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A hierarchy of measures of decoherence for many-electron systems that is based on the purity and
the hierarchy of reduced electronic density matrices is presented. These reduced purities can be used to
characterize electronic decoherence in the common case when the many-body electronic density matrix is not
known and only reduced information about the electronic subsystem is available. Being defined from reduced
electronic quantities, the interpretation of the reduced purities is more intricate than the usual (many-body)
purity. This is because the nonidempotency of the r-body reduced electronic density matrix that is the basis
of the reduced purity measures can arise due to decoherence or due to electronic correlations. To guide the
interpretation, explicit expressions are provided for the one-body and two-body reduced purities for a general
electronic state. Using them, the information content and structure of the one-body and two-body reduced
purities is established, and limits on the changes that decoherence can induce are elucidated. The practical
use of the reduced purities to understand decoherence dynamics in many-electron systems is exemplified
through an analysis of the electronic decoherence dynamics in a model molecular system.

I. INTRODUCTION

An ubiquitous process in nature is that of decoher-
ence1–4, which refers to the decay of quantum correlations
of a quantum subsystem because of interaction with an
environment. Understanding decoherence is central to
our description of basic processes such as measurement,
photosynthesis, vision or electron transfer5–13, to the de-
velopment of approximation schemes that describe the
system-bath dynamics1,14–21 and it is the starting point
for the design of methods to preserve coherence in ma-
terials that can be subsequently exploited in intriguing
and potentially useful ways via quantum control22,23 or
quantum information24 schemes.

Here we introduce measures of decoherence that can
be used for the description of the coherence properties of
many-electron systems in the presence of an environment.
The proposed measures are generalizations of the purity
that employ the few-body electronic reduced density ma-
trices instead of the full many-body reduced density ma-
trix, and are thus more readily available for the charac-
terization of coherence in many-body systems. However,
because these measures are based on reduced electronic
quantities their interpretation differs in key aspects and
can be more intricate from the one of the usual N -body
purity. Below we discuss the properties, merits and lim-
itations of the reduced purity measures.

The structure of this manuscript is as follows. In Sec. II
we briefly review basic decoherence ideas as they apply
to many-electron systems. Then, in Sec. III, we intro-
duce a hierarchy of reduced purity measures that are
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based on the well-known hierarchy25,26 of reduced elec-
tronic density matrices. In particular, we determine an-
alytical expressions for the reduced purities that follow
from the one- and two-body reduced density matrices
for a general time-dependent correlated electronic state
(Secs. III A-III C). Using these expressions, we then dis-
cuss in Sec. III D the interpretation of the reduced puri-
ties and the effect of electronic correlation on their evolu-
tion. Last, in Sec. IV we exemplify the use of the reduced
purities by studying electronic decoherence in a vibronic
system. We summarize our main findings in Sec. V.

II. PURITY AND THE INTERPRETATION OF

DECOHERENCE

Consider an N -particle electronic system interacting
with an environmental bath, with system-bath Hamil-
tonian of the form H = He + HB + He−B , where He

is the electronic Hamiltonian, HB the bath Hamiltonian
and He−B is the system-bath coupling. In light of the
Schmidt decomposition24, a pure state of the bipartite
system can always be written as an entangled state of
the form

|Ω(t)〉 =
∑

n

√

λn|Ψn〉|Bn〉, (1)

where |Ψn〉 are orthonormal states of the electronic sub-
system and |Bn〉 orthonormal states of the bath. The
Schmidt coefficients

√
λn are nonnegative real numbers

satisfying
∑

n λn = 1. It is often useful to express
Eq. (1) in terms of the N -particle eigenbasis |En〉 of the
many-electron Hamiltonian He. Since the {|En〉} form a
complete set in the subsystem Hilbert space, in general
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|Ψn〉 =
∑

m cmn|Em〉. Thus, Eq. (1) can be rewritten as

|Ω(t)〉 =
∑

n

|En〉|χn(t)〉, (2)

where the bath states associated with each of the |En〉
are defined by |χn〉 =

∑

m cnm

√
λn|Bm〉. The {|χn〉} are

not orthonormal but do satisfy
∑

n〈χn|χn〉 = 1.
The properties of the electronic subsystem for such an

entangled state |Ω〉 are completely characterized by the
N -particle electronic density matrix

ρ̂e(t) = TrB{|Ω〉〈Ω|} =
∑

nm

〈χm(t)|χn(t)〉|En〉〈Em|, (3)

where the trace is over the environmental degrees of free-
dom. Note that the coherences or phase relationship be-
tween electronic eigenstates (the off-diagonal elements) in
ρ̂e are determined by the overlaps Snm(t) = 〈χm|χn〉 be-
tween the environmental states associated with the elec-
tronic eigenstates. Thus, the loss of coherences in ρ̂e(t)
can be interpreted as the result of the decay of the Snm

during the coupled electron-bath evolution27–30. Stan-
dard measures of decoherence capture precisely this. For
example, the purity, the measure of decoherence that we
focus on here, is given by

P (t) = Tr{ρ̂2
e(t)} =

∑

nm

|〈χm(t)|χn(t)〉|2 =
∑

n

λ2
n (4)

and decays with the overlaps between the environmental
states Snm.

III. A HIERARCHY OF REDUCED MEASURES OF

ELECTRONIC DECOHERENCE

In order to quantify the coherence of a given many-
particle electron system one ideally would like to study
the N -body purity in Eq. (4) directly. It is simple to
interpret (P = 1 for pure states; P < 1 for mixed states;
P = 1/M for a maximally entangled M -level subsys-
tem), it has well defined upper and lower values and cap-
tures all possible electronic coherences. This, however,
is not always possible because of the many-body nature
of the problem. To determine the purity from a time-
dependent simulation one has to either propagate the
many-body electronic density matrix [Eq. (3)] or follow
the dynamics of the bath. Either approach is intractable
in general except for few-level problems because of the in-
herent difficulty in solving the many-body problem (see,
e.g., Ref. 31) and/or because of the high-dimensionality
of the objects involved. A reduced method to capture
the essential electronic coherences is thus desirable.

Here we introduce a hierarchy of measures of coherence
in many-particle systems that is based on the well-known
hierarchy of many-particle reduced density matrices25,26.
Specifically, we define the r-body reduced purity (or r-
body purity, for short) as

Pr(t) = Tr{(r)Γ̂(t)2} =
∑

n

(r)λ2
n, (5)

where (r)Γ̂ refers to the r-body reduced electronic density
matrix and the set {(r)λn} to its eigenvalues. The matrix

elements of (r)Γ̂ can be expressed as

(r)Γj1j2···jr

i1i2···ir
(t) =

1

r!
Tr{ĉ†i1 ĉ

†
i2
· · · ĉ†ir

ĉjr
· · · ĉj2 ĉj1 ρ̂e(t)}.

(6)

Here the operator ĉ†i (or ĉi) creates (or annihilates) a
fermion in the ith spin-orbital of the basis set and satis-

fies the usual fermionic anticommutation rules ({ĉi, ĉ
†
j} =

δi,j , {ĉ†i , ĉ
†
j} = {ĉi, ĉj} = 0). Note that from the r-body

reduced density matrix one can obtain all other lower-
order (r − s) density matrices by contractions of the in-
dices, and thus all lower-order purities. In general,

∑

ip

(r+1)Γ
j1···ip···jr+1

i1···ip···ir+1
(t) =

N − r

r + 1
(r)Γj1j2···jr

i1i2···ir
(t), (7)

where p is an integer between 1 and r + 1. The fully
contracted r-body density matrix yields

∑

i1,··· ,ir

(r)Γi1···ir

i1···ir
(t) =

N !

r!(N − r)!
. (8)

Using this notation, the r-body purity can be expressed
as

Pr(t) =
∑

i1,··· ,ir

j1,··· ,jr

(r)Γj1,··· ,jr

i1,··· ,ir
(t)(r)Γi1,··· ,ir

j1,··· ,jr
(t). (9)

Note that, because the trace is independent of the ba-
sis, the expression above is valid in any complete single-
particle basis-set. Further note that it is also possible to
define the r-body purity based on the spin-contracted r-
body electronic density matrix32. However, the structure
of the spin-uncontracted version adopted here is simpler
and more amenable to generalization.

Because the r-body purity in Eq. (5) is defined by the

reduced density matrix (r)Γ̂ obtained by tracing over the
bath and N − r electronic coordinates, it can be argued
that the Pr are a measure of decoherence due to inter-
actions with the bath and the traced out electronic de-
grees of freedom. However, since electrons are indistin-
guishable there is no operator that can take advantage of
electronic entanglements or distinguish between an elec-
tronic “subsystem” and an electronic “bath”. Thus, we
view the reduced purities as measures of the coherence
of many-electron systems that can be used in the usual
case when only partial information about the electronic
system is known. Nevertheless, because of their reduced
nature, their interpretation requires more care and differs
in a few key aspects from the N -body purity in Eq. (4)
in ways that are discussed in detail below.

A. Using Slater determinants to define a coherence order

We are concerned with the coherence properties of a
general N -particle correlated time-dependent electronic
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density matrix ρ̂e [Eq. (3)]. Without loss of generality,
it is convenient to express ρ̂e in terms of Slater determi-
nants as

ρ̂e =
∑

n,m

anm|Φn〉〈Φm|, (10)

where |Φn〉 corresponds to a single Slater determinant
with integer occupation numbers in a given (arbitrary)
single-particle basis |ǫ〉 = ĉ†ǫ |0〉, where |0〉 is the vacuum
level. In writing Eq. (10), we have expanded the corre-
lated electronic states in Eq. (3) in terms of a basis of
Slater determinants, i.e. in a full configuration interac-
tion expansion |Ei〉 =

∑

n bni|Φn〉. The ann in Eq. (10)
denote the population of Slater determinant n, while the
anm refer to the coherences between the n, m pair. In this
context, we define the order snm of a given pair of Slater

determinants |Φn〉 and |Φm〉 as the number of single par-
ticle transitions required to do a |Φn〉 → |Φm〉 transition.
This quantity can be computed by

snm = N −
∑

ǫ

fn(ǫ)fm(ǫ), (11)

where fn(ǫ) is the distribution function of the single par-
ticle levels ǫ in state |Φn〉. The quantity fn(ǫ) is defined
by

〈Φn|ĉ†ǫ ĉǫ′ |Φn〉 = fn(ǫ)δǫ,ǫ′ , (12)

and takes values of 0 or 1 depending on whether the
orbital level ǫ is occupied or not. The quantity snm ∈
[0, N ] and takes the value 1 for pairs of states that differ
by single excitations, 2 for doubles, etc. We will refer to

a coherence between states |Φn〉 and |Φm〉 as a coherence

of order snm.

We now use these definitions to discuss properties of
the reduced purities.

B. The r-body purity can only distinguish coherences of

order r or less

First note that, because the r-body purity is constructed

from the r-body density matrix, it is only informative

about electronic coherences of order s ≤ r. That is, it
cannot distinguish between a superposition and a mixed
state between Slater determinants that differ by r + 1
(or more) particle transitions. This is in contrast with
the N -body purity where all possible coherences in the
system are evident.

To make this observation evident, consider the r-body
density matrix associated with the general N -particle
density matrix in Eq. (10),

(r)Γj1j2···jr

i1i2···ir
=

1

r!

∑

n,m

anm〈Φm|ĉ†i1 ĉ
†
i2
· · · ĉ†ir

ĉjr
· · · ĉj2 ĉj1 |Φn〉.

(13)
The coherences between states n and m in the N -particle
density matrix can only contribute to the r-body reduced

density matrix if 〈Φm|ĉ†i1 ĉ
†
i2
· · · ĉ†ir

ĉjr
· · · ĉj2 ĉj1 |Φn〉 6= 0.

For this to happen, there has to be some r-body transi-
tion that connects the two states. Hence, if the two states
differ by s > r particle transitions any coherences that
may exist between them is simply not reflected in the
r-body density matrix and hence in the r-body purity.

C. A closer look into the one-body and two-body purities

To isolate additional properties of the reduced purities
and to illustrate their interpretation, we now determine
explicit expressions for P1 and P2 for the general elec-
tronic density matrix in Eq. (10). While it is possible
to calculate higher order reduced purities through judi-
cious application of Wick’s theorem31,33, the one-body
and two-body purities are the most important and read-
ily applicable cases. To proceed, it is useful to first de-
termine the purity for the simpler case where the density
matrix only involves two N -particle Slater determinants

ρ̂e =

2
∑

n,m=1

anm|Φn〉〈Φm| (14)

and then extend the solution to an arbitrary number of
|Φn〉 states. Without loss of generality, we suppose that
|Φ2〉 is at most two-particle transitions away from |Φ1〉
since only coherences of order 2 or less are visible in P2.
We choose |Φ1〉 as the reference state and write,

|Φ2〉 = ĉ†α2
ĉβ2

ĉ†α1
ĉβ1

|Φ1〉. (15)

In order to guarantee that |Φ1〉 6= |Φ2〉, we choose α1 6=
β1 and α2 6= β2. Since we are interested in |Φ2〉 6= 0, then

β1 6= β2, α1 6= α2, and ĉ†β1
|Φ1〉 = ĉα1

|Φ1〉 = ĉα2
|Φ1〉 = 0.

The particular case where |Φ2〉 and |Φ1〉 differ by a single-
particle transition is obtained when β2 = α1.

From Eq. (9), P1 is given by:

P1 =
∑

ǫ1,ǫ2

(1)Γǫ2
ǫ1

(1)Γǫ1
ǫ2

, (16)

where, for convenience, the trace has been expressed
in the ǫ-basis where Eq. (12) holds. In this basis, the
one-body reduced density matrix for the model state in
Eq. (14) is given by

(1)Γǫ2
ǫ1

=δǫ1,ǫ2 [a11f1(ǫ1) + a22f2(ǫ1)]

+δα1,β2
f1(β1)(1 − f1(α1))(1 − f1(α2))×

[a12δǫ1,α2
δǫ2,β1

+ a⋆
12δǫ1,β1

δǫ2,α2
] ,

(17)

where we have taken Eq. (12) and (15) into account and
used the fermionic anticommutation relations. Inserting
Eq. (17) into (16) yields

P1 =
∑

ǫ

(a11f1(ǫ) + a22f2(ǫ))
2

+2|a12|2f1(β1)(1 − f1(α1))(1 − f1(α2))δα1,β2
.
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Now, supposing that |Φ2〉 6= 0 (such that f1(β1)(1 −
f1(α1))(1 − f1(α2)) = 1) and noting that the require-
ment that α1 = β2 is equivalent to requiring s12 = 1
then

P1 =
∑

ǫ

(a11f1(ǫ) + a22f2(ǫ))
2 + 2|a12|2δs12,1, (18)

which determines the one-body purity for the two-state
system in Eq. (14).

Extending the previous discussion to the general case,
the one-body purity for a many-body state of the form
in Eq. (10) is given by

P1 =
∑

ǫ

(

∑

n

annfn(ǫ)
)2

+ 2
∑

n>m

|anm|2δsnm,1

= N − 2
∑

n>m

(

annammsnm − |anm|2δsnm,1

)

,
(19)

where the first two terms in the second line depend on
the populations in the expansion of ρ̂e in Eq. (10), while
the last one characterizes the contributions due to the
coherences. In writing Eq. (19), we have extended the
process that lead to Eq. (18) to accommodate an arbi-
trary number of states and taken into account Eq. (11),
the state normalization

∑

n ann = 1 and the fact that
∑

ǫ fn(ǫ) = N . Note that, as pointed out previously,
P1(t) decreases with the decoherence between states that
differ by one-particle transitions and is unaffected by de-
coherence processes that involve higher-order coherences.

The derivation of P2 proceeds along similar lines. In
the ǫ-basis, P2 can be expressed as

P2 =
∑

ǫ1,ǫ2,ǫ3,ǫ4

(2)Γǫ4,ǫ3
ǫ1,ǫ2

(2)Γǫ1,ǫ2
ǫ4,ǫ3

. (20)

Here the matrix elements determining (2)Γǫ4,ǫ3
ǫ1,ǫ2

and P2

for the two-state model in Eq. (14) are given by:

〈Φn|Â|Φn〉 = fn(ǫ3)fn(ǫ4)(δǫ1,ǫ4δǫ2,ǫ3 − δǫ1,ǫ3δǫ2,ǫ4)

〈Φ1|Â|Φ2〉 = f1(ǫ1)f1(ǫ2)f1(β1)(1 − f1(α1))(1 − f1(α2))[

δα1,β2
(δǫ1,β1

(δǫ2,ǫ3δǫ4,α2
− δǫ2,ǫ4δǫ3,α2

)

−δǫ2,β1
(δǫ1,ǫ3δǫ4,α2

− δǫ1,ǫ4δǫ3,α2
))

+(δǫ2,β1
δǫ1,β2

− δǫ2,β2
δǫ1,β1

)(δǫ4,α2
δǫ3,α1

− δǫ4,α1
δǫ3,α2

)]

〈Φ2|Â|Φ1〉 = f1(ǫ3)f1(ǫ4)f1(β1)(1 − f1(α1))(1 − f1(α2))[

δα1,β2
(δǫ4,β1

(δǫ2,ǫ3δǫ1,α2
− δǫ1,ǫ3δǫ2,α2

)

−δǫ3,β1
(δǫ2,ǫ4δǫ1,α2

− δǫ1,ǫ4δǫ2,α2
))

+(δǫ3,β1
δǫ4,β2

− δǫ3,β2
δǫ4,β1

)(δǫ1,α2
δǫ2,α1

− δǫ1,α1
δǫ2,α2

)],

where Â ≡ ĉ†ǫ1 ĉ
†
ǫ2

ĉǫ3 ĉǫ4 . Using these matrix elements, it
follows that

P2 =
1

4

∑

ǫ1,ǫ2,ǫ3,ǫ4

Tr{Âρ̂e}Tr{Â†ρ̂e}

=
1

4

∑

ǫ1,ǫ2,ǫ3,ǫ4

[

2
∑

n,m=1

annamm〈Φn|Â|Φn〉〈Φm|Â†|Φm〉

+ |a12|2
(

〈Φ1|Â|Φ2〉〈Φ2|Â†|Φ1〉 + 〈Φ2|Â|Φ1〉〈Φ1|Â†|Φ2〉
)

]

,

where all other terms in the product are zero. Calculat-
ing explicitly each of the remaining terms, the two-body
reduced purity for the model density matrix is given by:

P2 =

2
∑

n,m=1

annamm

2

[(

∑

ǫ

fn(ǫ)fm(ǫ)
)2 −

∑

ǫ

fn(ǫ)fm(ǫ)
]

+2|a12|2f1(β1)(1 − f1(α1))(1 − f1(α2))×
[δα1,β2

(N − 1) + f1(β2)] .

This expression can be cast into a form that is simpler
to generalize by taking into account that if |Φ2〉 6= 0,
f1(β1)(1 − f1(α1))(1 − f1(α2)) = 1; and that when α1 =
β2 (or f1(β2) = 1) the order of the coherence is s12 = 1
(or s12 = 2). Thus,

P2 =

2
∑

n,m=1

annamm

2

[(

∑

ǫ

fn(ǫ)fm(ǫ)
)2 −

∑

ǫ

fn(ǫ)fm(ǫ)
]

+ 2|a12|2 [δs12,1(N − 1) + δs12,2] .

This expression can be extended to capture the behavior
of the general many-body state in Eq. (10) by taking into
account the contribution of all possible pairs of states. In
this case,

P2 =
∑

n,m

annamm

2

[

(

∑

ǫ

fn(ǫ)fm(ǫ)
)2 −

∑

ǫ

fn(ǫ)fm(ǫ)
]

+ 2
∑

n>m

|anm|2 [δsnm,1(N − 1) + δsnm,2]

=
N(N − 1)

2
−

∑

n>m

annammsnm(2N − snm − 1)

+
∑

n>m

2|anm|2(δsnm,1(N − 1) + δsnm,2
),

(21)

where we have used Eq. (11) and the fact that
∑

n fn(ǫ) = N . The first two terms are due to the pop-
ulations, while the last term is due to the coherences
among the Slater determinants. Note that P2 decays
with the loss of coherences of order 1 and 2.

Equations (19) and (21) exemplify the behavior of
the one-body and two-body purities for a general elec-
tronic state. In deriving these equations we have
taken advantage of the structure of Slater determinants.
Note, however, that the value of the reduced purities is
representation-independent and does not change if a dif-
ferent complete single-particle basis {|ǫ〉} is employed or
if no decomposition into Slater determinants is invoked.
This is evidenced by Eq. (5) that shows the relationship
between the reduced purities and the eigenvalues of the
reduced density matrices (r)λn; the (r)λn are representa-
tion independent and hence the reduced purities are also
representation independent. This allows for the interpre-
tation of the decoherence in a particular basis without
loss of generality.

We now discuss a few observations that follow from
these general expressions.
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D. Electronic correlation and the interpretation of the

reduced purities

The reduced purities offer a window into the coher-
ence behavior of many-electron systems and allow isolat-
ing coherence effects of a particular order. Nevertheless,
because the Pr are defined from reduced electronic quan-
tities, their interpretation can be more challenging than
the one of the N -body purity. Note, in particular, that
while the value of the N -body purity for a pure state is
always 1, the value of Pr for pure electronic states de-
pends on the degree of electronic correlation. Electronic
correlation leads to nonidempotency in the reduced den-
sity matrices (see, e.g., Refs. 34 and 35) and thus to a
reduction in the reduced purity that is not due to bath-
induced decoherence. As a consequence, an observed de-
cay in the reduced purity can be due to a decay in the
coherence properties of the system, or due to a change in
the correlations of the many-electron system even in the
absence of decoherence.

Note that it is technically possible to construct elec-
tronic decoherence measures based on the reduced puri-
ties that solely reflect decoherence processes. To see this,
it is useful to recall the Carlson-Keller theorem36 which
states that for pure bound states the nonzero eigenvalues
of (r)Γ̂ and (N−r)Γ̂ are identical. Since the reduced pu-
rities are determined by such eigenvalues [recall Eq. (5)],
then a quantity like PN−r −Pr would be identically zero
for pure states and nonzero for mixed states, irrespective
of the details of the system-bath evolution. While of for-
mal interest, such measures of electronic decoherence are
of little practical use because they require knowledge of
high-order density matrices that are generally not avail-
able.

To understand further the structure and the informa-
tion that can be gleaned from the reduced purities, con-
sider now the limiting behavior of P1 and P2. For refer-
ence in the discussion we have tabulated the main limit-
ing values of P1 and P2 in Figure 1. From Eq. (19), the
maximum value for P1 is N , obtained when only a single
Slater determinant is involved or when all terms in the su-
perposition are such that snm = 1 and |anm|2 = annamm.
In the absence of population changes, a decay in P1 fol-
lows the decay of one-body coherences; the decoherence
between states n and m with snm = 1 can induce a maxi-
mum decay of 2|anm|2. Given a set of populations {ann},
the minimum value that P1 can achieve solely due to
decoherence is P1 = N − 1 +

∑

n a2
nn, obtained when

snm = 1 and anm = 0 for all pairs of states. Thus, the
maximum possible decay in the one-body reduced purity
due to decoherence is ∆1 = 1−1/M and occurs when all
M Slater determinants are equally populated and maxi-
mally entangled with the bath. As a consequence of this,
a decay of the one-body purity beyond ∆1 cannot be ex-
plained solely on the basis of decoherence of first order
and is indicative of the involvement of states with snm’s
of higher order. In fact, the absolute minimum of P1

occurs when the density matrix is composed of equally

populated states ann = 1/M that all differ by N -particle
transitions among each other (i.e. snm = N, ∀n 6= m).
In this case P1 = N/M irrespective of whether the state
is a superposition state or an incoherent mixture.

The limiting cases for P2 are shown in the lower panel
of Fig. 1. The maximum value of the two-body pu-
rity [Eq. (21)] is P2 = N(N − 1)/2 obtained for a
single Slater determinant or for a coherent superposi-
tion where snm = 1, ∀n 6= m. In turn, the minimum
value of P2 = N(N − 1)/(2M) is obtained when all M
participating Slater determinants are equally populated
(ann = 1/M) and differ by N -particle transitions (i.e.,
snm = N), irrespective of whether the N -body density
matrix represents a pure state or not. In the absence of
changes in the ann’s, a decay in P2 signals coherence loss
of order 1 or 2. Importantly, note that the magnitude of
the decay actually depends on the order of the coherence
that is lost; the lowest order coherences having the high-
est impact on the reduced purity. Specifically, the deco-
herence of a superposition of states differing by single-
particle transitions leads to a decay of P2 from P2 =
N(N − 1)/2 to P2 = N(N − 1)/2− (N − 1)(1−∑

n a2
nn),

for a maximum decay of ∆1 = (N − 1)(1 − 1/M). In
turn, the decoherence of a superposition of states that
differ by two-particle transitions leads to a reduction
from P2 = N(N − 1)/2 − 2(N − 2)(1 − ∑

n a2
nn) to

P2 = N(N − 1)/2 − (2N − 3)(1 − ∑

n a2
nn), for a maxi-

mum decay of ∆2 = (1 − 1/M) which is (N − 1) times
less than the reduction ∆1 due to decoherence between
states for which snm = 1. A value of P2 lower than
P2 = N(N − 1)/2 − (2N − 3) necessarily indicates that
there are snm > 2 in the states involved.

As seen in Eqs. (19) and (21), the decay of the reduced
purities directly signals coherence loss in “pure dephas-
ing” cases where the system-bath evolution does not lead
to appreciable changes in the populations of the Slater
determinants involved. More generally, the populations
of the Slater determinants can change in time due to in-
teractions of the electrons with themselves, with bath
degrees of freedom or with an external potential (i.e. a
laser). In such general case, in order to cleanly identify
the decoherence contributions to the dynamics of the re-
duced purities it is required to know the populations and
the distribution functions of the Slater determinants in-
volved. This feature is the main limiting factor in the
utility of the reduced purities in characterizing decoher-
ence effects for, generally, from a reduced density matrix
it is not always easy to uniquely unravel the populations
of the underlying possible Slater determinants used to
describe the correlated electronic states.

However, if additional details of the problem are
known, like the active determinant space and the initial
state, it then becomes increasingly plausible to perform
a detailed analysis of the reduced purities on the basis of
Eq. (19) and Eq. (21) even in situations when the popula-
tions of the Slater determinants are continuously chang-
ing. We now briefly sketch how the coherence properties
can be characterized: 1. Specify an active determinant
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space that is adequate for the problem and identify all
possible determinant combinations within this space that
are consistent with the orbital populations. Clearly, a
very large active determinant space may make the search
intractable, while a too restrictive active space may not
lead to a correct characterization. 2. Fit, in each of those
cases, the ann’s to reproduce the observed orbital popula-
tion dynamics. If the procedure is not unique, keep track
of competing possibilities. 3. Given each individual set
of model {ann}, using Eq. (19) calculate two limits for

the one body purity; a fully incoherent limit P
(inc)
1 where

the anm = 0 for n 6= m and a coherent limit P
(coh)
1 where

annamm = |anm|2. 4. Use the observed P1 to discard

possibilities. If P
(inc)
1 > P1 or P

(coh)
1 < P1 discard the

possibility, as the model state cannot possibly describe
the system. 5. If the coherence properties of the initial
state are known, further discard options by demanding
the model to exactly reproduce P1(0). 6. If the proce-
dure did not yield a unique choice, then it is necessary
to examine the two-body purity. Repeat steps 3-5 taking
advantage of Eq. (21). If this is not enough to yield a
unique choice, then the procedure needs to be repeated
for increasingly higher order purities until all available
information has been exhausted or a unique choice has
been determined. Note that coherences of higher order
than the highest order purity available would not be able
to be resolved. Section IV discusses representative exam-
ples of such a reconstruction.

IV. SOME EXAMPLES

We now illustrate the use of the reduced purities us-
ing the example of electronic decoherence in a molecu-
lar system due to electron-vibrational couplings. Specif-
ically, we consider an oligoacetylene chain with 4 car-
bon atoms and 4 π electrons as described by the Su-
Schrieffer-Heeger (SSH) Hamiltonian37, a tight-binding
model with electron-vibrational interactions. The details
of the Hamiltonian and the Ehrenfest mixed quantum-
classical method employed to follow the vibronic dynam-
ics have been specified before29,30,32. What is of relevance
to this discussion is that the system consists of 4 noninter-
acting π electrons distributed among 4 spectrally isolated
molecular orbitals |ǫn〉 of energy ǫn that allow for dou-
ble occupancy, for a total of 19 possible N -particle levels
(without counting spin-degeneracies) subject to decoher-
ence. The orbital energy and labels in the ground state
optimal geometry of the chain are shown in Fig. 2. Com-
putationally, we follow the dynamics of the one-body and
two-body reduced density matrix for this system and use
it to determine P1(t) and P2(t).

N (snm = 1∀n "= m + pure)

N − (1 −
∑

n

a
2

nn
) (snm = 1∀n #= m + fully mixed)

N − 1 + 1/M

N/M (snm = N ∀n "= m)

0

P1
{

∆1

0

P2

N(N − 1)/2 (snm = 1∀n #= m + pure)

N(N − 1)/2 − 2(N − 2)(1 −
∑

n

a
2

nn
) (snm = 2∀n #= m + pure)

N(N − 1)/2 − (N − 1)(1 −
∑

n

a
2

nn
) (snm = 1∀n #= m + mixed)

N(N − 1)/2 − (2N − 3)(1 −
∑

n

a
2

nn
) (snm = 2∀n #= m + mixed)

N(N − 1)/2 − (2N − 3)(1 − 1/M)

N(N − 1)/2M (snm = N ∀n #= m)

N(N − 1)/2 − (N − 1)(1 − 1/M)

∆1

∆2

{

{

FIG. 1. Limiting values for the one-body P1 [Eq. (19)] and
two-body P2 [Eq. (21)] purities (see text). The quantities
∆1 and ∆2 are the maximum possible decay of the reduced
purities due to one-body and two-body decoherence, N refers
to the number of electrons and M to the number of Slater
determinants involved. The figure is not to scale.

A. Decoherence of model superposition states

Consider first a “pure dephasing” example where there
are no changes in the population of the Slater determi-
nants during the dynamics. In this case, the decay of
the reduced purities are directly indicative of decoher-
ence. Specifically, we follow the system-bath dynamics
after preparation of the composite system in an initial
separable superposition state of the form:

|Ω(0)〉 = (c0|Φ0〉 + c1|Φ1〉) ⊗ |χ0〉, (22)

where |χ0〉 is the ground vibrational state in the ground
electronic state |Φ0〉, and |Φ1〉 is an excited state. The
|Φ1〉 is selected to be spectrally isolated from other N -
particle states such that the vibronic evolution does not
lead to population exchange into other levels, as revealed
by constant orbital populations throughout the dynam-
ics.

Two different types of initial superposition states are

considered. In type I, |Φ1〉 = ĉ†ǫ3↑ĉǫ2↑|Φ0〉 is obtained
from the ground state via a HOMO→LUMO transition
in a given spin channel, and the coherence order is 1. In

type II, |Φ1〉 = ĉ†ǫ3,↓ĉǫ2,↓ĉ
†
ǫ3,↑ĉǫ2,↑|Φ0〉 is a doubly excited

state where the two electrons in the HOMO of |Φ0〉 are
promoted into the LUMO, and the resulting coherence is



7

of second order. Figure 2 shows the dynamics of the pu-
rities in these two cases for |c0|2 = 3/4 and |c1|2 = 1/4.
The dashed lines in the figure indicate the fully coher-
ent/incoherent behavior expected for P1 and P2 as com-
puted from Eqs. (19) and (21) assuming that only |Φ0〉
and |Φ1〉 participate in the dynamics. In interpreting the
results, it is useful to keep Fig. 1 in mind.

Focus first on the dynamics of the type I superposi-
tion (Fig. 2, top panel). At initial time P1 = N and
P2 = N(N − 1)/2 because the system is pure and the
coherence is of first order. The system-bath evolution
leads to a decay of the purities that is entirely due to
decoherence. Since s10 = 1, both P1 and P2 follow the
coherence decay, and the fall of P2 is (N −1) times larger
than the one of P1. The partial recurrences in the pu-
rities signal vibronic evolution of the chain30. After 200
fs the system is well described as an incoherent mixture.
In the type II case (Fig. 2, bottom panel), P2 follows the
decoherence while P1 remains constant because it cannot
distinguish a coherence of second order from a mixture
of states. At initial time, P2 takes its maximum value
that is consistent with the superposition in question and
evolves with the vibronic evolution. The dynamics of P2

cleary shows decoherence in ∼ 100 fs of a superposition
of second order. Note that the observed decay of P2 in
this case is quantitatively smaller than the one observed
in a first order coherence since the decoherence of lowest
order has a larger impact in the two-body purity (recall
Fig. 1).

B. Resonant photoexcitation

To illustrate the use of the reduced purities in a more
complex setting, we now consider electronic decoherence
due to vibronic interactions during resonant photoexcita-
tion of a molecular system. This example illustrates how
through an analysis of the reduced purities it is possi-
ble to establish the coherence properties of an N -particle
system even when only the reduced density matrices are
known. Contrary to the previous example, because of the
photoexcitation, the population of the involved Slater de-
terminants changes continuously during the dynamics.

Figure 3 shows the orbital energies, orbital populations
and reduced purities of the SSH chain during dipole-
interaction with a continuous wave laser that is resonant
with the HOMO-LUMO transition. Initially, the system
is prepared in the ground vibronic state with an elec-
tronic state |Φ0〉 where the lowest energy molecular or-
bitals |ǫ1〉 and |ǫ2〉 are doubly occupied. As shown in
Fig. 3A-B, the laser promotes population into the |ǫ3〉
orbital. The reduced purities resulting from the numeri-
cal simulation are shown in black in Fig. 3C-D. Because
the laser induces changes in the state populations, sim-
ple inspection of P1 and P2 cannot reveal the nature of
the coherences and an explicit model of the dynamics is
required. From an N -particle perspective, the laser field
can transfer population from |Φ0〉 into the degenerate

P2(t)

P2(t)

P1(t)

P1(t)

t (fs)

ǫ
(e

V
)

|ǫ1〉

|ǫ2〉

|ǫ3〉

|ǫ4〉

0

0 50 100 150 200 250 300 350 400

450 500

Type I

Type II

pure

pure

pure

mixed

mixed

mixed

pure/mixed

2

3

3

4

4

4

5

5

6

6

-2

-4

FIG. 2. Reduced purities during the vibronic evolution of
a neutral oligoacetylene SSH chain with N = 4 electrons.
The system is initially prepared in a superposition |Ψ(0)〉 =
(c0|Φ0〉 + c1|Φ1〉) ⊗ |χ0〉 (|c0|

2 = 3/4 and |c1|
2 = 1/4) be-

tween the ground state |Φ0〉 and an excited electronic state
|Φ1〉. The initial nuclear state |χ0〉 is chosen to be the ground
vibrational state associated with |Φ0〉. Type I: First order

coherence, |Φ1〉 = ĉ†
ǫ3↑

ĉǫ2↑|Φ0〉. Type II: Second order coher-

ence, |Φ1〉 = ĉ†
ǫ3↓

ĉǫ2↓ĉ
†
ǫ3↑

ĉǫ2↑|Φ0〉. The dashed lines signal the

fully coherent/incoherent limit of P1 and P2 computed using
Eqs. (19) and (21) assuming that only |Φ0〉 and |Φ1〉 par-
ticipate in the dynamics. The orbital labels and energies at
initial time are shown in the bottom-right corner.

pair

|Φ1〉 = ĉǫ3↑ĉǫ2↑|G〉, |Φ2〉 = ĉǫ3↓ĉǫ2↓|G〉. (23)

Supposing that only states |Φ0〉, |Φ1〉 and |Φ2〉 can par-
ticipate in the dynamics, the N -particle density matrix
of the system can be written as:

ρ̂e =
2

∑

n=0

2
∑

m=0

anm|Φn〉〈Φm|. (24)

We consider different models for ρ̂e based on Eq. (24)
that differ in the degree of assumed coherence and the
states involved. Specifically, we consider models

M1: |anm|2 = annamm; a22 = 0;

M2: |anm|2 = annamm; a11 = a22;

M3: a2n = 0, ∀n; a01 = 0;

M4: a01 = a02 = 0; a11 = a22;

M5: anm = 0, ∀n 6= m; a11 = a22.

These models correspond, respectively, to (M1) a co-
herent superposition between states |Φ0〉 and |Φ1〉 with
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FIG. 3. Reduced purities during photoexcitation of a neutral
SSH chain with 4 electrons. (A) Orbital populations during
photoexcitation with a laser field E(t) = E(t) cos(ωt). The
laser frequency ~ω = 4.08 eV is chosen to be at resonance with
the HOMO-LUMO transition. The envelope function E(t) has
a Gaussian turn-on and remains constant at E0 = 8.7× 10−3

V/Å from t = 300 fs on. (B) Single-particle spectrum of the
SSH chain at initial time. (C) One-body and (D) two-body
purity during the dynamics. The black lines are the result of
an explicit simulation of the vibronic dynamics. The colored
lines correspond to different models with varying degrees of
coherence assumed in the N-body density matrix (see text).
In (C) the lines for M3 and M4 are on top of each other and
cannot be distinguished.

no participation of |Φ2〉; (M2) a coherent superposition
involving all three states; (M3) an incoherent mixture
between states |Φ0〉 and |Φ1〉; (M4) a partially coher-
ent triad where only the coherences between |Φ1〉 and
|Φ2〉 are maintained; and (M5) a fully incoherent state.
In the models where all three states are considered (M2,
M4 and M5) we take a11 = a22 since the |Φ0〉 → |Φ1〉 and
|Φ0〉 → |Φ2〉 transition dipoles are identical. As shown
below, only when the correct form for ρ̂e is assumed the
reduced purities reconstructed from Eqs. (19) and (21)
match the reduced purity obtained directly from the nu-
merical simulation.

In M1, P1 = N and P2 = N(N − 1)/2 (Fig. 3,
grey lines) since two states involved are separated by a
single-particle transition and are coherent (recall Eq. (19)
and Eq. (21)). This model fails to capture the observed
decay of the purities as the photoexcitation proceeds and
is not a faithful description of the system. The reduced
purities for M2 observe a decay (blue lines in Fig. 3) that
is not due to decoherence but due to the transfer of pop-
ulation into a pair of states |Φ1〉 and |Φ2〉 with s12 = 2.
Nevertheless, the decay in the reduced purities in this
model does not capture that observed in the simulation,
indicating that a fully coherent model is not a faithful

description of the system. In M3, the assumed decoher-
ence between states |Φ0〉 and |Φ1〉 leads to a significant
decrease in P1 and P2 (green lines, Fig. 3). However, the
decay is not sufficient to explain the observed behavior
indicating that a model where all 3 states are taken into
account is required. Both three-state models M4 (blue
dashed lines) and M5 (red lines) reproduce equally well
the behavior of P1. In fact, they are indistinguishable in
P1 since M4 contains 2nd order coherences not present
in the fully incoherent model M5 that cannot be resolved
by P1. In order to determine which state represents best
the state of the system an analysis of P2 is required. As
shown in Fig. 3D, the model that best adjusts to the ob-
served behavior is M5 indicating that during photoex-
citation the system is best described as an incoherent
mixture between states |Φ0〉, |Φ1〉 and |Φ2〉. This is be-
cause of the fast electronic decoherence timescale that is
characteristic of the model and method employed30,32.

V. CONCLUSIONS

A family of reduced purity measures that can be used
to characterize decoherence phenomena in many-electron
systems has been introduced based on the hierarchy of
electronic reduced density matrices. Using the proper-
ties of Slater determinants, explicit expressions for the
one-body and two-body purities for a general electronic
state have been derived and used to elucidate the struc-
ture and information content of the reduced purities. As
shown, the reduced purities can be used to characterize
electronic decoherence when only few-body electronic re-
duced density matrices are known. Further, the measures
permit decomposing electronic decoherence phenomena
into contributions arising from coherences of different or-
der providing, in this way, a useful interpretative tool
of the dynamics. The use of the reduced purities was
exemplified via investigation of decoherence in a model
molecular system with electron-vibrational interactions
both in a pure dephasing case and in a case where the
electronic structure is constantly changing due to reso-
nant photoexcitation.

Subtleties can develop in the interpretation of the re-
duced purities because of the fact that we deal with a
general many-electron subsystem but only use reduced
information about the electronic degrees of freedom. In
particular, a decay in the reduced purities is seen to arise
either due to bath-induced decoherence or due to an in-
crease in electronic correlation as both phenomena lead
to nonidempotency of the reduced electronic density ma-
trices. While it is technically clear how to define reduced
purity measures that solely reflect decoherence proper-
ties via the Carlson-Keller theorem, these measures re-
quire knowledge of higher order electronic density matri-
ces that are typically not available.

In the particular case of pure dephasing problems the
interpretation of the reduced purities is straightforward
as a decay of the reduced purities directly signals co-
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herence loss. For the more general case, a systematic
procedure to determine the decoherence contributions to
the reduced purities was presented. Since such a pro-
cedure involves unraveling the observed dynamics of the
few-body electronic density matrices into the N -particle
Hilbert space, isolating a unique solution can only bene-
fit from any additional information about the electronic
subsystem that is available such as the active determi-
nant space and the initial state.

At this point, it is useful to connect the proposed
reduced purity measures with existing electronic struc-
ture, condensed matter and quantum optics formalisms.
From a time-dependent density functional perspective
(TDDFT), in principle the reduced purities are function-
als of the time-dependent density and the Kohn-Sham
and many-body initial states38–40 even for an open elec-
tronic subsystem. This functional dependence allows ex-
pressing the off-diagonals of all electronic reduced den-
sity matrices in terms of the diagonal elements of the
reduced one-body density matrix in position representa-
tion. However, to date, this functional dependence is not
fully known and cannot be exploited to further advance
the present considerations. Other electronic structure
theories that employ reduced density matrices, like re-
duced density matrix functional theory (RDMFT)41–43,
currently focus on static problems of closed electronic
systems. In these theories, the time-dependence and de-
coherence aspects of the reduced purities are expected
to be of future relevance. Last, similar purity measures
are also applicable in quantum optics44–46 and condensed
matter physics 31,47 formalisms that employ the hierar-
chy of r-body Green’s functions. This is because the
r-body density matrices can be obtained from the equal-
time limit of r-body Green’s functions.

While this analysis has focused on purity related mea-
sures, the methods, insights and limitations apply to any
other measure of decoherence that is based on the den-
sity matrix such as the von Neumann entropy. Future
prospects include studying the asymptotic thermal be-
havior of the reduced purities and the utility of these
measures in characterizing increasingly more complex
electron-bath dynamics.
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