involving the genetic distances (Nei, 1972;

considering both G1 and G2), linguistic distances (Euclidean distances on the space of both

features F1 and F2; Dediu and Ladd, 2007) and geographic distances (Euclidean distances

between regions) between populations were computed: GenGeo (genetic and geographic

6Given that the alleles are selectively neutral and independent, the only evolutionary process affecting their
frequencies is random drift in large populations, so that these frequencies tend to remain constant during the
simulations.

7Computed using the ZT software (Bonnet and Van de Peer, 2002).
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distances), LingGeo (linguistic and genetic distances), GenLing (genetic and linguistic distances)

and GenLingGeo (genetic and linguistic distances controlling for geographic distances).

GenGeo reflects the degree to which geographic distance between populations accounts for

their genetic (dis)similarity. It is usually positive due to the effects of geography on the dispersal

of two populations split from a single ancestor population and contact between populations,

respectively. Likewise, LingGeo reflects the degree to which mere geographic distance accounts

for the differences between the languages spoken by the two populations and concerns both

historical linguistic relatedness (descent with modification from a common ancestor, given that

related languages tend to inhabit neighboring regions) and language contact (linguistic borrowing

across language boundaries). GenLing reflects the degree to which the genetic and linguistic

(dis)similarities between two populations tend to correlate and it is expected that most of this

correlation is explained by the subtending geography (Dediu, 2007; Poloni et al., 1997). This is so

because, as discussed above, geography conditions both genetic and linguistic (dis)similarities

and their residual correlation is captured by GenLingGeo. However, if there is a relatively strong

causal biasing of language by genes, it would be expected that the residual GenLingGeo is larger

than in the purely neutral case. Therefore, the main interest in studying these Mantel

correlations is that they are widely used in the literature (e.g., Jobling et al., 2004) and they

might also offer a first clue to genetic biasing for language.

The second type of measures concerns specifically the hypothesis of a causal relationship

between biasing alleles and linguistic diversity and are represented by Pearson correlations

between frequencies across populations: F1F2 (F ∗1 and F ∗2 ), G1G2 (G∗1 and G∗2), F1G1 (F ∗1 and

G∗1), F1G2 (F ∗1 and G∗2), F2G1 (F ∗2 and G∗1) and F2G2 (F ∗2 and G∗2). F1F2 reflects the typological

correlations between the two linguistic features, whereby languages tend to have certain

combinations of values for these features. For example, if one takes F1 to represent the order of

Object and Verb (with two possibilities: OV, like Turkish, and VO, like Gulf Arabic; Dryer,

2008b) and F2 as the order of Adposition and Noun Phrase (with two main possibilities:

prepositions, like English, and postpositions, like Japanese; Dryer, 2008a), then these two features

are strongly correlated, with 427 OV & postposition languages (41.3%) and 417 VO &

preposition languages (40.3%) out of a sample of 1033 languages (Dryer, 2008c; see this also for a

discussion of the explanations). However, in our case, by design there is no relationship between

F1 and F2 (p1·2 = 0.5) and, therefore, any correlation F1F2 6= 0 reflects particular linguistic

events (splits and language contact). G1G2 represents the correlation between the two loci of

interest but, by design, these two loci are independent so that any non-null correlation between

them reflects accidental events. The correlations FiGj , for i, j ∈ {1, 2}, reflect the relationship
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between the linguistic feature Fi and gene Gj and form the main focus of this paper. Such a

correlation can be non-null for a variety of reasons, including random drift, migrations and

genetic biasing. By design, there is no causal relationship between Fi and Gj except for i = j = 1

for models M1 and M2: it is expected that the correlation F1G1 for these models to be non-null,

depending on the other relevant parameters. The interest is to identify the regions in the

parameter space which produce significant and large correlations between F1 and G1, which, in

turn, would allow the detection of genetic biasing on language.

For all these correlations, both the effect size and significance were collected every 100

simulation-years for a period of 10,000 simulation-years, so that for each such correlation there

resulted two time series: the effect sizes, rt, and the p-values, pt. The behavior of these

correlations in time was measured by two related coefficients:

• ρ(pt) = Card{pt ≤ α}/Card{pt}, where Card represents the number of elements in a set,

and α is the chosen α-level (0.05 in this case). Thus, ρ(pt) represents the proportion of

significant correlations across time;

• λ(rt, pt) captures the idea that some correlation series tend to contain long, continuous

stretches of significant correlations of the same sign. Given the two series (rt, pt), let us

form a new time series yt such that

yt =





0 if pt ≥ α

1 if pt < α and rt > 0

−1 if pt < α and rt < 0

Given this new yt series, let us define ȳ as the average length of a contiguous run of 1’s or

−1’s in yt, and then λ(rt, pt) = ȳ/Card{pt ≤ α}.

ρ(pt) and λ(rt, pt) tend to have the same behavior (Pearson’s r = 0.78, p < 0.01;

κ0.01 = κ0.05 = 92.2%8). However, λ(rt, pt) is better at identifying chaotic series, where

correlations tend to be significant but alternate very rapidly between negative and positive

values. On the other hand, ρ(pt) tends to assume more extreme values for correlation series

which look different.

Besides ρ(pt) and λ(rt, pt), the mean of the raw correlations, µ(rt) = r̄t, and their maximum

absolute value, M(rt) = max(|rt|), are also considered. Their correlations with ρ(pt) and λ(rt, pt)

and with each other are good and highly significant (0.46 ≤ r ≤ 0.65, p < 0.01), and the

8Given two series of p-values, the concordance κα represents the percent of cases where the two series concord
in their significance judgments for the considered α-level.
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concordances are also good (76.7% ≤ κ0.01 ≤ 85.5%; 82.2% ≤ κ0.05 ≤ 88.9%).

3 Results

Due to the fact that ρ, λ, µ and M are not normally distributed, randomization techniques

(independent samples t-test, one- and two-way ANOVA; Edgington, 1987) were used to compute

the p-values with 10, 000 permutations. Also, Holm’s multiple hypotheses testing correction

(Holm, 1979) was systematically applied and the reported p-values are adjusted; an α-level of

0.05 was used for significance decisions. All of the statistical analyses used R (R Development

Core Team, 2007).

3.1 The No Bias model

The No Bias model, M0, represents the baseline, generally accepted model for language-genes

interaction, which assumes that the correlations between languages and genes are entirely due to

shared demographic processes (Cavalli-Sforza et al., 1994; Dediu, 2007; Jobling et al., 2004;

Poloni et al., 1997). In this case, we do not expect any correlations between particular genes and

linguistic features (FiGj , i, j ∈ {1, 2}), between linguistic features (F1F2, considered

independent), or between genes (G1G2, also independent). These hypotheses are supported by

the results: the raw correlations for FiGj , F1F2 and G1G2 are normally distributed around 0.0

(mean, x̄ = 0.0 and standard deviation, s = 0.14), while GenGeo, LingGeo and GenLing are also

normally distributed but positive and narrower (x̄ ≈ 0.2, s ≈ 0.06, |x̄− 0| ≥ 2s for the first two,

x̄ = 0.07, s = 0.06, |x̄− 0| ≥ s for the third). Interestingly, GenLingGeo is normally distributed

with x̄ = 0.05, s = 0.06, |x̄− 0| ≈ 0.8s, which seems to confirm the general finding in the

literature that the correlations between genes and languages are mostly due to geography, as a

consequence of demographic processes. Moreover, the four measures of GenGeo and LingGeo are

very high, GenLing and GenLingGeo high, and the rest very low (Fig. 1, top panel9). Spatial

proximity plays an important role in shaping both the genetic and linguistic diversities, especially

in the linguistic case (ρGenGeo < ρLingGeo, t(236.99) = −11.46, p = 2.49 · 10−23), and it explains

an important part of the language-genes correlation (ρGenLing > ρGenLingGeo, t(410.91) = 16.90,

p = 8.16 · 10−48), but not all. The correlation between genetic and linguistic distances not

explained by geographic distances, in the context of this model, suggests that judgments based

only on partial correlations between distances must generally be taken with a grain of salt.
9In the following, unless specified, only ρ will be reported, the other 3 measures behaving in a similar manner.
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Figure 1: Boxplots of ρ (vertical axis) for the ten measures (horizontal axis) for model M2, when
the bias, β, is very weak (0.99, top), moderate (0.80, middle) and very strong (0.10, bottom).
The top panel (β = 0.99) is nearly identical to models M0 and M1. The most important change
concerns the correlation between F1 and G1, which increases with increasing bias, and becomes
very strong even for relatively week biases (β = 0.80).

3.2 The Initial Expectation Bias model

When the Initial Expectation type of bias is present (M1), the behavior of the model is overall

very similar to M0 (Fig. 1, top panel), with the only exception of MF1G1 , which has a very

interesting dependence on ν (Fig. 2). As before, spatial proximity is an important factor:

ρGenGeo < ρLingGeo, t(270.36) = −8.23, p = 9.41 · 10−14; ρGenLing > ρGenLingGeo,

t(400.85) = 13.65, p = 5.95 · 10−34. GenGeo, GenLing and GenLingGeo are not different between

M0 and M1 (tGenGeo(403.97) = 0.14, p = 1.0; tGenLing(387.06) = −0.48, p = 1.0;

tGenLingGeo(403.88) = −0.63, p = 1.0), but LingGeo is (tLingGeo(336.05) = 3.49, p = 0.006). For

F1G1, only M picks up the signature of this bias, showing a very strong dependency on ν (Fig.

2). A look at typical runs for different values of ν (Fig. 3) reveals that it is the initial time

snapshot which is picked up by M , after which F1G1 drop rapidly. It seems, therefore, that this

type of bias is easily swamped by linguistic change and is effective only for the first few

generations. However, for these first generations it is very strong (correlations as high as 1.0 for

ν = 0.1), depending on the initial frequency of the biasing allele, ν. It can be concluded that the

Initial Expectation bias, while impacting on the population’s language, does not represent a

plausible implementation of a linguistic genetic bias.
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For low ν, the maximum value of the correlations (M) is close to 1, but decreases with increasing
ν.
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Figure 3: The value of the correlation between F1 and G1 (vertical axis) function of simulation
time in thousand years (horizontal axis) for model M1, in typical runs for ν = 0.1 (left), ν = 0.5
(center) and ν = 0.9 (right). Dashed line = 0.0. Black circles (•) = correlations significant at
α = 0.05, white circles (◦) = non-significant correlations.

3.3 The Rate of Learning Bias model

For the Rate of Learning type of bias (M2), the behavior depends on the strength of the bias, β

(Fig. 1). When the bias is extremely weak, β = 0.99, the system is very similar to M0:

tGenGeo(329.58) = 1.76, p = 0.78; tLingGeo(411.64) = 0.43, p = 1.0; tGenLing(410.36) = 0.04,

p = 1.0; tGenLingGeo(411.42) = −0.22, p = 1.0. When the bias is extremely strong, β = 0.10,

its influence on the language is obvious, stable and specific (see F1G1 in Fig. 1):

tF1G1/F1G2(343.77) = 44.48, p = 1.78 · 10−143, tF1G1/F2G1(410.28) = 63.76, p = 9.06 · 10−214. The

distribution of the raw correlations between F1 and G1 depends on ν, moving from a strongly

right skewed distribution with median x̃ = 0.57, x̄ ≈ 0.5, s ≈ 0.16, |x̄− 0| ≥ 3s for ν = 0.1 to

another right skewed distribution with x̃ = 0.37, x̄ ≈ 0.4, s ≈ 0.2, |x̄− 0| ≥ 1.5s for ν = 0.9, going

through intermediate stages of bimodality; this reflects the effects of random drift on ν and F1.

For intermediate biases, the behavior of the system varies smoothly between these two

extremes, with β = 0.95 more similar to β = 0.99 (and M0) and with β = 0.85 more similar to
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β = 0.10, suggesting that the bias starts to become manifest at β ≈ 0.90. From Fig. 4, it can be

seen that the effects of this type of bias depend on both the bias strength, β, and the initial

frequency of the biasing allele, ν, but that even relatively weak biases (0.85 ≤ β ≤ 0.95) have

detectable effects for certain values of ν (around 0.3), while strong biases (0.10 ≤ β ≤ 0.50) are

detectable for any value of ν.
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Figure 4: The mean of ρ (vertical axes) for the correlation between F1 and G1 function of ν
(horizontal axes) and β (curves) for model M2. The curves for β are, from rightmost top to
bottm: 0.1, 0.5, 0.8, 0.85, 0.9, 0.95 and 0.99. ρ is larger for stronger biases and there is an
interaction between β and ν.

3.4 The behavior across models and initial frequencies

The behavior of the measures ρ, λ, µ and M relative to the initial frequency of G∗1 in the

population, ν (nine levels, ν ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}) and the nine models (M0,

M1 and M2 with β ∈ {0.1, 0.5, 0.8, 0.85, 0.9, 0.95, 0.99}), was investigated using a two-way

independent randomization ANOVA with 10, 000 randomizations (Edgington, 1987). For the first

factor10 (the initial population frequency, ν), further one-way randomization ANOVAs were

conducted for each model separately with multiple comparisons corrections.

Inside models, GenGeo, LingGeo, GenLing and GenLingGeo generally depend on the first

factor, ν (in the shape of a more or less flat inverted U, “_”), with GenGeo and LingGeo very

10Due to the large number of tests performed and space constraints, the p-values and test statistics were reported
only for the most relevant cases. Moreover, due to the systematic application of Holm’s multiple hypotheses testing
correction (Holm, 1979) and the large number of tests performed, most adjusted p-values have collapsed to the
extreme values (0.0 and 1.0). All results reported as significant are so for adjusted p-values less than 0.05.
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high, followed by GenLing and GenLingGeo (see also Fig. 1). Across models (second factor),

GenGeo is constantly high and does not significantly differ between models, as expected,

reflecting the fact that the distribution of genetic diversity is influenced only by demography,

there being no causal feedback from languages to genes in the simulation. Such a feedback could

be implemented as assortative mating on linguistic criteria or as linguistic group selection, but it

would have added an extra level of complexity to an already complex system. However, LingGeo,

GenLing and GenLingGeo do differ between models, mostly due to the differences between M0

and M1, M0 and M2 (β < 0.95), M1 and M2, and M2 (small bias) and M2 (large bias). This

reflects the effects that the genetic biasing of language (F1G1) has on the global relationships

between genetic and linguistic diversities and geographic distances. Therefore, it might be

possible to devise statistical tests based on global indicators of genetic and linguistic diversity

able to suggest cases where biasing effects might be at work, but this requires further study and

more appropriate null models.

The other correlation of interest, F1G1 (see Figs. 1 and 4), depends very strongly on the

model (second factor) with essentially all pairs of conditions being different, as expected. For

M0 it does not depend on ν (first factor) while for M1, its dependency on ν is picked up only

by M (see Section 2.2 and Fig. 2). For M2, its behavior depends on the strength of the bias, β:

for an extremely weak bias (β = 0.99), it is indistinguishable from M0, as expected, while for

stronger biases (β ≤ 0.95) F1G1 depends on ν and generally increases in strength with stronger

β.

3.5 The behavior for the Rate of Learning model

Specifically for the Rate of Learning Bias model, M2, the effects of the bias strength, β, and the

initial population frequency of the biasing allele, ν, were investigated using a two-way

independent randomization ANOVA. It was found that the correlation between genetics and

geography, GenGeo, depends only on ν, not being affected by the strength of the bias, as

expected. However, LingGeo, GenLing and GenLingGeo depend on both factors, which interact

(except for ρ in the case of LingGeo, which depends only on β). The correlation between F1 and

G1 depends on both factors, which also interact (see Fig. 4): it is important to note that the

values of the four measures tend to increase with increasing strength of the bias (lower β).

In order to quantitatively understand the dependency of the correlation between F1 and G1

on the strength of the bias, β, and the initial population frequency of the biasing allele, ν, in the

case of M2, multiple regressions of the four measures, ρ, λ, µ and M , on β and ν were conducted.

In all cases, the best fitting models were quadratic in both dependent variables (λ was
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transformed by applying square root). The results are in Table 1 (all coefficients are significant at

p < 0.001; R2 are adjusted and significant at p < 2.2 · 10−16). The ratio of number of cases to

number of dependent variables is very large (between 241.5 and 483, depending on the measure)

and the skewness and kurtosis of the independent variables are within acceptable limits. Also,

the examination of the residuals reveals moderate deviations from normality, nonlinearity and

heteroscedasticity (Tabachnick and Fidell, 2001).The proportion of the explained variance is large

(adjusted R2 ≥ 0.60). Focusing on ρ, the regression equation

ρ ≈ 0.63 + 2.08β − 2.39β2 + 0.49ν − 0.79ν2

predicts that there is a unique maximum ρmax = 1.16 for βmax = 0.44 and νmax = 0.31 (Table 2).

While the actual values have large errors (for example, ρ ≤ 1.0 by definition), the suggestion that

there is a region around β ≈ 0.4 and ν ≈ 0.3 where F1 and G1 correlate strongly, seems

warranted. Moreover, these exact numeric values will depend on the actual model parameters

(especially optimal population size and the language sampling during learning, with larger

populations and stronger foreigner influence tending to mask the impact of the bias), but test

runs have suggested that this behavior remains qualitatively the same. Therefore, this region in

the parameter space maximizing the effects of the genetic bias seems to be optimal for the

detection of Rate of Learning biases.

Table 1: Multiple regressions of F1G1 on β and ν, for M2

The regression IV ∼ I + β + β2 + ν + ν2

IV R2 I β β2 ν ν2

ρ 0.62 0.63 2.08 −2.39 0.49 −0.79√
λ 0.64 0.69 1.25 −1.75 0.27 −0.50

µ 0.60 0.39 0.34 −0.49 0.93 −1.15
M 0.68 0.66 0.76 −1.06 0.33 −0.47

Table 2: Maxima for F1G1 function of β and ν, for M2

Measure Maximum βmax νmax

ρ 1.16 0.44 0.31√
λ 0.95 0.36 0.27

µ 0.64 0.35 0.40
M 0.85 0.36 0.35
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4 Discussion

The existence of causal correlations between inter-population genetic and linguistic diversities of

the type suggested by Dediu and Ladd (2007) is potentially very important for a better

understanding of the biological bases of language as well as the evolution of language and

linguistic diversity (for a detailed discussion of these issues in the context of biolinguistics see

Ladd et al., 2008). A very convincing support for the fact that learning biases can affect the

outcome of trans-generational learning is provided, for example, by Feher et al. (2008), which

reared in social and acoustic isolation song-learning male zebra finches, resulting in highly

abnormal songs. Subsequently, in an iterated learning paradigm, they used these birds as models

for a second generation of male birds, which were used in turn as models for the next generation

of male birds, and so on. They report that the “changes in acoustic structure appeared to be

directional and gradual, when observed over generations” and that “[b]y the seventh clutch, the

song was indistinguishable from normal zebra finch song” (p. 424), meaning that individually

very small biases recover the normal song through cultural transmission. Also, Ladd et al. (2008)

discuss a specifically linguistic suggestion made by Peter Ladefoged (1984), which compared the

formant frequencies of otherwise identical 7-vowel systems of Yoruba and Italian and attributes

these subtle differences to the differences in the vocal tract anatomy between the two

populations, biasing their languages across generations.

However, the exact definition of what is meant by a genetically influenced linguistic bias is far

from clear, even if intuitively this concept seem unproblematic (Hawkey, 2008). The recent

Bayesian approaches to biased iterated language learning (Griffiths and Kalish, 2007; Kirby

et al., 2007; Smith and Kirby, 2008), while interesting and elegant, propose a not-so-satisfying

account of learning biases as representing the prior distribution over languages. In his critique,

Hawkey (2008) suggests a possible classification of learning biases into transformational biases,

affecting the outcome of learning towards the preferred variant and biased processes, like the

default strategy and the ease of learning biases.

In this context, the present computational model suggests that, when realistic demographic,

genetic and linguistic processes are considered, the type of genetically-based linguistic bias

postulated to explain the correlation between the derived haplogroups of ASPM, Microcephalin

and linguistic tone (Dediu and Ladd, 2007) represents a valid mechanism shaping linguistic

diversity. When no genetic bias is present, the model correctly generates the known type of

correlations between genetic and linguistic diversities due to demographic processes

(Cavalli-Sforza et al., 1994; Dediu, 2007; Jobling et al., 2004; Poloni et al., 1997). An Initial
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Expectation type of bias (akin to a “default strategy” in Hawkey, 2008’s classification), whereby

carriers are born expecting a certain linguistic state which biases the language acquisition process

by changing the learner’s starting point, does not seem to be able to stably influence linguistic

diversity, being easily swamped by the purely cultural transmission of language. On the other

hand, a Rate of Learning type of bias (similar to a Hawkey, 2008’s “ease of learning”), whereby

carriers are born with different propensities for learning different linguistic states, can reliably

link the linguistic and genetic diversities. This link is highly specific and strong for a large range

of bias strengths and population frequencies of the biasing allele, which makes it possible to

detect using currently available statistical methods.

These findings suggest that the hypothesis of a genetically-based linguistic bias influencing the

trajectory of language change through cultural transmission in populations is supported, when a

specific type of genetic bias is present (Rate of Learning). This genetic bias can be very small at

the individual level and the biasing allele rare at the population level but its effects can still be

amplified by cultural transmission and made manifest at the inter-population level; from a

practical point of view, these results suggest that the statistical methods developed in Dediu and

Ladd (2007) can be used to discover such genetic biases. However, the present model is agnostic

as concerns the proximate mechanisms through which such a bias could influence language

change and it is expected that various such mechanisms would be involved in different cases

(sensorial, neuro-cognitive, etc.). Moreover, the model highlights the importance of cultural

transmission in amplifying or swamping the effects of such biases, making any deterministic

interpretations implausible. However, the present model considers only a limited set of first

language learning biases, and its future extensions must also consider the effects of production

and second language learning biases.
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