
Network Analysis of Enzyme Activities and Metabolite Levels
and Their Relationship to Biomass in a Large Panel of
Arabidopsis Accessions C W OA

Ronan Sulpice,a,1 Sandra Trenkamp,a Matthias Steinfath,a Bjorn Usadel,a Yves Gibon,a Hanna Witucka-Wall,b

Eva-Theresa Pyl,a Hendrik Tschoep,a Marie Caroline Steinhauser,a Manuela Guenther,a Melanie Hoehne,a

Johann M. Rohwer,a,c Thomas Altmann,d Alisdair R. Fernie,a and Mark Stitta

aMax Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
bGolm Innovationszentrum, 14476 Potsdam-Golm, Germany
c Triple-J Group for Molecular Cell Physiology, Department of Biochemistry, Stellenbosch University, 7602 Matieland, South

Africa
d IPK Gatersleben, 306466 Gatersleben, Germany

Natural genetic diversity provides a powerful resource to investigate how networks respond to multiple simultaneous

changes. In this work, we profile maximum catalytic activities of 37 enzymes from central metabolism and generate a matrix

to investigate species-wide connectivity between metabolites, enzymes, and biomass. Most enzyme activities change in a

highly coordinated manner, especially those in the Calvin-Benson cycle. Metabolites show coordinated changes in defined

sectors of metabolism. Little connectivity was observed between maximum enzyme activities and metabolites, even after

applying multivariate analysis methods. Measurements of posttranscriptional regulation will be required to relate these two

functional levels. Individual enzyme activities correlate only weakly with biomass. However, when they are used to estimate

protein abundances, and the latter are summed and expressed as a fraction of total protein, a significant positive correlation

to biomass is observed. The correlation is additive to that obtained between starch and biomass. Thus, biomass is

predicted by two independent integrative metabolic biomarkers: preferential investment in photosynthetic machinery and

optimization of carbon use.

INTRODUCTION

The rate of plant growth depends on the rate of photosynthetic

carbon (C) assimilation and on developmental programs that

influence how efficiently C is converted into biomass. These

processes are sometimes termed source and sink strength,

respectively. The molecular and genetic determinants of these

parameters are not well understood. Reverse genetics has been

widely used to study the relationship between the expression

individual enzymes and the rate of photosynthesis (Stitt et al.,

2010b). A 2-fold reduction of ribulose-1,5-bis-phosphate car-

boxylase/oxygenase (Rubisco; Quick et al., 1991; Mate et al.,

1993; Stitt and Schulze, 1994), sedoheptulosebisphosphatase

(Harrison et al., 1998), and aldolase (Ald) (Haake et al., 1998,

1999) and a somewhat larger decrease of transketolase (TK)

(Henkes et al., 2001) lead to a perceptible inhibition of photo-

synthesis in various species. Phosphoglycerate kinase (PGK),

NADP-dependent glyceraldehyde-3-phosphate dehydrogenase

(NADP-GAPDH), triose phosphate isomerase (TPI), and phos-

phoribulokinase can be reduced 5- to 10-fold without a percep-

tible impact on pathway flux (Paul et al., 1995; Price et al., 1995;

Stitt, 1995; Paul and Pellny, 2003; Stitt et al., 2010a). The

contributions of individual enzymes to the control of flux depend

on the conditions at the moment and on the prehistory of the

plant (Stitt and Schulze, 1994; Stitt and Sonnewald, 1995). A

similar picture has emerged for sucrose and starch synthesis

(Stitt, 1995; Stitt and Sonnewald, 1995; Paul and Foyer, 2001).

Photosynthetic metabolism operates as an integrated network,

in which metabolite levels and fluxes are determined by interac-

tions between many enzymes. Analogous conclusions have

been reached from experimental analyses of metabolism in

bacteria, yeast, and mammals.

The relationship between photosynthetic C gain and growth is

also complex (Gifford and Evans, 1981; Sparks et al., 2001). For

example, inhibition of photosynthesis due to decreased expres-

sion of Rubisco leads to a strong inhibition of growth in nitrogen-

replete conditions but not in nitrogen-limited conditions (Stitt and

Schulze, 1994). More generally, free air CO2 elevation studies

reveal that higher rates of photosynthesis rarely lead to a com-

mensurate increase in biomass (Long et al., 2006; Rogers and

Ainsworth, 2006; Leakey et al., 2009).
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Natural genetic diversity provides a powerful and complemen-

tary resource to analyze complex metabolic networks (Hansen

et al., 2008; Stitt et al., 2010a). Accessions or cultivars of a given

species have allelic diversity for hundreds or thousands of genes,

allowing a systems-level study of how metabolic networks

respond to many independent perturbations. Natural genetic

diversity is often investigated using inbred lines (ILs), which

uncover inherent genetic diversity by resorting two genomes. ILs

allow coarse mapping of quantitative trait loci (QTL), although

these still represent relatively large genomic regions and cloning

of the underlying genes (e.g., Fridman et al., 2000) is laborious. A

complementary approach is to survey large panels of genotypes

from wild populations or crop breeding programs to identify

correlations between traits on a species-wide basis. Association

mapping can be performed with candidate genes (Baxter et al.,

2008; Sulpice et al., 2009) or genome-wide scans (Buckler and

Thornsberry, 2002; Aranzana et al., 2005) to identify loci that may

influence the traits, although this requires rigorous correction for

population structure (Nordborg et al., 2005; Zhao et al., 2007).

There have been numerous studies of natural variation in the

levels of central metabolites, such as nitrate, amino acid, starch,

and sugars (Loudet et al., 2002, 2003; Calenge et al., 2006), and

secondarymetabolites (Kliebenstein et al., 2002; Sønderby et al.,

2007; Wentzell et al., 2007). The number of metabolites investi-

gated can be increased using metabolite profiling (Fiehn et al.,

2000; Sumner et al., 2003; von Roepenack-Lahaye et al., 2004;

Kopka, 2006). This has allowed hundreds of metabolite QTL to

be detected in tomato (Solanum lycopersicum; Schauer et al.,

2006) and Arabidopsis thaliana (Kliebenstein et al., 2002, 2006;

Keurentjes et al., 2006; Lisec et al., 2008; Rowe et al., 2008) IL

populations.

Using ILs populations, it has been previously shown (Schauer

et al., 2006; Meyer et al., 2007) that rosette biomass in Arabi-

dopsis and fruit yield in tomato correlate negatively with metab-

olites. While the correlation to rosette biomass was very weak for

individual metabolites, a highly significant correlation was ob-

tained when multivariate analysis was used on the entire metab-

olite profile (Meyer et al., 2007). This indicates that part of the

genetic variation for biomass affects the balance between re-

source availability, and the developmental programs that deter-

mine how rapidly metabolites are used for growth. (Sulpice et al.,

2009) used multivariate analysis to show that the starch content

at the end of the day is an integrator of the metabolic response in

Arabidopsis. Starch correlated strongly and negatively with

rosette biomass in a population of 92 genotypically diverse

accessions. Starch accumulates during the light period and is

remobilized to support metabolism and growth at night. These

results imply that there is genetic variation inC allocation and that

this contributes to the differences in biomass between Arabi-

dopsis accessions.

Metabolic interconversions are catalyzed by enzymes. The

question arises whether the genetic variation in metabolite levels

can be explained by changes in the activities of one or several

enzymes. If this were the case, it would provide an attractive

strategy to link the changes in metabolite levels to genetic

variation at loci that encode enzymes or regulate the expression

of enzymes. Enzyme activities exhibit considerable natural ge-

netic variation. Analyses of a maize (Zea mays) IL population

detected QTL for sucrose phosphate synthase (SPS) and in-

vertase activity, which colocated with structural genes for

the enzymes (Causse et al., 1995; Prioul et al., 1999; Thevenot

et al., 2005). A study of six enzymes from primary metabolism

and four enzymes from secondary metabolism in an Arabidopsis

recombinant inbred lines (RIL) population detected several

enzyme activity QTL that colocalized with structural genes

(Mitchell-Olds and Pedersen, 1998). This study also found strong

correlations between the activities of five glycolytic enzymes

(PGI, PGM, G6PDH, FBPase, and glucose-6-phosphatase), and

coarse mapping detected a trans-QTL for three of the enzymes,

which did not colocate with their structural genes and might

represent a joint regulator of these enzymes. A recent study of 15

enzymes from central metabolism in a Landsberg erecta (Ler) 3
Cvi RIL population detected a total of 15 QTL for nine of the

enzymes. Some colocated with structural genes and expression

QTL, while others were regulated by trans-acting loci (Keurentjes

et al., 2008). However, few studies have investigated enzyme

activities and metabolites from central metabolism in parallel,

and those that did only investigated a small number of traits

(Keurentjes et al., 2008). This is partly for technical reasons. It is

still a challenge to obtain quantitative information about large

numbers of proteins (Baerenfaller et al., 2008) or enzyme activ-

ities.

The relationship between enzyme activities and metabolite

levels could be rather nonintuitive. As already outlined, empirical

studies show that a change in the level of a single enzyme can

result in complex changes of metabolites and fluxes. Theoretical

considerations point to the same conclusion. In a simple linear

pathway, metabolite levels will change inversely relative to flux at

the step(s) where regulatory mechanisms operate to alter en-

zyme activities (Rolleston, 1972; Newsholme and Start, 1973).

This expectation has been explicitly included in algorithms to

detect sites at which genetic regulation may affect metabolism

(Rowe et al., 2008). However, the relationship between metab-

olites and flux becomes more complicated if the pathway is

regulated at multiple steps (Fell and Thomas, 1995; Hofmeyer

and Cornish-Bowden, 2000) or by feedback or feedforward

loops (Hofmeyr and Cornish-Bowden, 2000; Curien et al.,

2003). It becomes even more complex in networks that contain

branch points, cycles, and redundant reactions (Kacser and

Burns, 1973; Fell and Thomas, 1995; Hofmeyr and Cornish-

Bowden, 2000; Curien et al., 2003; Junker et al., 2007). Further-

more, if there is a coordinated increase of all the enzymes in a

pathway, flux will increase but the levels of metabolic interme-

diates will remain essentially unaltered (Kacser and Acerenza,

1993). The extent of the connectivity between enzyme activities

andmetabolites remains an open question. It may depend on the

complexity of the pathway and the extent to which genetic

variation generates coordinated or noncoordinated changes of

enzyme activities.

We have robotized activity assays for >20 enzymes from

central metabolism in Arabidopsis leaves (Gibon et al., 2004b,

2006) and subsequently extended the platform to cover 35

enzymes from different pathways in central metabolism. The

assays are optimized to measure the maximum catalytic activity

(Newsholme and Start, 1973), which can be seen as a proxy for

the amount of an enzyme (Piques et al., 2009; Stitt et al., 2010a).
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This allows us to study natural variation in enzyme activities in

central metabolism in a more systematic manner than was

previously possible. In the following study, we profile the max-

imum catalytic activities of 35 enzymes in the rosettes of 129

Arabidopsis accessions, including all 92 accessions used by

Sulpice et al. (2009). Our aims are (1) to document the extent of

genetic variation for activities of a large number of enzymes in

central metabolism at a species-wide scale and (2) to ask

whether natural genetic diversity results in coordinated or unco-

ordinated changes of the activities of the various enzymes. We

then combine the information about enzyme activities with a data

set for metabolite levels and biomass in the same material

(Sulpice et al., 2009) and examine (3) how much connectivity

exists between enzyme activities and metabolite levels, (4)

whether enzyme activities provide predictive information about

biomass, and (5) whether this prediction is redundant with or

additive to the prediction provided by analyses of metabolite

levels. We show that there is considerable genetic variation in

enzyme activities and that the majority of the changes in enzyme

activity are highly correlated with each other, whereas there is

little connectivity between enzyme activities and metabolite

levels. Furthermore, enzyme activities can be used to derive an

integrative parameter that is significantly correlated with bio-

mass, independent of the prediction provided by starch and

which, together with starch, explains almost a third of the

species-wide variation in biomass in Arabidopsis.

RESULTS

Parameters Investigated

A set of 129 Arabidopsis accessions, including all 92 accessions

analyzed in Sulpice et al. (2009), was selected from a larger set

of 406 accessions tomaximize genotypic diversity (Sulpice et al.,

2007). The accessions and their passport data are listed in

Supplemental Data Set 1A online. They were grown in short-day

conditions at 208C to focus on the response during vegetative

growth with limiting C and excess N and harvested at the end of

the light period when internal resources like starch and amino

acids have accumulated to their diurnal maxima. A list of mea-

sured metabolites and enzymes, with abbreviations and classi-

fications into pathways, is provided in Supplemental Data Sets

1B and 1C online.

Enzyme maximum activities were measured in stopped as-

says, using sensitive cycling assays to measure the products

(Gibon et al., 2004b). This allows assays to be performed at very

high extract dilutions, which minimizes interference by other

components of the extract. For all assays, it was checked that

the reactionwas linearwith time and the amount of extract added

and that substrate levels supported maximum activity of the

enzyme. Maximum activities provide information about the en-

zymatic capacity for a given reaction and will overestimate the

activity in vivo, which also depends on the levels of substrates,

inhibitors, activators, and, in some cases, posttranslational

modification. The maximum activities of this set of enzymes

correlate well with summed protein levels for the gene family,

determined by mass spectroscopy (Piques et al., 2009). Most

enzyme activities are stable during the diurnal cycle, even though

there are often marked diurnal changes in the levels of the

encoding transcripts (Gibon et al., 2004b, 2006). The results

obtained for enzyme activities from one harvest point in the

diurnal cycle should therefore be representative of the activity

across the complete cycle. For two enzymes, an additional assay

was performed to provide information about posttranslational

regulation (RubisCOin and NADPMDHin, see below).

Figure 1 shows the locations of the enzymes in metabolism.

Many enzymes can be unambiguously assigned to one pathway.

When an enzyme operates in two or more pathways or subcel-

lular compartments, it is assigned to the pathway that is asso-

ciated with the highest activity of the enzyme (see legend to

Figure 1).

Genetic Variation of the Traits Analyzed

Average, minimum, and maximum values and the coefficient of

variation (CV) were calculated for each parameter and accession

(see Supplemental Figure 1A and Supplemental Data Set 1D

online). The CV was small for structural components (chlorophyll

and protein) and major central metabolites (total amino acids,

sucrose, and starch), larger for rosette fresh weight (FW), reduc-

ing sugars, and themajor organic acids (malate and fumarate) (20

to 30%), and highest for low molecular weight metabolites de-

termined by gas chromatography–mass spectrometry (GC-MS)

(average 45%). Some enzyme activities showed low (TPI, PGM,

and Rubisco), many showed intermediate, and some showed

higher (GK, FK, G6PDH, INV, NAD-ICDH, and NADP-ICDH) CV

values, although not as high as the CV for some of the small

metabolites. These results resemble those in (Cross et al., 2006)

but cover many more accessions and metabolic parameters.

Due to the large number of plants assayed and the parameters

measured, the whole set of accessions was partitioned into eight

subsets (called experiments). Each subset of accessions was

grown in the same conditions in growth cabinets. Each acces-

sion was analyzed in two to four different experiments, and anal-

yses of sugars and FW in the reference accession Columbia-0

(Col-0) were included in all experiments. Two-way analysis of

variance (ANOVA) was performed to estimate how much of the

variation is determined by the genotype (G) or experimental (E)

fluctuations. The F-statistic for the genotype effect and the

variances explained by the genotype are given in Supplemental

Data Set 1D online. For almost all traits, the genotype effect was

highly significant. Due to missing data, a proper model could not

be fitted for three traits (salicylate, guanidine, and nicotinate; see

Supplemental Data Set 1D online).

Averaged across all traits, 38% of the variation was genetically

determined. Genetic variation for enzyme activities ranged from

20% (Rubisco) up to 57% (acid invertase), with an average of

34%. This resembles the range found in earlier studies with

smaller sets of enzymes (Mitchell-Olds and Pedersen, 1998;

Cross et al., 2006; Keurentjes et al., 2008). Metabolites deter-

mined by GC-MS showed higher genetic heritability (average

48%). This is comparable to or higher than in other studies (Rowe

et al., 2008; Schauer et al., 2008). Relatively low values were

observed for protein (21%), chlorophyll b (20%), chlorophyll a

(28%), and starch (21%) (see also Cross et al., 2006). Genetic
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variance was highly significant for most traits; exceptions are

some metabolites and several enzyme activities (Rubisco,

RubisCOin, Ald, PGK, CS, and NADP-MDHin).

Absolute Enzyme Activities

We first asked if enzymes in a given pathway have similar

maximum activities and if these differ from those of enzymes in

other pathways. The heat map in Figure 1 displays the average

activity for each enzyme across all the accessions. Calvin-

Benson cycle enzymes have high activities (between 6727 and

15,6000 nmol/min gFW). Especially high activities were found

for TPI and PGK, while the other activities were in the range

6727 to 10,852 nmol/min gFW. Intermediate activities are

found for enzymes involved in starch (700 to 1190 nmol/min

gFW), sucrose (111 to 4094 nmol/min gFW), and amino acid

(1148 to 6236 nmol/min gFW) synthesis. Enzymes involved in

the sucrose degradation have low activities (112 to 1223 nmol/

min gFW), as do most dedicated enzymes in glycolysis (PFK,

PFP, PK, and PEPC) and the tricarboxylic acid (TCA) cycle (CS,

aconitase, NAD-ICDH, and NADP-ICDH). The activities of

NADH-GAPDH, NAD-MDH, and fumarase are comparable to

those of the Calvin-Benson cycle enzymes, indicating they

might have other functions, in addition to catalyzing fluxes in

glycolysis and the TCA cycle.

Correlation Matrices

A correlation matrix was generated by performing Spearman

rank correlation analysis for all pairs of measured traits across

the whole population. This analysis used average values calcu-

lated from all raw determinations for a given trait/accession pair,

without considering the experiment effect. Spearman’s rank

correlation coefficients (Rs) and accompanying false discovery

rate (FDR)–corrected P values (pBH; Benjamini-Hochberg) are

provided in Supplemental Data Sets 2A and 2B online. The FDR

corrected P values are summarized as a heat map in Figure 2A

and Supplemental Figure 1B online for the matrix obtained when

traits were expressed on a FW and a total protein basis, respec-

tively. The traits are organized into seven classes: biomass, large

Figure 1. Assignment of Enzymes to Pathways and Average Maximum Enzyme Activities across All the Accessions.

Rubisco and NADP-GAPDH are specific for the Calvin-Benson cycle, AGP for starch synthesis, cFBP and SPS for sucrose synthesis, PFK, PFP, NADH-

GAPDH, PK, and PEPC for glycolysis, G6PDH for the oxidative pentose phosphate (OPP), and INV, SuSy, FK, and GK for sucrose breakdown and the

use of hexose sugars. TPI, Ald, and PGK are involved in the Calvin-Benson cycle and glycolysis and TK in the Calvin-Benson cycle and the OPP

pathway. TPI, Ald, PGK, and TK are assigned to the Calvin-Benson cycle because the major isoforms of these enzymes are located in the chloroplast

stroma (Heldt, 1997) and because fluxes are 10- to 100-fold higher in photosynthesis than in glycolysis (Geiger and Servaites, 1994; Gibon et al., 2004a).

UGP is involved in the synthesis and breakdown of sucrose, and PGI and PGM are involved in the synthesis and breakdown of sucrose and starch. The

assays distinguished plastidic PGI (pPGI) and cytosolic (cPGI) (Gibon et al., 2004b). UGP was assigned to sucrose synthesis. Several TCA cycle

enzymes have additional functions. CS and NAD- and NADP-ICDH are required to generate 2-oxoglutarate, which is the C-acceptor during nitrate and

ammonium assimilation. NADH-MDH is involved in the synthesis of malate and, together with NADP-MDH, in metabolite cycles that allow redox

equivalents to be exchanged between the NADP system in the plastid and the NAD systems in the cytosol and the mitochondrion (Scheibe, 2004). The

maximum catalytic activities of each enzyme, averaged across all accessions, are shown by color coding (see figure for scale). All abbreviations are

defined in Supplemental Data Set 1C online. The subscript “in” for Rubisco and NADP-MDH indicates “initial activity.”
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structural components, carbohydrates, organic acids, amino

acids, secondary metabolites, and enzyme activities. Derived

traits (reducing sugars, total sugars, and total amino acids) and

the initial activities of Rubisco and NADP-MDH were excluded

from the matrices.

The matrices display five general features. First, there are

many more positive than negative correlations. On a FW basis,

there were 361 positive and eight negative correlations (from a

total of 5356 trait pairs) at a significance threshold of pBH < 0.001

(Table 1). When traits were expressed on a protein basis, the

Figure 2. Connectivities between Metabolic Traits Expressed on a Fresh Weight Basis.

(A) Correlation matrices based on Spearman correlation coefficients between structural components, metabolites, and enzyme activities in the

accessions. Spearman rank correlation analysis was performed on the mean values for all pairs of measured traits across the whole population.

Relationships that are significant at pBH < 0.001, pBH < 0.01, and pBH < 0.05 are indicated by dark, medium, and light shading with positive and negative

correlations being distinguished by blue and orange, respectively. Data used for every trait analyzed are based on at least two independent

experiments. The original data are given in Supplemental Data Set 1E online. For the display, the traits were organized into seven classes: 1, biomass; 2,

structural components; 3, carbohydrates; 4, organic acids; 5, amino acids; 6, miscellaneous metabolites; 7, enzyme activities. The data are expressed

on a FW basis. A similar picture emerged when they were expressed on a protein basis (see Supplemental Figure 1B online)

(B) Cartographic representation of the primary metabolism network of Arabidopsis. All trait-trait correlations that were significant at pBH < 0.01 were

visualized using an algorithm that identifies functional modules within complex networks (Guimera and Amaral, 2005; Guimera et al., 2005). Blue and red

lines signify positive and negative correlations.
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corresponding numbers were 161 positive and 0 negative cor-

relations. Second, most of the positive correlations are between

traits from the samemajor trait class (85%at a threshold of pBH <

0.001). Third, all of the negative correlations are between traits

from different classes. Fourth, the same pattern emerges,

irrespective of whether traits are expressed on a FW (Figure

2A) or a protein (see Supplemental Figure 1B online) basis. In

particular, the high frequency of positive correlations between

enzyme activities is retainedwhen the activities are expressed on

a protein basis. This excludes a potentially trivial explanation for

the coordinated changes of enzyme activities, which would be

that they are due to a change in the overall protein content. Fifth,

as previously seen (Meyer et al., 2007; Sulpice et al., 2009), many

metabolites correlate negatively with biomass, especially when

they are expressed on a FW basis. Some enzymes show a

positive correlation with biomass, a feature that becomes espe-

cially marked when the activities are expressed on a protein

basis.

Global Network

A complementary overview of the enzyme-metabolite-biomass

network was obtained by extracting all significant trait-trait

correlations (pBH < 0.01) and visualizing them using an algorithm

that identifies functional modules in complex networks (Guimera

and Amaral, 2005; Guimera et al., 2005). The resulting network

(Figure 2B) contained two large, strongly connected modules

and three smaller, more weakly connected modules. It captures

many of the features identified by stepwise analysis of the

correlation matrix.

Most of the enzymes are in the largest and most interconnec-

ted module. The Calvin-Benson cycle enzymes and many of the

enzymes from biosynthetic pathways are tightly interconnected,

while others are linked by only a few edges (NR, G6PDH, and

enzymes for sucrose degradation). This module contains chlo-

rophyll, but no low molecular weight metabolites. The second

large module contains only metabolites. The 26 metabolites

in this module include 15 amino acids, 2-oxoglutarate, and

some secondarymetabolites like sinapate and putrescine, which

are synthesized from amino acids. One of the small loosely

interconnected modules contained a set of metabolites (sev-

eral amino acids, organic acids, carbohydrates, ascorbate, and

dehydroascorbate) and three enzymes (GLDH, NAD-ICDH, and

CS). A second loosely connected module contains five metab-

olites (including malate and fumarate) and two enzymes (SPS

and NADP-MDHin). A third loosely connected module contains

salicylate, starch and sucrose, glucose and fructose, total amino

acids, three individual amino acids (Ala, Gly, and homoserine),

total protein, and rosette FW. Some metabolites in this module

(total amino acids, starch, and sucrose) are connected to chlo-

rophyll and individual enzymes in the large enzyme module.

Coordinated Changes of Enzyme Activities

The following sections explore the correlation matrix in more

detail, starting with enzyme activities. Key information is sum-

marized in Table 2. RubisCOin and NADP-MDHin (the subscript

“in” indicates “initial activity”) were excluded from this analysis

because they provide information about enzyme regulation,

rather than the amount of enzyme (see below). Ald was excluded

because measurements were available for only 58 of the 129

accessions.

As already noted, many enzymes change in a coordinated

manner. This is quantified in Table 2. When activities were

expressed on a FW basis, each enzyme had an average of 7.0

and 12.3 (from a maximum of 35) significant correlations with

other enzymes at pBH < 0.01 andpBH < 0.05, respectively. A similar

picture emerged when activities were expressed on a protein

basis; each enzyme had an average of 10 and 16 significant

correlations with other enzymes at pBH < 0.01 and pBH < 0.05,

respectively. As already noted, this excludes the trivial explana-

tion that the coordinated response is due to changes in total

protein.

Comparison of Enzyme Activities and Total Protein

We next explored the relationship between the variation in the

activities of individual enzymes and the variation in total leaf

protein (leftmost column, Table 2). All parameters are expressed

on a FW basis. A Spearman coefficient of regression (Rs) of 0.32

was obtained between Rubisco and protein. The very low Kcat (3

s21) of Rubisco is compensated for by having a high concentra-

tion of Rubisco protein (typically 30 to 40% of total leaf protein;

Farquhar et al., 2001; Zhu et al., 2007). It can therefore be

expected that changes in Rubisco will result in changes in the

total leaf protein content. Chlorophyll binding proteins and other

proteins in the thylakoid membranes represent another major

component of total leaf protein (Adam et al., 2000). Chlorophyll

Table 1. Number of Correlations between Different Types of Metabolic Parameters

Parameter Pair

Number of Correlationsa

Total No. of Pairs % with Significant CorrelationPositive Negative

All 161 1 5356 3.0

Enzyme-enzyme 66 0 666 9.9

Metabolite-metabolite 70 0 1891 3.7

Amino acid–amino acid 40 0 276 14.5

Enzyme-metabolite 3 0 2294 0.1

Derived metabolic traits (reducing sugars, total sugars, and total amino acids) were excluded, as were initial activities of Rubisco and NADP-MDH.
apBH < 0.001.
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Table 2. Connectivities of Enzyme Activities

Rs, Enzyme

Activity versus

Total Protein

No. of Correlations to

Other Enzymes
Specific

Activitya

Average

Maximum

Activity

Average

Amount

as % of

Total

Protein

Rs (% Protein

in Enzyme

versus %

Protein in

All-Rubisco)

Rs (% Protein

in Enzyme

versus %

Protein in

All Enzymes)

Enzymes

Individual Enzymes pBH < 0.01 pBH < 0.05

Rubisco 0.32 13 18 1,600 8,268 28.38 0.491 0.964

PGK 0.24 10 16 983,684 77,735 0.45 0.548 0.405

NADP-GAPDH 0.16 15 19 80,000 10,852 0.78 0.703 0.453

TPI 0.40 17 23 6,858,936 155,855 0.13 0.663 0.500

TK 0.16 7 16 22,000 8,402 2.08 0.698 0.436

Glycerate kinase 0.27 13 19 54,600 2,607 0.26 0.474 0.339

NADP-MDH 0.20 16 19 32,527 1,159 0.19 0.498 0.336

cFBP* 0.21 0 2 44,194 111 0.00 0.184 0.220

cPGI 0.25 6 17 495,000 1,836 0.00 0.442 0.392

PGM 0.41 8 16 82,500 4,042 0.26 0.415 0.489

UGP* 0.20 3 12 435,058 4,095 0.06 0.386 0.376

SPS* �0.06 4 9 44,750 510 0.06 0.366 0.317

AGP 0.24 12 24 39,175 700 0.13 0.454 0.373

pPGI 0.33 9 18 495,000 1,192 0.00 0.423 0.325

PFK 0.11 3 10 219,380 176 0.00 0.312 0.133

PFP 0.09 1 4 23,150 161 0.06 0.363 0.212

NAD-GAPDH 0.17 9 17 105,000 16,756 0.91 0.672 0.498

PK 0.25 12 18 88,388 1,006 0.06 0.440 0.190

PEPC �0.03 10 17 30,653 744 0.13 0.549 0.401

NAD-MDH 0.28 18 24 800,000 53,492 0.39 0.639 0.486

Fumarase 0.00 2 3 293,012 4,423 0.06 0.226 0.114

NADP-ICDH 0.17 6 12 24,254 1,466 0.32 0.141 0.133

CS 0.01 2 3 n.a. 190 n.a n.a. n.a.

NAD-ICDH* 0.07 3 6 11,000 55 0.00 0.225 0.025

NR* 0.13 1 1 55,000 409 0.06 0.160 0.222

GS 0.20 9 16 22,627 1,148 0.26 0.476 0.292

GOGAT 0.20 0 0 40,800 1,803 0.26 0.099 0.195

AlaAT 0.24 11 18 45,573 5,942 0.71 0.601 0.441

AspAT 0.37 11 16 420,000 6,236 0.06 0.461 0.246

Shikimate DH 0.23 12 17 86,000 600 0.06 0.480 0.430

GLDH �0.01 4 14 62,680 576 0.06 0.483 0.210

G6PDH* 0.04 0 2 62,075 268 0.00 0.243 0.130

Susy* 0.05 0 3 180,000 122 0.00 0.194 0.190

INV �0.04 0 1 115,566 1,223 0.06 0.227 0.260

FK 0.09 4 9 10,500 117 0.06 0.270 0.247

GK 0.13 3 7 43,240 112 0.00 0.262 0.326

Grouped in pathways 0.00

All enzymes Rubisco 6.8 12.2 7.99 1.000 0.672

All enzymes 7.0 12.3 36.36 0.672 1.000

Calvin-Benson cycle 13.7 18.7 31.82 0.606 0.991

Calvin-Benson cycle

minus Rubisco

13.2 18.2 3.44 0.870 0.553

Sucrose synthesis 6.0 13.0 0.39 0.583 0.586

Starch synthesis 12.5 23.0 0.13 0.493 0.405

Respiration 9 13.6 1.95 0.805 0.580

Amino acid metabolism 11.3 16.3 1.43 0.645 0.487

Sucrose breakdown 6.3 9.5 0.13 0.364 0.367

The Rs values for correlations between enzyme activity (nmol/min·gFW) and protein content (mg/gFW) and the number of correlations between

enzyme pairs are from Supplemental Data Set 2A online. The measured maximum enzyme activities (nmol/min·g FW; from Supplemental Data Set 1E

online) were divided by literature values for specific activities (a; nmol/min.mg protein; see Piques et al., 2009 for sources) to estimate the amount of

protein invested in each enzyme (mg protein/gFW). The average values for a given enzyme across all accessions are shown. The individual values for

each enzyme were summed in each accession and used to calculate the total amount of protein invested in enzymes in that accession. The Rs values

are given for the regression plot between the amount of protein in a given enzyme and the summed estimate of protein in all enzymes and for the

corresponding plot but omitting Rubisco from the sum of protein. Rs values are coded according to significance (italic and bold for pBH < 0.05 and

0.01, respectively). *enzyme determined in 62 to 92 accessions over 129. n.a., not available.
aIn nmol/min·mg�1 purified enzyme.
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provides indirect information about the changes of these pro-

teins. Chlorophyll correlated strongly with total protein (Rs = 0.53;

see Supplemental Data Set 2A online). Of the other four Calvin-

Benson cycle enzymes investigated, TPI had an Rs value of 0.4,

PGK of 0.2, and TK and NADP-GAPDH of 0.16 with total protein.

Most enzymes involved in sucrose and starch synthesis and

nitrogen assimilation also had Rs values of 0.2 to 0.4 with total

protein. The changes of total leaf protein between accessions are

therefore partly attributable to coordinated changes of Rubisco,

other Calvin-Benson cycle enzymes, and enzymes that are

required to synthesize themajor end products of photosynthesis.

Two exceptions were NR (Rs = 0.13) and SPS (Rs = 20.06).

Interestingly, these are key regulatory sites in sucrose synthesis

and nitrate assimilation (Stitt et al., 1987; Winter and Huber,

2000).

A different picture emerged for glycolysis, the TCA cycle, and

sucrose degradation. While Rs values with protein of 0.2 to 0.4

were obtained for NAD-GAPDH and PK, many of the enzymes in

these pathways had relatively low Rs values, and some had very

low Rs values (PEPC, GLDH, INV, FK, G6PDH, Fumarase, PFP,

and Susy), showing that they vary independently of the total leaf

protein.

Correlations between Enzymes

We next investigated which enzymes show the highest connec-

tivity to other enzymes. The second column from the left in Table

2 summarizes the number of significant (pBH < 0.01) positive

correlations for each individual enzyme. As already noted, at this

significance level, on average each enzyme correlates with 7.0 of

the other 35 enzymes. The most highly connected enzyme was

NAD-MDH, followed by TPI and NADP-MDH. Most enzymes

from the Calvin-Benson cycle, starch and sucrose synthesis,

nitrogen metabolism, and PEPC, PK, and NADP-ICDH showed

above-average connectivity. Poorly connected enzymes in-

cluded GOGAT, G6PDH, Susy, and INV (no significant correla-

tions), NR and PFP (only one significant correlation), and

fumarase (two significant correlations). A qualitatively similar

picture emerged at the less stringent filter of P < 0.05 (Table 2,

third column from left). Connections between weakly linked

enzymes may nevertheless be functionally important. For exam-

ple, during nitrate assimilation, PEPC is required to synthesize

malate as a counteranion (Heldt, 1997). Of the two enzymes that

correlate with fumarase, one (NAD-MDH) catalyzes an adjacent

reaction in the TCA cycle.

We next investigated whether enzymes are more highly con-

nected to enzymes in the same pathway than to enzymes in other

pathways. The initial classification defined 10 pathways (Fig-

ure 1; see Supplemental Data Set 1C online), but some were

represented by only one to two enzymes. We decreased this to

five sets by retaining the pathway sets for the Calvin-Benson

cycle, sucrose biosynthesis, and sucrose breakdown, extending

nitrogen assimilation and amino acid metabolism to include

glycerate kinase, and combining G6PDH, glycolysis, and the

TCA cycle as respiration (see Supplemental Data Set 1C online).

We calculated the mean values of Rs for pairwise correlations

between enzymeswithin each pathway and between enzymes in

one pathway and each of the other pathways (Figure 3). Calvin-

Benson cycle enzymes showed the most highly coordinated

changes (i.e., accessions that had high activity of one Calvin-

Benson cycle enzyme tended to have high activities of the other

Calvin-Benson cycle enzymes). Other pathways showed a less

coordinated within-pathway response. Indeed, enzymes as-

signed to sucrose synthesis, amino acid metabolism, and res-

piration correlated as well (sucrose synthesis and respiration) or

better (amino acid metabolism) with Calvin-Benson cycle en-

zymes than with enzymes from their own pathway (Figure 3; for

details, see Supplemental Data Set 2A online). This may reflect

the fact that fluxes through these pathways are dependent on

C-fixation in the Calvin-Benson cycle (see below for discussion).

The matrix in Supplemental Data Set 2A online reveals that the

enzymes for starch synthesis (AGP and PGM) also correlate with

Calvin-Benson cycle enzymes. Enzymes involved in sucrose

breakdown show a disparate response (Figure 3), both with each

other and with enzymes from other pathways. INV and SuSy

change independently of each other and of almost all other

enzymes analyzed in our study. GK and FK correlate with each

Figure 3. Correlation Matrix Showing Similarities and Differences in the Response at the Level of Metabolic Pathways.

Information about the enzymes and their pathway assignments is given in Supplemental Data Set 1C online. Some pathways (starch synthesis) were

excluded from the analysis because too few enzymes were determined. Enzymes from TCA cycle, glycolysis, and OPP were grouped as “respiration.”

Spearman correlation coefficients (Rs) were calculated for each enzyme-enzyme pair. Average values of these coefficients for enzyme-enzyme pairs

belonging to the same pathway or to different pathways were calculated. The values range from 0.32 (dark blue) to 0.08 (light blue).
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other (pBH = 3.48E-05) but change independently of INV and

SuSy (see Supplemental Data Set 2A online).

Some coordinated responses span pathways. Supplemental

Figure 2 online shows two examples. One is a correlation

between NADP-MDH, NAD-MDH, NADP-ICDH, TPI, and NAD-

GAPDH. These five enzymes are in the large enzyme module of

Supplemental Figure 1B online. They are involved in metabolite

shuttles that allow redox transfer between different intracellular

compartments (see Discussion). A second example is CS, NAD-

ICDH, and GLDH. These three enzymes grouped in one of the

small modules in Supplemental Figure 1B online. They are

involved in organic acid metabolism: CS and NAD-ICDH in the

TCA cycle and GLDH in amino acid catabolism, where it gener-

ates 2-oxoglutarate.

The average Rs values for the various pathways are <0.5

(Figure 3). This could still allow marked divergence between

accessions with respect to the relative levels of enzymes in a

pathway. To explore how large this variation is, we calculated the

activity ratio for each enzyme-enzyme pair for each pathway

subset (Calvin-Benson cycle, sucrose synthesis, nitrogen me-

tabolism, sucrose degradation, and respiration), in each acces-

sion, combined the values, and depicted them as a frequency

plot (Figure 4; see Supplemental Figure 3 online). For Calvin-

Benson cycle enzymes, 96% of the ratios are between 0.7 and

1.4 (Figure 4A). Thus, there are very few cases where the

activities of two Calvin-Benson cycle enzymes change >2-fold

relative to each other in this large set of accessions. The

statistical significance of this result was checked by showing

that there is a far larger range of values in a shuffled data set (see

Supplemental Figure 3 online). An analogous analysis of the other

pathways showed a larger spread of values for pairwise ratios

between the constituent enzymes. Nevertheless, shuffling

Figure 4. Frequency Histogram of the Enzyme-Enzyme Ratios for Enzymes from Different Pathways across the Entire Set of Accessions.

The enzymes were assigned to five subsets: Calvin-Benson cycle enzymes, sucrose synthesis, nitrogen metabolism, enzymes of sucrose degradation,

and respiration. For each enzyme, the activity in a given accession was normalized to the mean activity of that enzyme in all of the accessions. This

allowed activity ratios in the same range to be obtained for each enzyme pair; a value of 1 thus represents the average value across all the accessions.

The activity ratio was then calculated for each enzyme-enzyme pair from each set in each accession. The values were then summed and depicted as a

frequency plot. Significance of the plots obtained was addressed by shuffling 1000 times the normalized activities and comparing the frequency

distribution of the standard deviations of the ratios against the standard deviation of the ratios obtained with the real data (see Supplemental Figure 3

online).

(A) Calvin-Benson cycle (Rubisco, PGK, NADP-GAPDH, TPI, and TK).

(B) Sucrose degradation (INV, SuSy, GK, and FK).

(C) Rubisco compared with all other enzymes (white bars) and selected Calvin-Benson cycle enzymes (gray bars, PGK, NADP-GAPDH, TPI, and TK).

(D) NR activity compared with the activity of all other enzymes.
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revealed significant coordination in all pathways, except sucrose

breakdown where ;25% of the normalized pairwise ratios

change >2-fold and some by up to 10-fold (Figure 4B).

Figures 4C and 4D show the frequency distribution for pairwise

activity ratios for two selected enzymes. Rubisco shows only

small deviations compared other enzymes. For comparison, the

frequency distribution is shown for ratios between Rubisco and

four Calvin-Benson cycle enzymes (PGK, NADP-GAPDH, TPI,

and TK). A similar frequency distribution is obtained for these four

enzymes and for the entire set of enzymes. This emphasizes that

Rubisco correlates not only with Calvin-Benson cycle enzymes

but also with many other enzymes in central metabolism. NR

shows a larger spread of ratios, with almost 20% of the values

lying <0.7 or >1.4. The spread of ratios was nevertheless smaller

than in shuffled data sets (see Supplemental Figure 3 online).

Correlations between Metabolites

Metabolites are less connected to each other than are enzymes.

From a maximum possible number of 61, metabolites have on

average 4.4 significant (pBH < 0.01) correlations to other metab-

olites (Table 1). The lower connectivity is not due to noise.

Genetic variance actually explains a larger proportion of the total

variation in metabolite levels than in enzyme activities (see

Supplemental Data Set 1D online).

Metabolites correlate most frequently with metabolites from

the same sector of metabolism. This is most marked for amino

acids, with on average 5.5 correlations per amino acid (pBH <

0.01), from a maximum possible number of 23 (Table 1). There

are strong correlations between central amino acids likeGln, Glu,

Asp, and Asn (see Supplemental Data Set 2A online) and some

minor amino acids (Arg and Met). There is a strong correlation

between the three aliphatic amino acids (Leu, Ileu, and Val),

between b-Ala and 4-aminobutyrate, and between the three

aromatic amino acids. Gln, Glu, Asp, and several minor amino

acids correlate with 2-oxoglutarate (Table 3), which is the

C-acceptor in the GOGAT pathway (see Discussion), and with

putrescine and sinapate. These metabolites are in the same

module in Figure 2B. Interestingly, Gly, which is formed during

photorespiration, is poorly connected with other amino acids.

Other examples of metabolite-metabolite correlations include

sucrose and starch (Rs = +0.42; PBH = 4.88E-05), glucose and

fructose (Rs = +0.59; P = 1.15E-10), raffinose and its precursors

(galactinol and myoinositol), ascorbate and dehydroascorbate

(pBH = 1.1E-04), and between the latter and threonic acid, which

is formed during breakdown of ascorbate (Debolt et al., 2007).

Relationships between Enzyme Activities and

Metabolite Levels

There are very few correlations between enzyme activities

and metabolites. The matrix contains 62 metabolites and 37

enzymes, allowing 2294 pair-pair correlations between enzymes

and metabolites. There are only three and one (pBH < 0.001)

significant correlations when the traits are compared on a FW

(Table 1) and protein (see Supplemental Data Set 2B online)

basis, respectively.

Figure 5 lists the enzymes and metabolites with the largest

number of cross-trait class correlations. Among the enzymes,

PGM and SPS showed the largest number of correlations with

metabolites. Rubiscowascorrelatedwith threemajorC-containing

products of photosynthesis (sucrose, starch, and malate). Among

the metabolites, myo-inositol, b-Ala, Lys, and mannose had the

largest number of significant correlations to enzymes.

A trivial explanation for the lack of connectivity would be that

many of the enzymes and metabolites come from different

Table 3. Correlations of Organic Acids with Amino Acids

Citrate 2-OG Succinate Fum Malate Pyruvate Glycerate

AA 0.794 0.066 0.777 �0.966 0.673 0.525 0.353

Gly 0.630 0.791 0.915 �0.311 �0.279 0.452 0.798

L-Ala 0.666 0.429 0.254 0.526 �0.935 0.085 �0.780

Ser �0.278 0.134 �0.848 0.374 �0.985 0.417 0.005

Glu �0.121 0.000 0.781 0.083 0.979 0.649 0.377

Gln �0.878 0.000 �0.571 �0.635 �0.575 0.525 0.062

Asp 0.875 0.001 �0.777 0.049 0.890 0.734 0.016

Asn -0.025 0.000 �0.048 0.375 0.886 0.832 0.865

Arg �0.178 0.000 �0.124 �0.668 0.608 0.770 0.359

Pro �0.986 0.735 �0.889 0.215 0.928 0.744 0.007

Ile �0.192 0.004 0.102 0.043 0.688 0.967 0.749

Leu �0.687 0.207 0.307 0.250 0.852 0.516 0.997

Val �0.241 0.005 0.436 0.056 0.918 0.147 0.511

Lys �0.236 0.023 �0.082 �0.574 �0.472 0.858 �0.923

Phe 0.336 0.054 0.356 0.989 �0.053 0.740 0.194

Thr �0.928 0.347 0.773 �0.842 �0.062 0.176 0.014

Trp �0.256 0.068 �0.753 0.728 �0.525 0.302 0.359

Tyr �0.332 0.000 �0.875 0.709 �0.720 0.611 0.533

Protein 0.806 0.453 0.307 �0.842 0.890 0.955 0.586

The results are extracted from Supplemental Data Set 2A online. The table shows the FDR-corrected (Benjamini-Hochberg) P values of the Spearman

rank correlation. Significant P values are given in italics, and P values below 0.001 are presented in bold. A negative sign indicates when R had a

negative value.
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pathways. To test this possibility, we generated a series of smaller

within-pathway matrixes, which contained enzymes and metab-

olites from the same metabolic sector (starch synthesis, sucrose

metabolism, hexose metabolism, nitrogen assimilation, amino

transferase reactions, aromatic amino acid biosynthesis, malate,

and fumarate metabolism). We also searched for correlations

between Calvin-Benson cycle enzymes and the major carbohy-

drate products of CO2 fixation (starch and sugars). Table 4

summarizes significant Rs values between enzymes and metab-

olites in these small matrices, using a relaxed P value (pBH <

0.01). The frequency of correlations was no higher than in the

entire data matrix.

Another explanation for the lack of connectivity between

metabolites and single enzymes would be that the level of a

metabolite may be determined by several enzymes. Multivariate

analysis like partial least squares (PLS) regression can be used to

predict one trait from a linear combination of other traits (termed

predictors) (Wold, 1975; Barker and Rayens, 2003). PLS iden-

tifies the combination of the original predictors (e.g., metabolites

and enzymes) that has maximum covariance with the trait of

interest. We tested, for eachmetabolite, whether PLS regression

against the entire set of enzyme activities would provide a better

fit than regression against single enzymes. We did not find an

improvement in any case.

It is also possible that groups of enzymes interact in a nonlinear

manner to determine the level of a given metabolite. To inves-

tigate this possibility, we performed support vector machine

regression using a nonlinear kernel (Fan et al., 2005). We found

only one metabolite whose level was significantly predicted by a

group of enzymes (glutamate; R = 0.42, P value corrected = 3E-

05). Multiple repetitions of the analysis, leaving out one enzyme

at a time, indicated that GluDHwas the only enzymewith amajor

effect on Glu levels.

Relationships between Enzyme Activation State and

Metabolite Levels

Optimized in vitro measurements provide information about the

maximum catalytic capacity. In vivo activity also depends on the

concentrations of substrates and regulatory effectors and, in

some cases, posttranslational modification. Two of the enzymes

in our platform are subject to a posttranslational modification that

can be monitored by appropriate sample handling and assay

procedures. Rubisco is posttranslationally activated by carba-

mylation of Lys-201. The inactive and active form can be distin-

guished by assaying activity immediately or after incubation with

high bicarbonate concentrations in alkaline conditions to convert

the decarbamylated into the carbamylated form (Portis, 2003).

NADP-MDH is reversibly reduced and activated by thioredoxin-m.

Assay of maximum activity in vitro requires pretreatment with

DTT, whereas rapid assay in the absence of DTT detects only the

reduced form (Scheibe, 2004). These two enzymes were as-

sayed without pretreatment to monitor the amount of posttrans-

lationally activated enzyme (RubisCOin and NADP-MDHin). This

revealed further biologically relevant correlations: NADP-MDHin

was negatively correlated with malate (Rs = 20.38, pBH =

30.005), and RubisCOin correlated positively with NR activity

(Rs = +0.35, pBH = 0.01) (see Supplemental Data Set 2A online).

Relationships between Enzyme Activities and

Rosette Biomass

Several enzyme activities correlate weakly with rosette FW,

especially when they are expressed on a protein basis (see

Supplemental Figure 1Bonline). Using an analogous approach to

that taken previously for metabolites (Meyer et al., 2007; Sulpice

et al., 2009), we investigated whether a stronger regression can

Table 4. Frequency of Correlations between Enzymes and Metabolites in the Same Metabolic Sequence

Total Matrix Defined Metabolic Segment

Number of

Significant

Correlations

Total

No. of

Metabolite-

Enzyme

Comparisons

% of

Significant

Correlations

No. of

Correlations

between

Enzymes and

Metabolites

No. of Possible

Enzyme-Metabolite

Pairs

% of

Significant

Correlations

Calvin-Benson cycle and

carbohydrates

1 520 0.2 0 24 0

Starch synthesis 0 161 0 0 2 0

Sucrose metabolism 3 347 0.9 0 5 0

Hexose metabolism 0 297 0 0 9 0

Nitrogen assimilation 1 421 0.2 0 15 0

Aminotransferases 0 309 0 0 10 0

Aromatic amino acid synthesis 1 272 0.4 0 8 0

Malate and fumarate metabolism 1 260 0.4 0 6 0

Several sets of enzymes and metabolites were identified in which the metabolites are the immediate or near-immediate substrates or products of

enzymes: starch synthesis (pPGI, AGP, and starch), sucrose metabolism (cPGI, UGP, SPS, SuSy, INV, and sucrose), hexose metabolism (INV, GK, FK,

sucrose, glucose, and fructose), nitrogen assimilation (NR, GS, GOGAT, NAD-IDH, NADP-ICDH and Gln, and 2-oxoglutarate and Glu), central amino

transferase reactions (AspAT, AlaAT and Glu, 2-oxoglutarate, pyruvate, Asp, and Ala), aromatic amino acid synthesis (TK, shikimateDH, shikimate, Phe,

Trp, and Tyr), and malate and fumarate metabolism (NAD-MDH, NADP-MDH, fumarase, malate, and fumarate). The six Calvin-Benson cycle enzymes

were also compared with starch, sucrose, glucose, and fructose. For each set identified, all significant (pBH < 0.01) correlations were between enzyme-

metabolite pairs in the trait set. This is compared with the number of correlations that these traits have in the data matrix without the initial activities.
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be obtained using the 35 enzyme activities as predictors in a PLS

regression on biomass. In contrast with metabolites, this did not

improve the regression (Rpls = 0.04; P = 0.07). This was so,

irrespective of whether the enzyme activities were expressed on

a FW or a total protein basis. This lack of additivity is probably a

consequence of the highly coordinated changes of enzyme

activities.

We therefore searched for away to integrate information about

the variance in enzyme activity that did not depend on variation

between the activities of individual enzymes. The highly coordi-

nated changes of maximum enzyme activities are likely to be due

to coordinated changes in the amount of protein invested in

enzymes, rather than parallel changes in their Kcat. We used

literature values for enzyme specific activities (Table 2) to com-

pute the amount of protein invested in each enzyme in each

accession (see Supplemental Data Set 1F online). As shown by

Piques et al. (2009), the enzyme amount estimated in this way

correlates well with protein abundance measured using mass

spectrometry. To provide an overview of how the protein abun-

dance varies between enzymes, we estimated the average value

across all the accessions (Table 2). As expected, Rubisco

represents a large proportion of total leaf protein (43.7%). Other

enzymes contribute between 0.01 and 3%. Grouped on a path-

way basis, Calvin-Benson cycle enzymes contribute almost 50%

of the total protein, Calvin-Benson cycle enzymes without

Rubisco 5%, sucrose and starch synthesis <1%, respiration

3%, amino acid metabolism 2.6%, and sucrose breakdown

0.2% of total leaf protein.

The estimated protein in all of the enzymes was summed for

each accession and expressed as a percentage of the total

protein in that accession. This term will be referred to as relative

investment of protein in metabolism (RPM). There was a signif-

icant positive correlation (Rs = 0.33, pBH = 0.0001) between RPM

and FW (Figure 6A). As Rubisco represents the vast majority of

the rosette protein, this relationship might be very sensitive to

changes in Rubisco. The same calculation was therefore re-

peated for all enzymes except Rubisco. A similar correlation was

retained (Rs = 0.36; pBH = 0.00002; Figure 6B). An analogous plot

in which the fraction of total rosette protein found in Rubisco was

plotted against FW yielded an Rs of 0.29 (pBH = 0.0008) (see

Supplemental Data Set 2A online). This stable relationship re-

flects the fact that there is a fairly conserved relationship (R =

0.51) between the fraction of the total protein that is invested in

Rubisco and the fraction that is invested in the other 34 enzymes

(Figure 6C).

To identify enzymes with a particularly strong predictive value

for RPM, the amount of protein in a given enzyme was regressed

on the summed protein in all enzymes. An analogous calcula-

tion was also performed in which Rubisco was omitted from

the summed enzyme protein. Especially high Rs values were

obtained for NADP-GAPDH, TPI, TK, NAD-GAPDH, and AlaAT

(Table 2, rightmost columns). As already noted, total leaf protein

shows an inverse relationship to rosette FW (Figure 6D; see also

Sulpice et al., 2009). Consequently, accessions with a high RPM

tend to have low total leaf protein (Figure 6E).

Sulpice et al. (2009) used PLS regression to show that the set

of 62metabolites analyzed in this study have predictive power for

starch, as well as rosette FW, and that the VIP values (variance

importance in the prediction; this gives theweighting of individual

metabolites for the prediction of biomass) of the predictor

metabolites were similar in both regressions. This implies that

starch integrates metabolic status and that the regulatory net-

work that determines starch levels contributes to the regulation

of biomass. We investigated whether the prediction of biomass

provided by RPM is additive to that provided by starch (Figure

6F). This was done by performing multiple linear regression with

cross validation. In this data set, the R2
s of starch with FW was

0.21, which is slightly lower than in the smaller data set in Sulpice

et al. (2009). The R2
s of RPM with biomass was 0.11, and the

combined R2
s provided by starch and RPM was 0.29. An F-test

was applied to evaluate the statistical significance of the in-

crease of explained variance when RPM is added to starch as

predictor. The corresponding P value of 63 1025 demonstrates

that this increase is highly significant. Regression analysis

indicated that starch and RPM are independent parameters

Figure 5. Correlation between Enzyme Activities and Metabolites.

The display shows selected examples of significant Spearman correla-

tion coefficients between enzyme activities andmetabolites. The number

indicates the R value and the color shading the P value (light, medium,

and dark shading represent pBH <0.05, <0.01, and <0.001, respectively).

A full list of all correlation coefficients is provided in Supplemental Data

Set 2A online. Blue colors are for positive correlations. The yellow

shading is used for a negative correlation with pBH < 0.01.
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Figure 6. Correlation between Biomass and the Fraction of Total Rosette Protein Invested in Enzymes of Central Metabolism.
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(R2
s = 0.003; Figure 6F). This was further tested by including an

interaction term between RPM and starch. This did not improve

the prediction of biomass but instead resulted in a lower value of

the adjusted R2, which was not significant in an ANOVA test.

Evaluation of Akaike’s Information criterion for the two alternative

models also showed that the model without the interaction term

was to be preferred.

These results imply that almost one-third of the variance in

biomass in this large population of accessions is related to these

two integrative metabolic parameters. Their contribution is visu-

alized in Figure 6G. For each accession, the starch content is

plotted against the RPM value. The accessions were divided into

six classes based on their biomass. These classes are identified

by color coding, with increasing darkness signifying increasing

biomass. Some of the smallest accessions (Lov5, Bla11, Nok2,

and Tamm2 marked with an asterisk in the diagram) have a low

value of RPM and a high starch content. However, when acces-

sions are compared in the moderately sized or large classes, low

RPM tends to be accompanied by high starch and vice versa.

The largest accessions are characterized by relatively low starch

and high RPM values but do not have extreme values for either

parameter. In several cases, outliers for the relationship between

biomass and one parameter can be explained by an extreme

value for the other parameter. For example, Pyl1 and Van0,

(marked as “x” in the figure) are small accessions with a high

starch content but have a high RPM, whereas Be0 and Nok1

(marked with “+” in the figure) are small accessions with a low

RPM but a low starch content.

Van0 contains a mutation in the ERECTA locus (van Zanten

et al., 2009).Mining thecurrentlyavailable genomesequencedata

for the accessions used in this study (Est-1, Fei-0, Bay-1, Bur-0,

and Cvi-1) did not reveal any other likely erecta nonsilent alleles.

DISCUSSION

Metabolism is usually studied by perturbing the activities of

single enzymes. However, metabolic networks are generated by

interactions between enzymes. Arabidopsis accessions have

allelic diversity for hundreds or thousands of genes, allowing a

systems-level study of how a metabolic network responds to

simultaneous changes of many enzyme activities. This response

was analyzed by measuring a large set of enzyme activities,

metabolites, and biomass in 129 accessions. The resulting data

matrix reveals a very high frequency of positive correlations

between enzyme activities, amoderate frequency of correlations

between related metabolites, and remarkably few correlations

between enzyme activities and metabolite levels. It provides

insights into the nature, and consequences, of genetic variation

at these two levels of metabolic function and its relationship with

biomass formation.

Absolute Enzyme Activities Differ between Pathways in a

Manner That Broadly Reflects Pathway Stoichiometry

Enzymes from the same pathway have more closely related

absolute activities than do enzymes from different pathways

(Figure 1). The range of activities measured here broadly reflects

differences in fluxes through the different pathways. Enzyme

activities in the Calvin-Benson cycle that we measured were, on

average, ;20-fold higher than those in anabolic pathways like

sucrose and starch synthesis, nitrogen assimilation, and amino

acid synthesis. Based on known pathway stoichiometry (Heldt,

1997), it canbecalculated that synthesisof onemolecule of sucrose

requires the net fixation of 12 molecules of CO2. Depending on

the position of the enzyme in the Calvin-Benson cycle, 12 to 24

catalytic cycles will be needed to regenerate 12 molecules of the

acceptor Ru1,5bisP and allow fixation of 12 molecules of CO2.

This number will be 50 to 60% higher in ambient conditions

due to photorespiration (Pettersson and Ryde-Pettersson, 1988;

Poolman et al., 2001; Reumann and Weber, 2006; Zhu et al.,

2007). The activities of most enzymes for sucrose degradation

and respiration were even lower. This reflects the fact that the

rate of respiration is typically 10- to 100-fold lower than the rate of

photosynthesis (Heldt, 1997; Ivanova et al., 2008). The qualitative

Figure 6. (continued).

The amount of protein invested in a given enzyme was calculated from the measured activity using literature values for the specific activity (see Table 2

and Supplemental Data Set 1F online). This was summed for all enzymes in a given accession and divided by the total rosette protein in that accession

to calculate the relative investment of protein in metabolism (RPM).

(A) Summed protein in enzymes as a percentage of total protein (=RPM) versus rosette biomass. Each data point is a separate accession.

(B) Summed protein in enzymes minus Rubisco as a percentage of total protein versus rosette biomass.

(C) Relationship between summed protein in enzymes-Rubisco as a percentage of total protein and summed protein in Rubisco as a percentage of total

protein.

(D) Total rosette protein versus rosette biomass.

(E) Summed protein in enzymes as a percentage of total protein (=RPM) versus total rosette protein. Data for all accessions are given in Supplemental

Data Set 1F online.

(F) R2 for the correlation between parameters and biomass. The corresponding Rs and P values were for starch versus FW, �0.46, 4E-08; RPM versus

FW +0.34, 1E-0.04; starch + RPM versus FW, 0.54, 3E-11; starch versus RPM, �0.061, 0.49).

(G) Relationship between starch content, RPM, and biomass in 129 accessions. Each data point represents a single accession. Starch content and

RPM values are taken from Supplemental Data Sets 1E and 1F online. The accessions were divided depending on their biomass into six classes (<150,

151 to 200, 201 to 250, 251 to 300, 301 to 350, and >351 mg/plant), which are distinguished by color coding, with the darkness of the shading indicating

an increasingly large biomass (see legend in the panel). Asterisk denotes some of the smallest accessions (Lov5, Bla11, Nok2, and Tamm2) with a low

value of RPM and a high starch content; “x” denotes small accessions (Pyl1 and Van0) with a high starch content but a high RPM; “+” denotes small

accessions (Be0 and Nok1) with a low RPM but a low starch content.

[See online article for color version of this figure.]
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match between absolute enzyme activities and the fluxes that

they carry indicates that there has been selection to optimize the

efficiency of allocation of C and nitrogen between different

enzymes and pathways.

For some respiratory enzymes (e.g., NAD-MDH and fuma-

rase), we measured activities similar to those of the Calvin-

Benson cycle enzymes. In addition to their function in the TCA

cycle, these enzymes have an additional role in catalyzing the

synthesis of organic acids. Malate accumulates to high levels in

the vacuole of many plants (Heldt, 1997), and fumarate also

accumulates in Arabidopsis (Chia et al., 2000). Organic acids are

synthesized as a counteranion when nitrate is assimilated and

may also have an osmotic function and provide a temporary

carbon store (Zell et al., 2010). Thismay explain why the activities

of NAD-MDH and fumarase are much higher than those of other

respiratory enzymes.

Coordinated Changes of Enzymes That Are Required

for Photosynthesis

Enzymes from a given pathway show coordinated changes of

activity in this large population of Arabidopsis accessions. Ex-

amples include enzymes in the Calvin-Benson cycle and, to a

lesser extent, enzymes for starch and sucrose synthesis and

amino acid metabolism. These coordinated changes are re-

tained when enzyme activities are examined in relation to total

rosette protein content. They result in changes in the total rosette

protein because the enzymes in central metabolism, especially

Rubisco, represent a considerable part of the total rosette

protein.

The coordinated nature of the variation in enzyme activities in

this panel of accessions has two important functional implica-

tions. First, a coordinated change in the activities of several

enzymes is an effective strategy to alter pathway flux (Kacser and

Burns, 1973; Kacser and Acerenza, 1993; Fell and Thomas,

1995). Second, the changes in the relative levels of individual

enzymes in this panel of accessions are so small that they are

unlikely to have a detrimental effect on efficiency with which the

other enzymes are used. For example, there are almost no

instances where the activity of one Calvin-Benson cycle enzyme

changes >2-fold relative to the activity of another Calvin-Benson

cycle enzyme. As discussed in the Introduction, a 2-fold de-

crease in the activity of individual enzymes in mutants and

transgenic plants leads to only minor changes in flux for some

enzymes and has no effect for other enzymes (see also Stitt et al.,

2010b). Zhu et al. (2007) developed amodel of theCalvin-Benson

cycle, photorespiration and photosynthetic end product synthe-

sis, and used it to predict that a small reallocation of protein

toward Rubisco, Ald, SBPase, and plastid FBPase and away

from other Calvin-Benson cycle enzymes could potentially in-

crease the rate of photosynthesis. We found no evidence for

more variation in the ratio between Rubisco and PGK, NADP-

GAPDH; TPI and TK than would be expected on the basis of the

variation in the total data set.

In some cases, enzymes in different pathways show coordi-

nated changes of activity. For example, enzymes from the path-

ways of sucrose and starch synthesis and amino acid synthesis

correlate with Calvin-Benson cycle enzymes. Although nominally

classified as separate pathways, they are actually mutually inter-

dependent because the synthesis of sucrose, starch, and amino

acids depends on the supply of triose phosphates from the

Calvin-Benson cycle. A recent study of an RIL population found

that AGP and pPGI correlated with Rubisco (R > 0.3), whereas

enzymes for sucrose degradation and respiration did not (R <

0.17) (Keurentjes et al., 2008). Another example of a coordinated

response that spans several nominally different pathways is

provided by NADP-MDH, NAD-MDH, NADP-ICDH, TPI, and

NAD-GAPDH. In addition to their roles in the Calvin-Benson

cycle, glycolysis, and the TCA cycle, these enzymes catalyze

metabolite shuttles that transfer ATP and redox groups between

subcellular compartments. During photosynthesis, the light re-

actions generate NADPH and ATP in the chloroplast stroma.

While much of this is used in the chloroplast, some is transferred

to the remainder of the cell. Mature chloroplasts have no mech-

anism for direct export of NAD(P)H and only a limited capacity for

ATP export (Heldt, 1997). Instead, ATP and reducing groups are

exported via a metabolite shuttle involving the chloroplastic

NADP-GAPD, the triose phosphate translocator, and the cyto-

solic NAD-GAPDH, and excess reducing equivalents are ex-

ported by the malate valve involving the plastidic NADP-MDH

and extraplastidic NAD-MDH (Scheibe, 2004).

Enzymes in other pathways, especially sucrose degradation,

show divergent responses. Plants possess alternative and poten-

tially redundant pathways for sucrose degradation via SuSy and

FKor via INV,GK, and FK. No evidencewas found for a correlation

between enzymes that are required in one or the other of these

pathways. These enzymes, in particular INV, also varied in an

uncoordinated manner in a Cvi 3 Ler RIL population (Keurentjes

et al., 2008). This implies that Arabidopsis tolerates large changes

in the relative levels of enzymes in C breakdown pathways.

NR provides another interesting example of an enzyme whose

maximum activity varies independently of other enzymes. NR is a

key site for the regulation of nitrate assimilation. In addition to

transcriptional and translational regulation (Nussaume et al., 1995;

Kaiser and Huber, 2001; MacKintosh and Meek, 2001; Lea et al.,

2006), NR is subject to posttranslational regulation involving

phosphorylation followed by the Mg2+-dependent binding of a

14-3-3-protein (Nussaume et al., 1995; Kaiser and Huber, 2001;

MacKintosh and Meek, 2001; Lea et al., 2006). One possible

explanation for the divergent responses may be that NR activity is

mainly regulated by posttranslational mechanisms. Nitrogen me-

tabolism in tobacco (Nicotiana tabacum) was not markedly af-

fected by constitutive overexpression of nativeNIA (encoding NR)

but was strongly modified by introduction of a modified and

constitutively active form of the enzyme (Lea et al., 2006).

Coordinated Changes of Sets of Related Metabolites

Metabolites were moderately correlated with each other at a

global level. This resembles previous studies with Arabidopsis

rosettes (Meyer et al., 2007; Sulpice et al., 2009) and tomato fruit

(Schauer et al., 2006, 2008). There were strong correlations

between metabolites in specific sectors of metabolism. This

included the amino acids, as seen previously (Galili and Hofgen,

2002; Foyer et al., 2003; Lu et al., 2008). There was also a strong

correlation between total amino acids and sucrose and starch,
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the two main carbohydrates formed during photosynthesis.

Similar correlations have been reported in physiological studies

of single or near-isogenic genotypes (see Introduction). How-

ever, starch and sucrose did not correlate with individual amino

acids. Instead, 2-oxoglutarate correlated with Gln, Glu, Asp, and

several minor amino acids, including Arg and Phe. 2-Oxogluta-

rate is the immediate C-acceptor during nitrogen assimilation in

plants, where it reacts with Gln to form two molecules of Glu in

the reaction catalyzed by GOGAT. These results indicate genetic

conservation of a regulatory network linking 2-oxoglutarate and

amino acid biosynthesis. Physiological studies in tobacco and

Arabidopsis have shown that the levels of 2-oxoglutarate andGlu

are often correlated (Muller et al., 2001; Fritz et al., 2006), and

there is growing evidence that Glu plays a key role in the

regulation of nitrogen metabolism (Fritz et al., 2006; Forde and

Lea, 2007).

Metabolites Change Independently of Maximal

Enzyme Activities

There were very few correlations between enzyme activities and

metabolites. We also failed to uncover more links when we used

multivariate statistics to search for combinations of enzymes that

might determine the level of a metabolite, or permitted nonlinear

interactions. Several explanations can be advanced for this lack

of connectivity between enzyme activities and metabolites.

One explanation is that enzymes catalyze fluxes and that there

is no simple relationship between flux and the concentrations of

metabolic intermediates. The coordinated changes of enzyme

activities that occur in this panel of accessions may, paradox-

ically, result in there being even fewer correlations of enzyme

activities with metabolic intermediates. As pointed out (Kacser

and Acerenza, 1993), a coordinated increase of enzyme activities

will increase flux while leaving the levels of the metabolic inter-

mediates essentially unaltered. This does not account for the

absence of correlations between enzymes and metabolites that

are pathway products, like starch, sucrose, many of the amino

acids, and organic acids that accumulate to high levels in the

vacuole, like malate and fumarate. However, the levels of path-

way products may still represent a balance between the rates of

synthesis and utilization. For example, sucrose is exported from

the leaf, and amino acids are exported or used for protein

synthesis in the leaf. In one case, our data set does allow a direct

assessment of flux. Starch is synthesized in the light and almost

completely remobilized at night in the conditions used in our

experiment (Gibon et al., 2004a; Usadel et al., 2008), so the level

at the end of the light period therefore reflects the rate of

synthesis in the preceding light period. The starch content did

not correlate with the activity of two enzymes from the pathway

of starch synthesis, AGP or pPGI (Rs = –0.04 and 0.17, respec-

tively).

A second explanation is that metabolite levels are not deter-

mined by maximum enzyme activities. When the maximum

activity of an enzyme is decreased, there is usually no effect on

flux until a threshold is reached (Kacser andBurns, 1973; Fell and

Thomas, 1995; Stitt et al., 2010b). As discussed in the introduc-

tion, for four (NADP-GAPDH, PGK, TPI, and TK) of the six Calvin-

Benson cycle enzymes in our data set, it has been empirically

determined that a 2-fold decrease of the maximum activity has

no detectable effect on the rate of photosynthesis (Stitt and

Schulze, 1994; Stitt and Sonnewald, 1995). Our measurements

now show that the relative activities of these enzymes vary by <2-

fold in this large population of accessions. This explains why they

do not correlate with metabolites that are produced by photo-

synthesis. Rubisco and Ald do have measureable flux control

coefficients for photosynthesis in ambient conditions (i.e., a

relatively small decrease in their maximum activity leads to a

detectable inhibition of CO2 fixation). Rubisco activity correlated

with starch and sucrose, which are the twomain end-products of

photosynthesis, whereas Ald showed little variation in its activity

in this panel of accessions. The correlation matrix between

maximum Calvin-Benson cycle enzyme activities and metabo-

lites in this panel of accessions is therefore consistent with the

results of earlier studies, which used reverse genetics to alter the

maximum activity of individual enzymes. Crucially, the matrix

reveals which enzymes actually show changes of their maximum

activity in different Arabidopsis accessions and could therefore

contribute to the genetic control of metabolism. The coordinated

changes of maximum enzyme activities in the Calvin-Benson

cycle and related pathways that occur in this panel of accessions

will provide a very effective means to change fluxes through

central photosynthetic metabolism.

In vivo enzyme activity is usually lower than the maximum

activity. There are various reasons for this (Rolleston, 1972;

Newsholme and Start, 1973; Junker et al., 2007). One is that

many reactions are close to their thermodynamic equilibrium in

vivo. In this case, the net flux is the difference between the rates

of the forward and the reverse reactions and is much smaller

than total rate of catalysis. The second is that in vivo activity is

typically restricted by inhibitors, low levels of substrates and

activators, and/or posttranslational regulation. In the terminology

of Newsholme and Start (1973), coarse regulation refers to

changes in the maximal activity brought about by expression

and protein turnover, and fine regulation refers to modulation of

the activity by substrate availability, levels of activators and

inhibitors, and posttranslational activation. Fine regulation makes

a far larger contribution than does gene expression to the regu-

lation of glycolysis when yeast is grown in conditions that alter the

ATPyield (Daran-Lapujadeet al., 2007). This implies that additional

information about fine regulation will be required to link changes

in maximum enzyme activity to the responses of metabolites.

It is difficult to assess the impact of fine regulation when it is

caused by changes in substrate saturation and the levels of

metabolite effectors because this requires detailed information

about the kinetic properties of an enzyme and the in vivo levels of

all its major effectors. By measuring the posttranslational regu-

lation of Rubisco and NADP-MDH, we were able to uncover two

biologically relevant correlations that were not apparent from

measurements of maximum enzyme activities.

The lack of connectivity between enzymes and metabolites

highlights the complexity of the interactions between different

enzymes in pathways in central metabolism and the importance

of regulation of enzyme activities by metabolite ligands and

posttranslational modification (fine regulation). Further integra-

tion of global data on metabolism will require determinations of

fluxes, the acquisition and integration of information concerning
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allosteric regulators and posttranslational regulation, and the

analysis of these results in the context of quantitative metabolic

models (Pettersson and Ryde-Pettersson, 1988; Poolman et al.,

2001; Uys et al., 2007; Zhu et al., 2007).

Biomass Correlates with the Relative Investment of Protein

in Enzymes

Our study provides a large matrix of over 100 metabolic traits,

which can be analyzed to identifymetabolic traits that are linked

with increased biomass. Multivariate statistics has already

been applied to predict rosette biomass from a large set of

metabolites (Meyer et al., 2007) and to show that starch is an

integrative biomarker that captures much of the information

present in the metabolite profile and has a highly significant

negative correlation with biomass (Sulpice et al., 2009). Starch

accumulates in the light period and is degraded to support

metabolism and growth at night (Smith and Stitt, 2007). When

Col-0 is grown in different photoperiods, there is a strong

correlation (R > 0.99) between the relative growth rate and the

rate of starch degradation (Gibon et al., 2009). In this study,

starch was measured at the end of the light period. It has been

shown previously that starch is almost completely degraded by

the end of the night in a subset of 20 accessions (Cross et al.,

2006). The amount of starch accumulated at the end of the light

period therefore provides an indicator for the amount of C

available for metabolism and growth at night. The negative

correlation between starch and biomass indicates that acces-

sions that produce a large biomass are able to use their C more

efficiently for growth. This biomarker therefore presumably

reflects the efficiency with which C is allocated for biomass

production.

Many individual enzyme activities correlate weakly and pos-

itively with growth, especially when they are expressed on a

total protein basis. However, multivariate analysis on the 35

enzyme activities did not provide a prediction of biomass. The

reason is probably that little additional information can be

extracted by a combined analysis because the enzyme activ-

ities are already strongly correlated with each other. This

prompted us to use themeasured enzyme activities to compute

the fraction of total rosette protein that is invested in the

enzymatic machinery for central metabolism (RPM). We found

a significant positive correlation between RPM and rosette

biomass. We interpret this parameter as measure of the effi-

ciency with which protein is invested for the purpose of carbon

acquisition. Many of the most strongly correlating enzymes are

involved in the Calvin-Benson cycle or related pathways. This

relationship did not depend on any single enzyme. Indeed, our

results show that information about one or a small number of

enzymes suffice to generate a proxy value for this term. The

robustness is presumably a consequence of the coordinated

nature of the responses of enzyme activities. The importance of

optimizing investment in the photosynthetic machinery is high-

lighted by the fact that half or more of the total protein in leaves

is invested in the photosynthetic machinery (Farquhar et al.,

2001; Zhu et al., 2007).

The prediction of biomass provided by the relative investment

of protein in metabolism (RPM) is independent of the prediction

provided by starch, and the summed R2 for these two integrative

parameters accounts for almost one-third of the total variance in

rosette biomass in this large population of Arabidopsis acces-

sions. Formally, this additivity is a consequence of the lack of

connectivity between enzyme activities and metabolite levels. In

practical terms, this means that a relatively small number of

robotized analytic measurements can be used to identify two

major metabolic determinants of biomass. Functionally, it indi-

cates that investment in photosynthetic machinery and optimi-

zation of carbon use are largely separate processes. While both

are likely to be subject to multigenic regulation, our results

indicate that thesemay be largely nonoverlapping networks. This

may allow these two parameters to be used in the future to

identify complementary genotypes that score highly for one and

weakly for the other to investigate how they contribute to

productivity in segregating populations.

Finally, our approach is based on the idea that the variation for

metabolic traits in accessions is generated by large numbers

of small perturbations. It is possible that part of the variance

is generated by a small number of major polymorphisms that

have a large impact on one or many metabolic traits. For ex-

ample, ERECTA is a pleiotropic regulator of developmental and

physiological processes, as well as a modulator of responses to

environmental stimuli (van Zanten et al., 2009). In an analysis of a

Ler 3 Cvi RIL population, Keurentjes et al. (2008) noted that the

ERECTA locus, which is polymorphic between the parents, co-

locates with strong QTL for several metabolic traits studies and

suggested that ERECTA may be responsible for a subtle simul-

taneous regulation of primary metabolism in parallel with, or as a

consequence of, its effects on development. Our accession

panel contains at least two (accessions Ler and Van0) with a

polymorphism at the ERECTA locus (van Zanten et al., 2009). As

more genome resequencing data become available, it will be-

come possible to use candidate gene association mapping to

assess the contribution of such major locus polymorphism to

genetic variation in metabolism at a species level.

METHODS

Selection of Accessions

Arabidopsis thaliana accessions used in this study were obtained from

various sources: Col-0 from G. Rédei (University of Missouri-Columbia);

C24 from J.P. Hernalsteens (Vrije Universiteit Brussels, Belgium); Ler

from M. Koornneef (Wageningen University, The Netherlands); Eil0, Lip0,

Rsch0, Te, and Yo0 from S. Misera (Institut für Pflanzengenetik und

Kulturpflanzenforschung, Gatersleben, Germany); Bor4, Est1, Fei0, Lov5,

NFA8, RRS7, RRS10, TAMM2, and Tsu1 from D. Weigel (Max Planck

Institute, Tuebingen); Ak1, Akita, Bur0, Ct1, Enkheim, Edi0, Jea, Kn0,

Lip0, Mh1, Mt0, Nok1, Oy0, Petergof, Pyl1, Ru1, Shakdara, Stw0, Ta0,

Te0, Tsu0, and Yo0 from the Versailles stock center. All others were

retrieved from the Nottingham Arabidopsis Stock Centre, through which

all accessions are now available. Accessions were homogenized by

single-seed propagation and were bulk amplified prior to the analysis

(Toerjek et al., 2003). Geographical origin of the accessions is available at

Vnat (http://dbsgap.versailles.inra.fr/vnat/).

For the selection of a diverse collection of Arabidopsis accessions, 406

Arabidopsis accessions were analyzed using 115 single nucleotide poly-

morphism (SNP) markers (Toerjek et al., 2003; Schmid et al., 2005).
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Heterozygous genotypes of SNPs were excluded from further analysis

(<2%). All 406 accessions as well as 115 SNPs were used in the Mstrat

software (Gouesnard et al., 2001) to generate a core collection of

accessions with maximal allelic richness. One hundred core collections

were generated independently, and the core set with the highest Nei

index was retained. Selected accessions were genotyped with an addi-

tional set of 149 SNP markers, which are a subset of the 289 SNP mark-

ers available at http://naturalsystems.uchicago.edu/naturalsystems/lab/

index_files/page0007.html. Genotyping was done at Sequenom. Finally,

a cutoff of >15 accessions in theminor allele class was used to exclude 81

markers where a highly asymmetric distribution would lead to poor

statistical resolution.

Growth Conditions and Experimental Design

Growth conditions were exactly as previously described by Cross et al.

(2006). Briefly, seeds were germinated and grown for the first 7 d with a

daylength of 16 h, temperature 68C at night and 208Cduring day, humidity

75%, and luminosity 145 mmol m22 s21. After 7 d, seedlings were

transferred to a phytotron. Growth was continued in an 8-h-light/16-h-

dark regime at temperatures and humidities of 168C and 75%at night and

of 208C and 60% during the day. Illumination was 145 mmol m22 s21. At

the age of 2 weeks, plants of average sizes were transferred to pots of 6

cm in diameter (five plants per pot). After 1 further week in the short-day

conditions outlined above, plants were moved to a controlled small

growth chamber for 2moreweeks. Daylengthwas then 8 h, temperature a

constant 208C, and illumination an average 125 mmol m22 s21. Plants

were watered daily. Harvests of 15 plant rosettes (five samples containing

each three plants) were performed at the end of the light period. Each

sample typically contained three rosettes, equivalent to ;500 mg FW,

depending on the accessions. The entire sample was powdered under

liquid nitrogen and stored at –808C until its use.

Single accessions were grown in at least two independent experiments

and in total eight independent experiments were performed, each in-

cluding between 20 and 108 accessions. Within each experiment, the

position of the pots containing individual accessions was randomized.

Enzyme and Metabolite Assays

Chemicals were purchased as described (Gibon et al., 2004b). Total

protein, starch, glucose, fructose, sucrose, and total amino acids were

assayed as described (Cross et al., 2006). Malate and fumarate were

assayed as described (Nunes-Nesi et al., 2007).

For enzyme measurements, aliquots of 20 mg frozen FW were

extracted by vigorous mixing with extraction buffer (Nunes-Nesi et al.,

2007). AGP, NAD-GAPDH, NADP-GAPDH, PFP, PK, SPS, TK, cFBPase,

GK, FK, G6PDH, NADP-ICDH, shikimate dehydrogenase, AlaAT, AspAT,

fumarase, GLDH, PEPC, INV, GOGAT, NR, and GS were assayed as

described (Gibon et al., 2004b). PFK, CS, NAD-IDH, NAD-MDH, and

NADP-MDHwere assayed as described by Nunes-Nesi et al. (2007). PGK

and glycerate kinase were assayed as described by Huege et al. (2007).

Rubisco was assayed as described by Sulpice et al. (2007). TPI was

assayed as described by Burrell et al. (1994). cPGI and pPGI were

assayed as described byWeeden andGottlieb (1982). PGMwas assayed

as described by Manjunath et al. (1998). SuSy and UGP were assayed as

described (Keurentjes et al., 2008). Ald was assayed by incubating for 20

min crude extract or dihydroxyacetone phosphate standards in a freshly

prepared medium containing 0 or 5 mM fructose-1,6-bisphosphate,

1 U·mL21 triose-P isomerase, 2 U·mL21 glycerol-3P dehydrogenase, 0.3

mM NAD+, 5 mM MgCl2, 1 mM EDTA, 0.05% Triton X-100, and 100 mM

Tricine buffer, pH 8.5. The reaction was stopped by addition of an equal

volume of 0.5M HCl. After incubation for 10 min at room temperature and

neutralization with 0.5 M NaOH, the glycerol-3P produced was then

determined using the glycerol-3-P/DHAP–based cycling protocol de-

scribed by Gibon et al. (2004b).

GC Analysis

Metabolite extraction for GC-MS was performed on the exact same

samples as used for enzymes and metabolites determined by spectro-

photometric methods as described previously (Schauer et al., 2006). Fifty

milligrams of Arabidopsis shoots were homogenized using a ball mill

precooled with liquid nitrogen. Derivatization and GC-MS analysis were

performed as described previously (Lisec et al., 2006).

ANOVA

Statistical analyses were performed with SAS-JMP (SAS Institute). A

two-way factorial ANOVA was used to partition the variance into genetic

and experimental variance separately for each trait using the following

model:

Yijk ¼ mþ Ai þ Ej þ sijk;

where Yijk are the experimental responses, m is the general mean, Ai is

the effect of the ith accession genotype, Ej is the effect of the jth

experiment, and ejik is the error of Yijk.

The explained genetic variances of a genotype main effect (h2A) and of

an experiment effect h2(E) were calculated as follows:

h2
A ¼ SSA

SSTotal

h2
E ¼ SSE

SSTotal

where SSA, SSE, and SSTotal are the sum of squares of the factor

accession, experiment, and the total sum of squares, respectively, which

were obtained from the ANOVA procedure.

Partial F-Test for Model Selection and Coefficient of Variation

The F statistic we used is defined by F ¼ RSSðbkÞ2RSSðbkþ1Þ=�
RSSðbkþ1ÞÞ=ðn2 k2 2Þ

�
; with RSS denoting the residual sum of

squares for the models expressed by the coefficient vectors bk and

bk+1, and k and k+1 representing the number of variables already

selected and n the number of samples.

TheCVwas defined as the ratio of the standard deviation to themean of

all mean values obtained for a trait/accession pair.

Support Vector Machines

To evaluate nonlinear relationships between enzyme activities and me-

tabolites, support vector machines regression was applied using the R

function with a radial kernel “svm” (Chang and Lin, 2001). To detect the

important predictors from p input variables, the svm prediction in cross-

validation was p times repeated each time leaving out one predictor. The

predictor for which the elimination yields the lowest correlation between

predicted and actual response in cross-validation is then regarded as the

most important one.

PLS Regression and Cross-Validation

PLS identifies the combinations of the original predictor variables with

maximum covariance with the response (Wold, 1975; Barker and Rayens,

2003). These orthogonal combinations replace the original data matrix

and are used in amultivariate ordinary least squares regression to predict

the response. The optimal number of components is determined by the

maximum proportion of explained variance obtained in 5-fold cross-

validation. The observations are divided into five subsets, a training set

(four subsets) is used to build a model that is applied to predict the

response of the remaining subset, and this procedure is repeated five
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times to estimate the response for all observations. Cross-validation

was also applied each time to the training set. The estimated vector is

correlated with the measured response to obtain a measure of the

predictive power of the predictor variables.

The weight of a predictor j in the linear combination resulting in PLS

component i is denoted as wij. The VIP of each predictor j gives an

estimate of the importance of that predictor for the PLS prediction using

the h most important orthogonal components and is calculated as the

sum of the wij (i=1,… h) multiplied by the correlation of PLS component i

with the response (Chong and Jun, 2005).

Significance of Coordinated Changes between Enzyme Activities

For each enzyme, the activity in a given accession was normalized on the

mean activity of that enzyme in all of the accessions. This allowed activity

ratios in the same range to be obtained for each enzyme pair. The activity

ratios for each enzyme-enzyme pair belonging to the pathways tested

were calculated in each accession. The values obtained for all accessions

were then depicted as a frequency plot. To test for significance of the

plots obtained, the normalized activities were shuffled 1000 times for the

accessions, ratios calculated and combined, and their standard devia-

tion calculated. The frequency distribution of the standard deviations

obtained from 1000 such shufflings was tested against the standard

deviation of the real values (see Supplemental Figure 3 online).

Cartographic Representation of the Network

Amatrix of correlation between all trait pairs was generated. Significance

levels were set at pBH < 0.01. The 412 significant pairs (>5886) that

resulted were considered as a network in which a vertex corresponds to a

trait and a link between two vertices corresponds to significant correla-

tions between these two traits. This network was then subjected to the

cartography algorithm (Guimera and Amaral, 2005). Essentially, this

algorithm divides the network into modules or groups of vertices that

are more connected between themselves than to nodes from other

modules, yielding a cartographic representation of a complex network. In

implementing this algorithm, negative correlations were considered to be

equal to positive correlations.
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