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Abstract Bone material is built in a complex multiscale

arrangement of mineralized collagen fibrils containing wa-

ter, proteoglycans and some noncollagenous proteins. This

organization is not static as bone is constantly remodeled and

thus able to repair damaged tissue and adapt to the loading

situation. In preventing fractures, the most important me-

chanical property is toughness, which is the ability to absorb

impact energywithout reaching complete failure. There is no

simple explanation for the origin of the toughness of bone

material, and this property depends in a complex way on the

internal architecture of the material on all scales from

nanometers to millimeters. Hence, fragility may have dif-

ferent mechanical origins, depending on which toughening

mechanism is not working properly. This article reviews the

toughening mechanisms described for bone material and

attempts to put them in a clinical context, with the hope that

future analysis of bone fragility may be guided by this col-

lection of possible mechanistic origins.

Keywords Bone fragility � Collagen � Bone mineral �
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Introduction

Bone fragility is a serious condition that may be due to

genetic disorders, such as osteogenesis imperfecta [1, 2], or

metabolic diseases, such as osteoporosis [3]. A very im-

portant contribution to preventing fragility and fracture is

made by the bone mass and geometry. However, the prop-

erties of the mineralized matrix also play an important role.

It is quite impressive to see the mechanical quality of bone

under normal conditions, given that it essentially consists of

a brittle mineral (carbonated apatite), a polymer (collagen

type I) and water. The reason is mainly the complex three-

dimensional architecture of the bone material, which offers

many tougheningmechanisms that reduce the fragility of the

components. This means that the toughness of the bone

material depends essentially on the way in which mineral-

ized collagen fibrils are assembled into building blocks with

many length scales, as well as the quality of the interfaces

between these building blocks. Conversely, this implies that

increased fragility does not necessarily result from a dete-

rioration of the average (bulk) properties of the material but

may result from a modification of this assembly and, in

particular, of the interfaces at all scales, e.g., between col-

lagen and mineral, between collagen fibrils, between

lamellae, between osteons, etc. Given that these internal

interfaces cover only a tiny fraction of the material volume,

searching for the origin of fragility may sometimes seem like

searching for a needle in a haystack.

Bone material normally combines sufficient stiffness and

strength with high toughness (see Fig. 1 for definitions), all

of which are needed to withstand the low-energy trauma

likely occurring in the daily life. In particular, stiffness is

needed to prevent bending of our bones under the load of the

body and toughness to absorb as much energy as possible

during impacts, thus retarding bone fracture. Unfortunately,
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these properties are contradictory [4]. High stiffness and

strength are often accompanied by low toughness (as in

brittle ceramics), while tough materials are usually de-

formable and thus cannot be very stiff. Mineral (which has

properties close to ceramics) provides stiffness to bone (see

Fig. 1), while the organic matrix reduces the inherent brit-

tleness of the mineral [5]. When it comes to the description

of fragility, other factors also need to be taken into account.

As already mentioned, fracture resistance depends on ma-

terial structures and their interfaces at all scales. This means

that, although a number of toughening mechanisms have

been identified [6], a complete theoretical description of

fracture resistance does not exist. The purpose of this review

is to define a few key concepts about the relation between

bone material structure and fragility and to summarize the

most important toughening mechanisms described in recent

studies. Most of these mechanisms involve interfaces be-

tween bone substructures; therefore, these structural features

need to be primarily considered when investigating the

pathophysiology of fragility in clinical research beyond the

influence of bone mass and geometry.

Stiffness, Strength and Toughness

These are three important mechanical properties of a ma-

terial, describing different behaviors. Since there is some

confusion in the literature about the exact meaning of these

terms, they are (at least qualitatively) defined in Fig. 1.

While toughness and stiffness are opposing parameters,

mineralized bone matrix is a good compromise between

these two [8]. Stiffness is needed to prevent bending of

bones under the weight of the body and toughness to prevent

fractures under minimal impact. Both strength and tough-

ness are properties related to fracture, while stiffness de-

scribes the behavior of the material at small loads. In

inhomogeneous materials such as mineralized bone matrix,

overall stiffness is an average of the local values of the

stiffness. Depending on the structure, this average is not

always linear but more complex, so that numerical tech-

niques are needed to calculate the average stiffness based on

the properties of the constituents and their distribution in

space [9, 10]. Nevertheless, the average stiffness is always

between the lowest and the highest value in the material,

more precisely between two boundaries sometimes called

the Voigt and Reuss limits [11, 12]. Unfortunately, the

situation is much more complex when it comes to strength

and toughness. Indeed, the quantities cannot be calculated

just based on the corresponding values of the constituents,

but depend on the nucleation and progression of cracks.

These are governed by tiny defects in the materials, such as

pores, preexisting microdamage, interfaces, fiber directions

and so on. Hence, strength and toughness are less described

by the properties of the constituents than by their interfaces.

The best analogy to rationalize this difficulty is the well-

known problem of the weakest link in the chain (Fig. 2).

This limits the possibilities of predicting the strength of

a material. In brittle ceramics, for example, strength is

limited by the size of the largest pore in the specimen, so

that strength in ceramic parts is really a statistical quantity,

as it depends on the chance of finding a large defect [13,

14]. Another interesting observation in ceramics is that

strength becomes dependent on specimen size at the

nanoscale. Indeed, smaller specimens will have smaller

defects and therefore a higher strength [15]. This is quite

relevant for bone matrix, where the size of mineral parti-

cles is so small that they are expected to have the highest

Stiff
Material

Strong
Material

Tough
Material

needs a large
force to deform

needs a large
force to break

needs a large
energy to break

st
re

ss
 (

M
Pa

)

20

40

60

80

100

120

140

0
0 2 4 6 8 10 12 14

strain (%)

bone
tendon

A

A

B

B

C

C

Fig. 1 Typical stress-strain curve of bone material and tendon (left)

and definitions of stiffness, strength and toughness (right). Stiffness is

the resistance against (small) deformation and corresponds to the

slope (a). Material stiffness is often measured by the elastic modulus

(or Young’s modulus). Strength is the maximum stress the material

can sustain before failure (b), and a rough measure for toughness is

the energy to failure [shaded area under the curve (c)]. Clearly, bone
is stiffer but tendon is tougher (left panel). Figure adapted and

reprinted from [7] with permission from Springer Science and

Business Media

99 „good“ chain
elements

one element with
1/10th of strength
and 1/10th of stiffness

Fig. 2 Weakest link problem. As an example, one may consider a

chain consisting of 99 ‘‘good’’ elements and 1 with just 1/10th of the

stiffness and 1/10th of the strength. The overall stiffness of the chain

is given by the inverse average of the stiffness of its elements, that is,

it corresponds to 100/(99 ? 1/0.1) = 92 % of the stiffness of a good

element. The overall strength, however, is completely dominated by

the single bad element and therefore drops to 10 % of the strength of

good elements. This shows that a small defect affects strength much

more than stiffness
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possible strength (the intrinsic strength governed by

molecular bonds only) of carbonated apatite [16].

The situation gets even more complicated when dis-

cussing the origin of toughness. Toughness actually de-

scribes the energy dissipated when a crack runs through a

material, and this energy should be as large as possible.

Ideally, if the capability of the material to dissipate energy

is larger than the energy of the impact, a crack will either

not be nucleated or dissipate sufficient energy during

propagation so that it eventually stops before the bone is

broken. Incomplete fractures leading to material damage

only can be tolerated by bone because of its remodeling

capacity. Indeed, the defects remaining from incomplete

fractures will eventually be repaired by this process [17].

Due to these complexities, no complete theory exists

that would allow predicting the fracture properties of an

extremely inhomogeneous material, such as the mineral-

ized bone matrix. Indeed, inhomogeneities may initiate

unwanted cracks, but they may also be favorable, as they

can hinder the propagation of cracks, thus dissipating en-

ergy and stopping or slowing the crack. Therefore, it is not

obvious a priori whether the inhomogeneity of bone ma-

terial is an advantage or a drawback, but recent research

demonstrates that its complex material architecture is ac-

tually beneficial for preventing fractures [18–20]. The most

important point, however, is that stiffness can be consid-

ered an average property of the inhomogeneous material,

but strength and, to an even greater extent, toughness

cannot. These are largely controlled by interface properties

and inhomogeneities. Because those can be very localized

in the material, potential therapies acting on these hot spots

(schematized by the red chain element in Fig. 2) may have

a large effect on fragility, even without an important in-

crease of bone mass.

Multiscale Interfaces in Bone Material

The multiscale structure of bone has been reviewed mul-

tiple times [21–24]. The purpose of this section is to briefly

introduce the basic building blocks, different bone types

and various interfaces in compact bone material that may

be relevant for its toughening.

On the nanometer scale, the mineralized bone matrix is a

composite material consisting of an inorganic and organic

phase. The inorganic phase contributes about 50–74 % to

the total weight [25]. The organic phase represents about

30 wt% and consists mainly of collagen type I, but also of

different non-collagenous proteins, proteoglycans and

lipids. The remainder, about 8–10 wt%, is water.

The collagen molecules are staggered axially by a pe-

riodic distance of about 64–67 nm and are made up of three

polypeptide chains that form a triple helix with a thickness

of 1.5 nm and length of 300 nm (Fig. 3a) [26, 27]. The

staggering of molecules leads to overlap zones and gap

zones, exhibiting a banded structure visible in transmission

electron microscopy. At the interface between collagen

molecules there are crosslinks, mainly connecting the

telopeptide ends of the triple-helical molecules to one or

two neighboring molecules [28]. These enzymatic and non-

enzymatic crosslinks stabilize the structure and me-

chanically reinforce the collagen. These crosslinks vary

with tissue type and maturation and also with certain dis-

eases [29].

Within the collagen fibrils, the mineral is embedded in

the form of thin hydroxyapatite platelets, whose thickness

ranges from 2 to 7 nm, length from 15 to 200 nm and width

from 10 to 80 nm [25]. Their long axis is mainly parallel to

the long axis of the collagen fibrils. Hydroxyapatite in

mineralized tissues is impure and deficient in calcium but

enriched in carbonate replacing phosphate ions at several

lattice sites. Besides carbonate, magnesium together with

other elements can be present in hydroxyapatite. At the

interface between the mineral and collagen, ionic bonds

connect side-chain carboxyls of the protein and calcium

ions in the mineral particles [30] (Fig. 3b). Furthermore,

the backbone carbonyls of proline residues form complexes

with the mineral’s calcium ions [31]. There is also a plate-

like extrafibrillar mineral present, coating the collagen

fibrils.

At the next higher level of the hierarchy, several colla-

gen molecules form fibrils with diameters of about 100 nm.

The interface layer between neighboring fibrils is filled

with extrafibrillar matrix and contains noncollagenous

proteins such as osteopontin and proteoglycans such as

decorin [6]. The mineralized collagen fibril in mineralized

tissues is typically 50–200 nm in diameter and represents

the basic building block of bone. These mineralized col-

lagen fibrils can be arranged in different ways, forming

fiber bundles with varying degrees of organization. Woven

bone is characterized by randomly oriented fibril arrays

(Fig. 3d). This is typically found in quickly formed bone,

for example, in embryonic or young bones and at repair

sites after fractures. It is the mechanically weakest bone

type and often substituted during remodeling by other more

organized bone types [32].

Bone with the highest degree of organization at the fibril

organization level is lamellar bone, which is formed more

slowly than other bone types. Lamellar bone can be formed

by the remodeling of pre-existing (sometimes woven) bone

to create secondary osteons [33], in which lamellae are

wrapped around central blood vessels (Fig. 3f). Generally,

fibrils in lamellar bone are organized according to a rotated

plywood structure, with alternating layers of rotating col-

lagen fibril orientations within each lamella [34, 35]. Re-

cently, the degree of alignment was also shown to change
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between layers [36]. Osteons, as well as most bone packets

formed during a remodeling event, are surrounded by ce-

ment lines, which are often more highly mineralized [37]

than the surrounding matrix and rich in non-collagenous

proteins, such as osteopontin [38]. Cement lines have also

been reported at the boundaries of primary osteons (e.g., in

antler bone) [6]. While compact bone in adult humans is to

the greatest extent lamellar, rodent bone is often charac-

terized as predominantly woven with only small layers of

lamellar bone on the endo- or periosteal side of the cortex

[39, 40].

A bone type intermediate between woven and lamellar is

fibrolamellar bone (also called plexiform bone), found in

the bovine or ovine skeleton (Fig. 3e) [32, 41]. Individual

parallelfibered units of fibrollamellar bone show weak in-

terfaces at the mesoscopic length scale [42]. These inter-

faces are thought to be relevant to the mechanical and

physiological performance of bone and are possibly

dominated by a soft organic layer in order to enable

physiological processes such as vascularization to occur

[42]. In fibrolamellar bone the first formed layer is woven

bone, where later a more ordered, lamellar bone matrix is

deposited. In some other cases of fast growing bone, such

as in the fracture callus, porous woven bone appears first

and acts as a substrate for the deposition of lamellar bone

[43, 44]. It has been hypothesized that to form the highly

organized lamellar matrix, osteoblasts need a scaffold to

align and synthesize the extracellular matrix cooperatively

[39]. Similar observations were made in antler bone where

a woven-bone scaffold grows first and is later filled in by

primary osteons [45].

These various bone types are formed by the same type of

bone cells, the osteoblasts, which deposit the collagen

matrix. Some of the osteoblasts get embedded into the bone

matrix and become osteocytes, bone cells that reside in a

lacuna-canalicular network during the bone’s lifetime [46].

This network can be visualized using confocal laser scan-

ning microscopy on rhodamine-stained bone samples [40].

Figure 3g–i show the cell network in these different bone

types: woven, lamellar, fibrolamellar and osteonal bone.

Structural Features Controlling Bone Fragility

Bone fragility is primarily governed by the nucleation and

propagation of cracks. Hence, to reduce fragility, the

Fig. 3 Hierarchical structure of bone. a Collagen molecules, con-

nected by crosslinks, and embedded mineral particles. b Collagen

fibrils connected by an extrafibrillar matrix rich in proteoglycans and

non-collagenous proteins. c Lamellar units form (f) osteonal and

(e) fibrolamellar bone. The dashed line in f indicates a cement line

around the osteon. d Woven bone lacks such highly organized fibril

arrangement. g–i Corresponding cell networks to images d–f. All
images show sections of long bones (j) in different species (woven:

murine; fibrolamellar: ovine; osteonal: equine). Different bone types

and different size levels exhibit varying interfaces. The red arrows

indicate the sequence of hierarchical levels (from the smallest to

largest) for the different bone types (Color figure online)
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material structure should contribute to making it as costly

as possible for cracks to form and extend. The more the

impact energy is dissipated in the material, the lower the

energy available for nucleating and propagating cracks and

thus the lower the likelihood the bone will break. Mineral

deposition itself does not improve the toughness. Indeed, as

visible in the qualitative comparison between tendon and

bone (Fig. 1), the deposition of mineral into collagen type I

leads to a considerable increase in stiffness (by more than

an order of magnitude), but nearly the same strength and a

strong decrease in the energy to failure (as estimated by the

area under the curve).

Stiffness and toughness are independent mechanical

properties (as obvious from Fig. 1). While toughness is

most critical, both are required for the stability of bones.

Indeed, sufficient stiffness is needed to prevent bone de-

formities due to bending in some extreme cases of osteo-

malacia [47]. At the material level, stiffness is governed by

the mineral content in the matrix [25, 48], but also by local

fiber orientation and even by the size and shape of mineral

particles [12, 16]. Moreover, the bone shape and archi-

tecture have a strong influence on the stability of the

skeleton. The simplest case would be a thinning of the

cortex, which weakens long bones in bending. Another

example is the trabecular architecture inside a vertebra that

is critical to preventing vertebral fractures. Both the cor-

tical thickness and trabecular architecture are macroscopic

effects that can be quantified via micro-computed tomog-

raphy and finite element modeling [49–51]. The variation

of stiffness (usually measured by the elastic modulus, see

Fig. 1) determines how stresses will distribute throughout

the bone material for any given outside load. In ideal cases,

the stress would distribute equally; otherwise, failure could

occur where the stress is largest. Indeed, there can be

situations where stress concentrates in one weak spot of the

material (e.g., at pores or cavities), dramatically increasing

the probability for crack nucleation and propagation near

that spot. This is the reason why the strength of ceramics is

limited by intrinsic pores and defects. However, even

compact bone is full of cavities and channels, since it

houses the osteocyte network, an important endocrine or-

gan in our body [52], as well as the vasculature supporting

it. The mechanical effect of cavities in bone has been

discussed in detail by Currey and Shahar [53], also refer-

ring to earlier literature on this subject. The effect depends

largely on their size. For ellipsoidal osteocyte lacunae the

stress concentration depends on their orientation with re-

spect to the applied load and, in healthy lamellar bone, the

orientation of these ellipsoids is such that no relevant stress

concentrations are to be expected [53]. This may change,

however, with a pathological (less ordered) bone structure.

Blood canals are wider and therefore a larger threat, but

special material architectures, such as the lamellar

structures surrounding the blood canal in the osteon (see

Fig. 3f, i) are probably protecting them from being sources

of cracks by reinforcing the perimeter of the canal.

In the following, we concentrate on a discussion of

toughening mechanisms encoded in the structure of the

bone material, from the molecular to the macroscopic

scale. In this context, it is very useful to consider the

classification introduced by R.O. Ritchie who distinguishes

between intrinsic and extrinsic mechanisms [4, 6]. Intrinsic

mechanisms operate at the molecular scale, up to several

hundred nanometers. These mechanisms actually retard the

nucleation of a crack by dissipating energy through de-

formation (but not cracking) of the material. This type of

mechanism is most prominent in metals, where plastic

deformation is at the origin of their fracture resistance [54].

Intrinsic mechanisms slow down not only the nucleation of

cracks, but also their progression. The reason is that stress

fields, which are largest near the crack tip, are (partially)

relaxed by plastic deformation, thus reducing the driving

force for crack propagation. Such dissipation mechanisms

through plastic and/or viscoelastic deformation also exist in

bone material (see below).

Extrinsic toughening mechanisms are known from ce-

ramics and composites, which are not capable of plastic

deformation and where crack deviation, crack bridging and

microcracking are essential mechanisms that slow the

propagation of existing cracks. They have been shown to

be very important also in bone. Figure 4 summarizes these

mechanisms with increasing feature size (based on tables

from [55] and [4] ). All these mechanisms have been de-

scribed previously in some detail. This does not exclude,

however, the existence other toughening mechanisms. A

study on the scale dependence of toughness has just been

published [56].

Levels 1 and 2: Mineral-Collagen and Fibril-Fibril

Interfaces

Mineral particles are essentially plate-like and embedded in

and around collagen fibrils. An important feature is the co-

alignment of the apatite c-axis (long dimension of the

platelets) with the collagen molecule direction. This allows

an intimate interaction between the collagen and mineral.

In-situ deformation experiments with diffraction of syn-

chrotron radiation have shown that there is shear in the

collagen between the mineral particles, as fibrils extend

more under tension than the mineral particles embedded in

them [57]. Similarly, there is shear between parallel min-

eralized collagen fibrils as in a tensile test the tissue as a

whole extends more than the fibrils of which it is composed

(see Fig. 4) [57, 60]. Typically, when the bone strains by

1.2 %, the fibrils strain 0.5 % and the mineral 0.2 % (see

Fig. 4, top). The difference in strain is taken up by shear
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Fig. 4 Six well-documented

toughening mechanisms

operating at different scales [6,

55]. Levels 1 and 2 show the

potential of shear deformation

between mineral and collagen

(few nanometer scale) and

between collagen fibrils (100-

nm scale). The numbers under

the graph indicate the relative

magnitude of the stains at the

different levels (12:5:2). Level 3

shows penetration of rhodamine

stain (black arrows) into

compartments well ahead of the

crack tip, most likely because of

the formation of micro-cracks.

The yellow line indicates the

crack that is deviating and

splitting. Level 4 shows the

periodic modulation of the

indentation modulus within

successive lamellae in the

osteon. Level 5 shows crack

undulating deviation across

lamellar bone. Level 6 shows

crack bridging by uncracked

ligaments (black arrows).

Pictures are adapted from [57]

for level 1/2, from [55, 58] for

levels 3, 5 and 6 (with

permission from Macmillan

Publishers, Ltd.), and from [59]

for level 4 (with permission

from Cambridge University

Press)
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between mineral and collagen [61] or in the matrix between

fibrils [60]. This matrix shear breaks non-covalent bonds;

thus, it dissipates energy during deformation and con-

tributes to the bone toughness. This breaking of sacrificial

bonds has been reported based on various types of analyses

from atomic force microscopy [62, 63] to temperature-

dependent deformation [64].

It is important to note that this dissipation requires

parallel fibrils in a significantly large bone volume to allow

side-by-side gliding. This is the case in lamellar or plexi-

form bone. It is likely that the disordered woven bone

structure does not allow for this deformation mode, and,

although there is no direct experimental evidence for this, it

is likely to be more brittle [65]. It is important to note in

this context that murine bone is largely woven, while hu-

man bone is lamellar, a difference that could well be re-

flected in their relative fragility. Alterations in crosslink

patterns have also been linked to bone fragility [66].

Moreover, additional (unspecific) crosslinks (such as occur

in diabetes [29]) could also hinder the shear deformation of

the matrix, thus reducing the toughness of bone at this

level.

Level 3: Microcrack Formation Ahead of Crack Tips

The formation of micro-cracks ahead of crack tips has

been reported in many studies [67, 68]. These are on the

scale of several hundred nanometers to microns and ap-

pear by a separation between fibrils and lamellae. The

energy consumed in forming these additional internal in-

terfaces reduces the energy available to drive the crack

forward during the impact and thus reduces the crack

driving force. Figure 4 (level 3) shows the absorption of

rhodamine stain into the micro-cracked area formed ahead

of the macroscopic crack tip in the form of a stained halo

(arrows in the figure). One idea is that these microcracks

are later removed during a remodeling process, which

restores the energy dissipation capacity of the material

[17]. Indeed, accumulation of microcracks would

gradually reduce the toughness of the material and con-

tribute to fatigue fractures. A whitening of bone tissue

(related to the scattering of light by defects in the size-

range of the light wavelength) has also been reported

upon strong deformation of bone [69]. Conceptually, the

energy dissipation by microcracks in bone is similar to the

crazing described for some polymers [70]. This process is

likely to dissipate large amounts of energy, although exact

numbers cannot be given. Microdamage has also been

reported to stimulate remodeling [71] and thus the repair

of damaged material by replacement. This means that

exercise can have a beneficial effect by stimulating bone

remodeling.

Level 4: Periodic Variation of Material Properties

Recent work has highlighted the fact that a periodic var-

iation of elastic modulus reduces the crack driving force

[72–74]. The rationale is the following: while a downwards

gradient of the elastic modulus favors crack propagation,

an upwards gradient hinders it. Thus, the crack gets re-

peatedly trapped in the valleys of the modulus landscape,

which reduces the crack driving force. Taking these recent

results [73], the relative crack driving force can be ex-

pressed in relation to the one in a homogeneous material

with the same average modulus:

relative crack driving force ¼ W Emin=Eavg

� �
k= 2að Þ;

where W is a constant close to 1. According to the data

shown in Fig. 4, we can estimate the energy dissipation

capacity of lamellar bone structures in the following way:

the ratio between the minimum and the average value of

the modulus Emin=Eavg

� �
can be estimated to about 0.95.

The wavelength (that is, the lamellar thickness) is

k = 6 lm. Finally, the intrinsic crack length may be esti-

mated from [55] as a � EavgJ=pr2f � 100lm, where J is

the crack extension energy and rf the strength. With these

values the relative crack driving force in lamellar bone is

0.029, that is, about 35 times smaller than in a homoge-

neous material with the same average modulus. This

highlights the fact that an inhomogeneity of bone me-

chanical properties alone (such as variations in the elastic

modulus) leads to energy dissipation during crack

propagation and thus to increased toughness [20].

Level 5: Crack Deviation by Lamellae and at Cement

Lines

In addition to the effect of modulus variation, there is the

possibility of energy dissipation by crack deviation be-

tween the lamellae and the formation of microcracks.

Several studies [55, 75, 76] have shown that the deviation

of cracks at relatively weak interfaces, such as between

lamellae or at cement lines, dissipates energy and reduces

the crack driving force. This is a well-known effect in

composites and makes a significant contribution to tough-

ness. Also interesting in this context is the discussion of

whether cement lines have a higher or lower modulus than

bone [77, 78]. While stiff (and brittle) interfaces may lead

to crack deviation by delamination of the interface, suffi-

ciently soft interfaces are able to slow down or even stop

the crack without crack deviation, thus without much ad-

ditional damage by the above-described modulus variation

mechanism.

Figure 4 shows how the crack follows a zig-zag path

when crossing a lamellar structure perpendicular to the
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lamellae. A quantitative evaluation showed that the crack

propagation energy is about two orders of magnitude

higher when the crack runs perpendicular to the lamellae

than when it runs parallel to them [55]. This huge factor

probably includes the effect described at level 4. The fact

that a concentric arrangement of lamellae surrounds the

Haversian canal in an osteon [35, 79] makes the extension

of cracks starting from the canal very difficult and thus

unlikely. This is probably a very effective way to me-

chanically shield the blood vessels and capillaries in the

bone [33], therefore preventing them from being sources of

cracks as they would be in many porous brittle materials

[80, 81].

Level 6: Crack Ligament Bridging

Finally, toughness is also increased by fibers or ligaments

bridging the crack in the process zone behind the crack

front (see Fig. 4, lowest panel). As seen in this scanning

electron microscopic picture, fiber orientation starts to

deviate the crack (close to the arrows), but instead of fol-

lowing a zig-zag path as in level 5, a new crack is nucleated

ahead of the old one, leaving bridges between the two

pieces of material. These bridges take up some of the ap-

plied load, reducing the stress at the crack tip and therefore

the driving force for crack propagation [82].

Implications for Diseases Affecting Bone Fragility

Many metabolic or genetic bone diseases exist, which in-

volve increased bone fragility and consequently increased

fracture risk, although different pathophysiological

mechanisms interfere with bone matrix properties at dif-

ferent hierarchical levels. Bone mass and geometry are, of

course, a major determinant of the mechanical behavior of

bone. However, at a given bone mass and geometry,

fragility is due to a reduced capacity of the bone material to

dissipate the energy of an impact through the various

mechanisms as described in Fig. 4 and in the preceding

section. Therefore, increased fragility may result from an

impairment of any of the mechanisms described above,

including the interface between mineral and collagen, be-

tween fibrils, between lamellae or even at higher scales.

While a discussion of the effect of bone diseases on

fragility is not the primary goal of this review, we will

finish here with several sometimes speculative thoughts

about which process might be most affected in various

disease patterns.

An additional interesting aspect is the ability of bone to

adapt to mechanical stimuli, which results in compensatory

reactions. For example, to reduce the increased fracture

risk caused by a disturbance in collagen, more bone mass

may be formed. This implies that structural defects, which

interfere with the biomechanical competence of bone, may

trigger compensatory mechanisms through adaptation to

mechanical stimuli, which are attenuating these defects.

For example, it has been reported in mice that genetic

variants affecting one trait may be compensated by coor-

dinated changes in other traits [83]. In osteomalacia, where

decreased mineralization results in deformation and

sometimes even pseudofractures (also called Looser’s

zones), increased volumes of osteoid and poorly mineral-

ized matrix are often found. In advanced stages of ‘‘hy-

povitaminosis D osteopathy,’’ histomorphometric analysis

describes accumulation of unmineralized osteoid as well as

a cortical bone deficit combined with signs of secondary

hyperparathyroidism, frequently with fibrous tissue in the

marrow spaces [84]. At the material level poorly mineral-

ized matrix reduces the average stiffness, and one could

speculate that the increase of osteoid synthesis as well as

the formation of fibrous tissue in the marrow spaces may be

(ineffective) compensatory effects.

In contrast, postmenopausal osteoporosis is character-

ized by lower bone mass and microarchitectural dete-

rioration. Low bone mass alone, of course, increases

fragility even with identical bone material properties. This

leads to fractures, primarily in the thoracic and lumbar

vertebrae, proximal femur and distal forearms in combi-

nation with low energy trauma. So far, it remains unknown

whether additional structural defects of matrix properties

contribute to fragility in postmenopausal osteoporosis,

although recent spectroscopic data have revealed some

evidence in favor of this assumption [85–87]. When com-

paring fracture to non-fracture cases with the same low

bone mass in elderly individuals, the mineral-collagen

composite was found stiffer in the fracture cases at a given

mineral content [88]. This was interpreted as an alteration

of the organic matrix in these cases. Indeed, a stiffer

(perhaps more strongly crosslinked) organic matrix would

make the overall composite material more brittle. In ad-

dition, bone remodeling measured in terms of activation

frequency in histomorphometry is generally increased in

postmenopausal osteoporosis, although to a widely varying

extent. This leads to an on average lower mineral content in

the bone matrix, which can be corrected by antiresorptive

treatments and vitamin D [48, 89, 90]. It is not exactly

known how the bone packets with lower mineral content

accumulating in postmenopausal osteoporosis influence

fragility, but the uneven mineral distribution may result in

stress concentration at the edges of these packets, fa-

cilitating crack nucleation. Supplementation with calcium

and vitamin D increases the mineral content of the bone

matrix in postmenopausal osteoporosis without an effect on

the bone volume [91], which could potentially have an

effect on fragility beyond changes in bone mass.
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Other metabolic bone diseases such as hypophos-

phatemic osteopathy, gastrointestinal bone disease and re-

nal osteodystrophy have an even more complex

pathophysiology. Phosphate depletion of any etiology leads

to disturbances in mineralization, morphometrically com-

parable to severe hypovitaminosis D. Detailed analyses of

the bone material are mostly lacking for these cases,

although mechanical deficits are evident.

Aging has been reported to lead to a modification of the

organic matrix and, in particular, to changes in crosslinks

[66], which may be at the origin of increased fragility [29,

92]. Indeed, due to the increase of advanced glycation end

products (AGEs) crosslinking during aging, the material

properties of mature tissue differ from newly synthesized

matrix. This phenomenon is clearly linked to an impair-

ment of toughening mechanisms at levels 1 and 2. Changes

in collagen structure underlie an age-related reduction in

bone toughness, increasing fracture risk independent of

bone mineral density [5]. Age-related changes in the bal-

ance of bone formation and resorption have been shown to

be influenced also by mechanical loading [93], which may

influence bone material properties and fragility.

Diabetes has been shown to induce bone fragility [29,

94]. The origin of this effect is not fully elucidated, but it is

known that AGEs lead to extra crosslinks, which are likely

to block the gliding between fibrils (level 2). Recent data

using synchrotron X-ray scattering seem to support this

idea [95]. Hence, bone fragility in diabetes could mainly

originate from levels 1 and 2, but it is not excluded that

higher levels might also be affected.

Fragility has also been observed in fluorotic bone. In this

case, the interaction between the mineral and collagen has

been altered [48, 96–98], which may be at the origin of

fragility, as the bone density is increased by fluoride

treatment [99]. It is also possible that the strong anabolic

effect of fluoride [100] compensates partially for the

detriment due to the impaired material properties.

It is quite a mystery that many types of osteogenesis

imperfecta lead to bone fragility and share similar pheno-

types, such as low bone mass and increased mineral con-

tent, despite a wide variety in genetic mutations. Indeed, a

slightly enhanced mineral concentration is a hallmark of

these diseases, and a reduced alignment of collagen has

been observed in both mouse models and patient biopsies

[48, 101–103]. While this minute increase in mineral

content (by 1 or 2 %) can hardly account for the decreased

toughness of the material, the reduced degree of alignment

means that the dissipation according to levels 4 and 5 in

Fig. 4 is likely reduced because the lamellar character of

the bone is less pronounced. As a matter of fact, woven

bone (see Fig. 3), which lacks lamellar structure, is likely

to lose one or two orders of magnitude in toughness ac-

cording to the estimates in the previous section. Hence, the

putative inability in the case of OI to remodel primary bone

into a high-quality lamellar structure may have a stronger

effect on bone fragility than the collagen defect itself.

Several recent reports actually point into this direction [65,

102]. A different case is pyknodysostosis, where a reduc-

tion of lamellar order in the bone the tissue leads to

fragility, despite high bone mass [104].

The discussion in this section was not meant to give any

new fundamental insights into any of the mentioned bone

diseases. We hope that it demonstrates how the catalog of

toughening processes reviewed in this article could po-

tentially be used to carry out a more structured search for

the needle in the haystack and uncover the origin of

fragility, which may improve the diagnosis and treatment

of these conditions.
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