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ABSTRACT

The POU domain transcription factor OCT4 is a key regu-
lator of pluripotency in the early mammalian embryo and is
highly expressed in the inner cell mass of the blastocyst.
Consistent with its essential role in maintaining pluripo-
tency, Oct4 expression is rapidly downregulated during for-
mation of the trophoblast lineage. To enhance our under-
standing of the molecular basis of this differentiation event
in humans, we used a functional genomics approach involv-
ing RNA interference-mediated suppression of OCT4 func-
tion in a human ESC line and analysis of the resulting
transcriptional profiles to identify OCT4-dependent genes in
human cells. We detected altered expression of >1,000
genes, including targets regulated directly by OCT4 either
positively (VANOG, SOX2, REX1, LEFTB, LEFTA/EBAF
DPPA4, THY1, and TDGF1) or negatively (CDX2, EOMES,
BMP4, TBX18, Brachyury [T], DKK1, HLX1, GATAG6, ID2,

and DLX35), as well as targets for the OCT4-associated stem
cell regulators SOX2 and NANOG. Our data set includes
regulators of ACTIVIN, BMP, fibroblast growth factor, and
WNT signaling. These pathways are implicated in regulat-
ing human ESC differentiation and therefore further vali-
date the results of our analysis. In addition, we identified a
number of differentially expressed genes that are involved in
epigenetics, chromatin remodeling, apoptosis, and metabo-
lism that may point to underlying molecular mechanisms
that regulate pluripotency and trophoblast differentiation in
humans. Significant concordance between this data set and
previous comparisons between inner cell mass and trophec-
toderm in human embryos indicates that the study of human
ESC differentiation in vitro represents a useful model of
early embryonic differentiation in humans. STEM CELLS
2007;25:500-510

INTRODUCTION

The earliest differentiation event in the mammalian embryo
occurs during formation of the blastocyst, when trophoblast
cells delaminate away from a residual cluster of undifferentiated
cells, the inner cell mass, containing the pluripotent embryonic
founder cells [1]. Little is known about regulation at this stage
of development in humans because of the ethical considerations
associated with experimental use of this scarce tissue. However,
with the establishment of pluripotent embryonic cell lines from
human blastocysts, it is now possible to consider investigating
molecular mechanisms that regulate the first stages in human
development in vitro [2, 3].

The POU domain transcription factor Oct4/OCT#4 is a crit-
ical regulator of pluripotency in the mammalian embryo and is
expressed in unfertilized oocytes, the ICM and epiblasts of
pregastrulation embryos, and in primordial germ cells [4—6].
Downregulation of OCT4 expression during trophoblast differ-
entiation and the conversion of mutant embryos lacking Oct4
into exclusively trophoblast-like cells indicates that the tran-
scription factor is required to either establish or maintain pluri-
potency in the embryo [7]. Suppression of Oct4/OCT4 in ESCs
also induces trophoblast-like differentiation, confirming its es-
sential role in maintaining pluripotency and leading to the

proposal that an early function of this transcription factor is as
a “gatekeeper,” preventing differentiation along the trophoblast
lineage [8§—-10]. Studies in mouse and human cells indicate that
OCT4 is a component of a network of transcription factors,
including the homeobox protein NANOG and HMG-box tran-
scription factor SOX2, that cooperatively maintain pluripotency
in ESCs [8, 11-15]. In addition, ESCs also require inputs from
extrinsic factors to suppress differentiation. However, the ap-
parently distinct growth factor requirements of mouse and hu-
man embryonic stem (ES) [16—18] point to likely variations in
how these signals connect to the basic conserved transcriptional
regulatory circuits controlling differentiation of pluripotent stem
cells [19].

As an extension to our previous work [9, 20], we modeled
the first differentiation event in human embryos in vitro by
acutely depleting OCT4 from human ESCs using RNA interfer-
ence (RNAi)-mediated gene knockdown and examined the re-
sulting changes in global gene expression. Transcriptional
changes induced by OCT4 knockdown are expected to include
direct targets of the transcription factor, indirectly associated
genes linked with pluripotency, and genes activated upon dif-
ferentiation along the trophoblast lineage. Combining this in-
formation with other data sets on core transcriptional regulatory
networks controlling pluripotency and trophoblast differentia-
tion [14, 20] should provide additional insights into the molec-
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ular events that underlie the earliest differentiation event in the
human embryo.

MATERIALS AND METHODS

Clone Selection and Microarray Fabrication

The selection of the 15,529 ¢DNA clones and fabrication of the
arrays was as previously described [20].

Cell Culture

Human ESCs (H1 clone) were grown under feeder-free conditions
as previously described [9]. Cells were adjusted to dissociation with
0.5 mM EDTA in phosphate-buffered saline (PBS), applied to the
cells at 37°C for 5-10 minutes, and routinely passaged in this way.
Cells were seeded 24 hours before transfections. For microarray
analysis, small interfering RNA (siRNA) transfections were carried
out in 75-cm? flasks in triplicate for each siRNA duplex. Cells were
seeded at approximately 5 X 10° cells per flask for analéysis at 24
hours after siRNA transfection or approximately 2 X 10 cells per
flask for analysis at 72 hours after siRNA transfection. For immu-
nohistochemistry, transfections were carried out in six-well plates,
and cells were seeded at 2 X 10° cells per well.

Transfections with siRNA

siRNA duplexes were obtained from Dharmacon RNA Technolo-
gies (Lafayette, CO, http://www.dharmacon.com) and reconstituted
following the manufacturer’s guidelines. Sense strand sequences for
the siRNA duplexes were as follows: enhanced green fluorescent
protein (EGFP), AAG AAC GGC AUC AAG GUG AAC;
OCT4-1, AAG GAU GUG GUC CGA GUG UGG; and OCT4-2,
Dharmacon siGENOME duplex 1 (D-019591-05-0010).

Triplicate ESC cultures were transfected individually with 80
nM siRNA duplexes using Lipofectamine 2000 (Invitrogen, Carls-
bad, CA, http://www.invitrogen.com) lipofection reagent prepared
in OptiMEM (Invitrogen) following the manufacturer’s instructions.
The siRNA/Lipofectamine 2000 complex was added to the cells in
the appropriate volume of ESC culture medium. Cells were fed with
fresh culture medium 1 hour prior to transfection and following the
removal of the transfection reagent. Cells were transfected once
only for RNAI analysis after 24 hours. For RNAIi analysis at 72
hours, cells were transfected twice; the second transfection was
carried out 24 hours after the first transfection.

Immunoblotting

Cells were lysed and sonicated in 1% SDS buffer. Lysates were
electrophoresed on 10% SDS-polyacrylamide gel electrophoresis
gels and immunoblotted as described previously [9]. SHP-2 (1:
1,000; sc-280; Santa Cruz Biotechnology Inc., Santa Cruz, CA,
http://www.scbt.com), OCT4 (1:1,000; sc-5279; Santa Cruz Bio-
technology), SOX2 (1:1,000; sc-17320 X; Santa Cruz Biotechnol-
ogy), NANOG (1:250; 1997; R&D Systems Inc., Minneapolis,
http://www.rndsystems.com), and glyceraldehyde-3-phosphate
dehydrogenase (1:5,000; 4300; Ambion, Austin, TX, http://www.
ambion.com) antibodies were used. Secondary horseradish peroxi-
dase-conjugated antibodies (Amersham Biosciences, Buckingham-
shire, U.K., http://www.amersham.com) were used at a 1:5,000
dilution and detected with the enhanced chemiluminescence reagent
(Amersham Biosciences).

Immunohistochemistry

Cells were fixed with 100% methanol at —20°C for 10 minutes,
washed once in PBS, and permeabilized in 100% ethanol at room
temperature for 1 minute. Thereafter, the cells were washed twice in
PBS and blocked in PBS containing 10% goat serum (Sigma-
Aldrich, St. Louis, http://www.sigmaaldrich.com) for 1 hour at
room temperature. Primary antibodies for OCT4 (sc-5279) and
cytokeratin-18 (sc-6259) were purchased from Santa Cruz Biotech-
nology and used at 1:100 dilutions in PBS containing 1% goat
serum. Alexa Fluor 568 anti-mouse IgG (Invitrogen) secondary
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antibody was used at a dilution of 1:400 to detect antibody binding.
Coverslips were mounted in Mowial (Calbiochem, San Diego,
http://www.calbiochem.com) solution with antifade supplemented
with 4,6-diamidino-2-phenylindole nuclear stain. All light and flu-
orescence microscopy was carried out using a Nikon Microphot SA
(Tokyo, http://www.nikon.com) microscope and camera.

RNA Isolation and In Vitro Transcription

Total RNA was isolated using TRIzol reagent (Invitrogen) treated
with DNase 1 (Promega GmbH, Mannheim, Germany, http://www.
promega.com). Messenger RNA amplifications were carried out
using the MegaScript T7 High Yield Transcription kit (Ambion)
using 3 ug of total RNA as template. The purity, integrity, and
concentrations of generated amplified RNA were evaluated using
the Nanodrop Bioanalyzer (Nanodrop Technologies, Wilmington,
DE, http://www.nanodrop.com/).

Direct Labeling of RNA and Hybridizations

MIAME (Minimum Information About Microarray Experiments)
guidelines were adhered to in our experimental design. Three inde-
pendent labeling (dye swaps, Cy3, and Cy5) reactions per antisense
RNA sample pertaining to each biological replicate were carried out
using 3 ug of aRNA per reaction. Full details of labeling and
hybridization reactions, slide washing, and scanning have been
described previously [20].

Global Data Analysis

Data were normalized in two steps. The first step accounted for the
dye effects caused by the difference in Cy3/Cy5 fluorescence la-
beling in each experimental sample. Here we used the LOWESS
method [21]. For each cDNA, we performed statistical tests based
on the replicate signals in experiments with EGFP- and OCT4-
depleted samples. Three standard tests were used in parallel, Stu-
dent’s ¢ test, the Welch test, and Wilcoxon’s rank-sum test [22]. A
full description of the normalization process is detailed in the
supplemental online Materials and Methods.

Pathway Analysis

Array data were used to test whether entire groups of genes asso-
ciated with specific pathways show differential expression. Path-
ways were taken from the Kyoto Encyclopedia of Genes and Ge-
nomes (KEGG) database (version KEGG2, 01.06.2005, http://www.
genome.ad.jp/kegg/). The procedure has been described previously
[20].

Real-Time Reverse Transcription-Polymerase Chain
Reaction Analysis

Confirmations were carried out on a set of genes using RNA derived
from the two independent OCT4 siRNA transfections. The list of
primers used, annealing temperatures, genes under investigation,
and experimental details are shown in supplemental online Table 5
and supplemental online Materials and Methods.

Identification of Conserved Downstream Targets of
OCT4 in Mouse and Human ESCs

Genes differentially expressed 72 hours after OCT4 knockdown
were selected from the raw microarray data set on the basis of four
independent statistical tests (p value cutoff, .05) yielding sets of
approximately 1,104 up- and downregulated genes. HUGO gene
symbol IDs for these genes were checked for occurrence in the
OCT4-specific target lists generated by Boyer et al. [14] and Loh et
al. [15]. The complete lists of direct and indirect targets are given in
supplemental online Tables 6 and 7.

Online Database

To enable a global overview of altered gene expression at 24 and 72
hours post-transfection that can be interrogated, we have presented
the expression data as a database for searching for expression levels
of specific genes and their related gene ontologies (http://goblet.
molgen.mpg.de/cgi-bin/stemcell/pluripotency.cgi). We used gene on-
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tology terminology taken from the Gene Ontology website (http:/
www.geneontology.org). This was imported into the SQLite
database (http://www.sqlite.org). Data analysis was carried out us-
ing R statistics software (http://www.r-project.org).

RESULTS

Depletion of OCT4 in Human Embryonic Stem H1
Cells Using siRNA Transfection

To identify factors associated with early stages in human ESC
and trophoblast differentiation, we have combined RNAi and
microarray based expression profiling to analyze global changes
in gene expression induced by suppression of OCT4 function.
Triplicate H1 ESC cultures were transfected with either OCT4
or control EGFP siRNA oligonucleotides, and RNA samples
were collected at 24 hours, when the very earliest changes in cell
morphology resulting from Oct4 knockdown are first apparent,
and at 72 hours, when the appearance of enlarged nuclei and
flattening of cells predominates within the cultures (Fig. 1A, 1C,
1D). These morphological changes were accompanied by a
reduction in the level of the protein as determined by Western
blotting (Fig. 1B) and immunocytochemistry (Fig. 1C). In line
with previous experiments, OCT4 siRNAs reduced OCT4 pro-
tein levels to less than 30% of the EGFP siRNA controls,
consistent with transfection efficiency of more than 70% [9].
OCT4 knockdown was also accompanied by a marked increase
in expression of the trophectoderm marker cytokeratin 18 and
incorporation of the protein into 10-nm filamentous structures
typical of an epithelial cell type (Fig. 1D) [20, 23].

Global Expression Analysis

For each of three transfections harvested at 24 and 72 hours,
triplicate RNA samples were labeled with either Cy3 or CyS5,
including dye swap. Transcription profiles were then generated
by using a ¢cDNA microarray (Ensembl Chip) consisting of
15,529 resequenced and annotated clones. The overall correla-
tions between the OCT4 and EGFP RNAI expression data were
0.993 (24 hours) and 0.943 (72 hours), indicating that the
expression levels of the vast majority of genes remain unaltered
by the procedures. To judge whether a gene is expressed in the
respective cells, we computed a background (BG) tag for its
signal. This number reflects the proportion of background signal
lower than the actual signal [20]. Typically, a BG tag of 0.9
indicates detectable probe signals (Fig. 2B, bottom panel). Us-
ing this criterion, we found that 1,038 (6.63%) of genes repre-
sented on the chip (probes) were expressed solely at the 24-hour
stage, whereas 518 (3.31%) were expressed exclusively at the
72-hour stage, consistent with a restriction of gene expression
and therefore developmental competence upon stem cell differ-
entiation [24]. The vast majority of genes were either expressed
at both time points (5,923 genes; 37.83%) or not expressed at all
(8,178 genes; 52.23%). The full lists of genes expressed solely
at 24 and 72 hours after transfection and also at both time points,
together with the corresponding ratios, are presented in supple-
mental online Tables 1, 2, and 3, respectively. For a global
overview of the transcriptional changes resulting from the loss
of OCT4 function and insights into the physiological state of
human ESCs (hESCs) resulting from OCT4 depletion, we com-
bined the expression data at the 24- and 72-hour time points in
an online database for interrogating the expression levels of
specific genes and their related gene ontologies (http://goblet.
molgen.mpg.de/cgi-bin/stemcell/pluripotency.cgi).

To identify genes with altered expression levels as a result
of OCT4 knockdown, we compared the 24- and 72-hour repli-
cates, with EGFP knockdown at the same time points using

0CT4
B EGFP (1) (2)

ocTs AW - .

OCT4({1)

OCT4{1)

Figure 1. Downregulation of OCT4 mRNA and protein in HI human
ESCs (hESCs) by small interfering RNA (siRNA) transfection. (A):
Morphology of hESCs 72 hours after transfection with EGFP, OCT4
(1), and OCT4 (2) siRNA. (B): Western blot analysis of OCT4 protein
levels in siRNA-transfected ESCs. Cell lysates prepared 72 hours from
duplicate siRNA transfections were fractionated by SDS-polyacryl-
amide gel electrophoresis, immunoblotted, and probed with OCT4 and
SHP-2 (control) antibodies. The reduction in OCT4 protein in OCT4 (1)
and OCT4 (2) transfections was approximately 30% of the control
EGFP transfection. (C): OCT4 expression in siRNA-transfected cells.
Cells were fixed 72 hours after transfection, immunostained for OCT4,
and counterstained with 4,6-diamidino-2-phenylindole (DAPI). (D): Cy-
tokeratin 18 expression in siRNA-transfected hESCs. Cells were fixed
72 hours after transfection, immunostained for cytokeratin 18, and
counterstained with DAPI. Abbreviation: EGFP, enhanced green fluo-
rescent protein.

statistical tests for differential expression (described in Materi-
als and Methods). Three distinct tests (Student’s ¢ test, the
Welch test, and Wilcoxon’s rank sum test) were used to mini-
mize individual bias [22]. By adopting this approach, we iden-
tified a subset of 1,104 marker genes from the 72-hour time
point. Of these marker genes, 399 (36%) were downregulated,
and another 705 were upregulated. Both sets of marker genes
were at a significance level of .05. For example, among these
differentially regulated marker genes are previously character-
ized downstream targets of OCT4, such as the pluripotency
markers NANOG and SOX2 and markers of undifferentiated
stem cells ZFP42, LEFTYI, LEFTY2, DPPA4, THYI,
FLJ10884, and TDGFI. The negatively regulated genes in-
cluded EOMES, BMP4, fibroblast growth factor 8 (FGFS),

Stemt CrLLS

2002 ‘22 Yok |\ Uuo ¥113ueD TO IdIA ¥ WOoI'S|pOWSIS MMM LI} PRpeo lUMOQ


http://stemcells.alphamedpress.org

Babaie, Herwig, Greber et al.

503

A raw data

7T 8 8 10 11 12 13 14 15 18 17 18 19 20 21 22

Cc

24 hrs 72 hrs

OCT4 RNAI

BG=0.99 BG=0.96 BG=0.67

¢ 3 butt
EE ENSED?BOK{“3 EXOCT R48253 R#&GS& EHSQOWWIJ“#H
1HDS250 LEFTY1 EMNSGO0000143787

GLUbbibbliosnusnauoed

7 8B & 10 1 12 13 14 15 16 17 18 19 20 21 22

00000040375

5 EN&EDIBDANLS.E%H%‘. W4BTT4 mem E.usgmmum

MAGDWUHEHB m ENSI W52520 {ab) EN&ODODUO‘I 41785
P1311 DKFZP586A052] AA1ATEA
1“] EN%EDIEUQN}D M.YQN R32824 R52866 RGEA}!? ENSQUDWM}H"J
MPZL1 AID89801 ENSGO0000143150
1@. ﬂn}DiFllﬁﬂ !.1Ei -99.‘!.-!.3_11. {gh) ENSGO00001 36688
93 ENSEp7BOK151 AIG1 T
0

05 p7 1 1 7 i
l? EN$EDTBOB1613 CII.IH! T561 59 T6623E ENSG000001 30558
b) EN 771
ENSEn?sOM 520 kC‘I.'DH Hnm? Hnsues ENSOJJIIQWJ& 364

BPA3 'NQ;*M}. {ab) mm{ mm .ENSQDWDO!O&J.’Q
PR160 WO04834 W31729 ENSG00000136809
9 AI2NG_

107 ENS| p?BDlﬁ r1a novsl ENSMBL Nnmu jusmnuoouase*
44/ IMAGEO98G1512713 COASY ENSGODD001E1

Figure 2. Global data analysis. (A): Effect of LOWESS normalization. Plotted are the ratios of the red and green signals for each spot (log scale,
y-axis) and the signal range (log scale, x-axis) of a typical experiment. Whereas the raw data show a nonlinear bias in particular at the extremes of
the signal area (top graph), after LOWESS normalization, this bias was eliminated (bottom graph). (B): Venn diagram of genes expressed at the
different time points of OCT4 knockdown. Gene expression was judged by a numerical value (BG tag) computed from a negative control sample
(bottom panel). (C): Cluster of genes that show expression patterns most similar to that of OCT4 across the experimental conditions. Colors
correspond to normalized signals. For each gene, signals were divided by the average gene signal across all conditions (log scale). Red boxes indicate
that the signal in the particular condition is higher than the average signal, whereas green boxes indicate the opposite. Hierarchical clustering was
performed on 199 genes that showed high variation across the four conditions and a significant difference in the OCT4 and EGFP RNAis using
Pearson correlation as a pairwise similarity measure and average linkage as an update rule. The analysis was done using J-Express Pro 2.6 software
(MolMine AS, Bergen, Norway http://www.molmine.com). Abbreviations: BG, background; EGFP, enhanced green fluorescent protein; hrs, hours;

RNAIi, RNA interference.

DKKI1, HLX1, GATA2, GATA6, ID2, and DLX5, which are
implicated in differentiation processes [14, 15], as well as a
large number of novel genes. These differentially regulated
genes are listed in supplemental online Table 4. Furthermore,
we computed Q values for each of the genes to assess statistical
significance by the false discovery rate (FDR) [25]. Using an
FDR level of 0.05 identifies 721 of the more than 1,104 genes
as significant. However, it should be stressed that FDR assess-
ment can also increase the false-negative rate. For example, ID2,
a differentiation marker directly regulated by OCT4 (supple-
mental online Table 6; Fig. 3) and verified as significant by p
value computation, was rejected by FDR assessment. At an FDR
level of 0.1, all genes were marked significant.

By comparing gene expression profiles from 24- and 72-
hour-post-transfection samples, we selected genes that show
changes in expression similar to those of the selected key genes
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OCT4, EOMES, and BMP4. The OCT4 hierarchical cluster is
shown in Figure 2C and includes genes already implicated in the
maintenance of pluripotency and self-renewal, such as NANOG;
markers of undifferentiated stem cells LEFTYI, LEFTY2,
DPPA4, and THYI; and novel genes.

To have an overview of negatively regulated downstream
targets of OCT4, we repeated the profile analysis for EOMES
and BMP4, respectively (supplemental online Figs. 1 and 2).
EOMES encodes a T-box containing transcription factor ex-
pressed in the trophectoderm of human and mouse blastocyst
and has been shown to be required for mouse trophoblast
development and mesoderm formation [20, 26, 27]. The gene
encoding bone morphogenetic protein 4 (BMP4) is also highly
expressed in the human trophectoderm [20] and has been shown
to promote human embryonic stem cell differentiation into
trophoblast [17]. The critical trophoblast stem cell regulator
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Figure 3. Confirmation of gene expression
changes of selected genes by real-time PCR
IR (A) and Western blotting (B). (A): SYBR
! green real-time reverse transcription-PCRs
were carried out on RNA samples harvested
72 hours after OCT4 knockdown using two
independent siRNA molecules in separate
transfection experiments (designated siRNA
1 and siRNA 2). Error bars refer to technical

<

B EGFP siRNA OCT4 siRNA1 OCT4 siRNA 2
NANOCG e »

S0x2 e -

GAPDH e s wses b T

CDX2 could not be been included in this analysis because the
clone is not represented on our array. Nonetheless, real-time
polymerase chain reaction (PCR) analysis showed that its ex-
pression is induced upon depletion of OCT4 (Fig. 3).

Included in this set are genes implicated in ESC differenti-
ation, such as (a) the transcription factors /D3, TBX18, GATAG,
and HLX1 [14]; (b) signal transduction pathways crucial for the
maintenance of pluripotency, such as WNT (DKKI, FRZB,
FZD?2), transforming growth factor B (TGFB) (TGFB2), and
FGF (FGFS8); and (c) cytoskeletal and extracellular matrix-
associated genes, such as MFAPS, COL4Al, KRTI14, LOXLA,
and CLDN4, which encodes a tight junction protein crucial for
trophectoderm formation. These changes in gene expression
overlap with those identified in BMP4-treated hESCs [17] and
may reflect the morphological changes seen upon differentiation
of hESCs per se and adoption of trophoblast fate (Fig. 1A, 1D).

Expression patterns of a selection of the differentially ex-
pressed genes were verified independently using real-time PCR
and Western blotting of samples prepared from cells transfected
with either of two different OCT4 siRNAs (Fig. 3). The results
shown in Figure 3A confirmed the downregulation of key plu-
ripotency-controlling genes, OCT4, SOX2, and NANOG, and
ES-associated genes LEFTY1, LEFTY2, TDGF1, DNMT3B, and
ZFP42.

Expression of mesodermal (7/Brachyury) and ectodermal
(PAX6) markers was also downregulated, re-emphasizing the
lineage-restricted differentiation of OCT4-depleted cells. The
induction of CDX2 is in agreement with results obtained in
mouse and human ESCs [8, 10], but it differs from our previous
results with hESCs grown in mouse embryonic fibroblast
(MEF)-conditioned medium, presumably reflecting the im-
proved sensitivity of the current reverse transcription (RT)-PCR
assays and inherent variability in MEF-conditioned medium
preparations [9]. Confirmation of gene expression characteristic
of trophoblast lineage is supported by the upregulated expres-
sion of key markers, such as EOMES, CDX2, and BMP4 9, 10,
17, 20]. The list of primer sequences used for this assay is given
in supplemental online Table 5. Western blot analysis (Fig. 3B)
shows downregulation of the transcription factors NANOG and

Q’@{ép é‘) 9'\'00-19'@!?5'0 Qg_':g:\\‘be é‘b ..;\‘;éi;&p Qyjb e&)@;&;‘;‘g\"g; ‘39:3@:" ; €<i; 6\"/0 V?y 06\5‘%0‘\5'

variation. Ratios are represented as log ratio
(base 2), with values above 0 denoting over-
expression and values below 0 denoting re-
pression of gene expression. (B): Western
blots using duplicate samples of protein ex-
tract of the same set of transfection experi-
ments. The specificities of the primary anti-
bodies used are indicated on the left.
Abbreviations: EGFP, enhanced green fluo-
rescent protein; PCR, polymerase chain re-
action; siRNA, small interfering RNA.

SOX2 proteins upon OCT4 knockdown, consistent with their
cooperation with OCT4 as part of an interdependent core hES
transcriptional regulatory circuit [14, 15].

Downstream Targets of OCT4

Our experimental approach will identify both direct and indirect
targets downstream of OCT4. To distinguish between these
possibilities, we cross-checked the OCT4-regulated genes with
the recently compiled set of transcription targets for OCT4,
SOX2, and NANOG identified in hESCs using chromatin im-
munoprecipitation (ChIP) coupled to promoter microarrays and
ChIP-pair end diTag (PET) using mouse ESCs [14, 15]. For the
analysis, we defined direct targets as those regulated by OCT4
alone or in combination with NANOG and/or SOX2. We found
poor overlap between the three data sets, with 60 genes common
to our data set and that of Boyer et al. [14], 49 common to ours
and the mouse data set [15], and nine common to all three data
sets (supplemental online Fig. 3). Included in the nine genes are
OCT4, NANOG, and SOX?2 and the trophoblast inducer EOMES.
Interestingly, CDX2 was a conserved target in human [14] and
not mouse [15].

The list of direct targets of OCT4 in ESCs is given in
supplemental online Table 6. An additional 162 are bound by
NANOG and/or SOX2 but not by OCT4, indicating that these
are regulated indirectly by OCT4 through its regulation of these
downstream effectors (supplemental online Table 7).

In line with the finding that OCT4 regulates its own expres-
sion and that of other core hES transcription factors [14, 28, 29],
it was not surprising that the subset of directly downregulated
genes included NANOG, OCT4, SOX2, HMGB2, and NR2F2
(supplemental online Table 6). Interestingly, the promoters for
HMGB2, a coactivator of OCT4 activity, and NR2F2, a regu-
lator of OCT4 expression [30, 31], are positively and negatively
regulated, respectively, by OCT4 alone. Additional markers of
undifferentiated stem cells identified as positively regulated
direct targets were LEFTY2, DPPA4, and TDGFI, whereas
ZFP42, LEFTYI, and FLJ10884 were classified as indirect
targets. As anticipated, components of signal transduction path-

Stemt CrLLS

2002 ‘22 Yok |\ Uuo ¥113ueD TO IdIA ¥ WOoI'S|pOWSIS MMM LI} PRpeo lUMOQ


http://stemcells.alphamedpress.org

Babaie, Herwig, Greber et al.

505

Table 1. Pathways of which gene components show significant expression changes between the OCT4 and EGFP knockdowns at 72 hours after
transfection
KEGGID Pathway description Genes®  Z score” p value® OCT4-RNAi-UP? EGFP-RNAi-UP*
hsa04610 Complement and coagulation cascades 25 2.973214 0.001473563 18 7
hsa00230 Purine metabolism 58 2.914994 0.001778544 22 36
hsa04510 Focal adhesion 64 2.708439  0.003380077 43 21
hsa04810 Regulation of actin cytoskeleton 69 2.6696 0.003797128 45 24
hsa04080 Neuroactive ligand-receptor interaction 49 2.660901 0.003896637 30 19
hsa03050 Proteasome 18 2.591246 0.004781487 4 14
hsa00190 Oxidative phosphorylation 58 2.582073 0.004910471 23 35
hsa04010 MAPK signaling pathway 92 2476518 0.006633556 55 37
hsa04512 ECM-receptor interaction 27 2.25835  0.011961886 18 9
hsa00590 Prostaglandin and leukotriene metabolism 8 2.240448 0.012530885 7 1
hsa04520 Adherens junction 27 2.234325 0.012730806 19 8
hsa00251  Glutamate metabolism 16 2.171768 0.01493653 4 12
hsa00252 Alanine and aspartate metabolism 7 2.02837  0.021261181 1 6
hsa05110 Cholera: infection 13 1.991741 0.023199671 9 4
hsa00710 Carbon fixation 8 1.820364 0.034351738 2 6
hsa00400 Phenylalanine, tyrosine, and tryptophan biosynthesis 5 1.75292  0.039807826 1 4
hsa04630 Jak-STAT signaling pathway 40 1.693603 0.045170345 26 14
hsa00970 Aminoacyl-tRNA biosynthesis 9 1.599342  0.054872314 2 7
hsa04310 Whnt signaling pathway 52 1.575497 0.05757089 31 21
hsa04350 TGF-p signaling pathway 28 1.525685 0.063544186 18 10
hsa00440 Aminophosphonate metabolism 7 1.521278  0.064095066 2 5
hsa00052  Galactose metabolism 10 1.477977 0.069707001 8 2
hsa00260 Glycine, serine, and threonine metabolism 17 1.443812 0.074395975 5 12
hsa04110 Cell cycle 45 1.439163 0.075052216 21 24
hsa00640 Propanoate metabolism 15 1.306312  0.095723304 9 6
hsa04210  Apoptosis 30 1.30609  0.095761041 18 12

Pathways were taken from the KEGG database. Gene expression was compared in the OCT4 RNAi and EGFP RNAi at 72 hours, and the
differences of array signals were used for computing Wilcoxon’s paired signed rank test. Genes that were judged as nondetectable by the
background value criterion were excluded from analysis. Shown are pathways with gene numbers >4, but it should be noted that the normal
approximation is valid for sample sizes >25. The complete list of the pathway results is given in supplemental online Table 8.

“ Number of genes that were taken into account for computing the statistical test.

" Standard normal approximation of the test statistic.
¢ p value of the standard normal distribution for the respective Z score.

¢ Number of genes that have higher expression in OCT4 knockdown than in EGFP knockdown.
¢ Number of genes that have higher expression in the EGFP knockdown than in the OCT4 knockdown.
Abbreviations: ECM, extracellular matrix; EGFP, enhanced green fluorescent protein; KEGGID, KEGG pathway identifier (Homo sapiens);

MAPK, mitogen-activated protein kinase; RNAi, RNA interference.

ways implicated in the maintenance of pluripotency, such as
WNT (DKKI, FZD2), TGFB (NODAL, LEFTYI, LEFTY2,
MADH3 ID2 and PITX2), FGF (FGF8 and FGF?2), and Hedge-
hog (PTCH), are regulated by OCT4.

The remaining genes that are either up- or downregulated
upon OCT4 knockdown but do not appear in the data sets of
Boyer et al. [14] and Loh [15] may represent either previously
undiscovered novel OCT4/SOX2/NANOG targets or genes reg-
ulated by downstream targets of OCT4 other than SOX2 and
NANOG or simply not included in the promoter analysis (sup-
plemental online Table 4). Moreover, this set of genes would
also be expected to include a large number of genes involved in
trophoblast differentiation.

Signaling and Metabolic Pathways Crucial for the
Maintenance of Pluripotency

ESC self-renewal and pluripotency requires inputs from extrin-
sic factors and their downstream effectors [32]. We therefore
analyzed the 24- and 72-hour data set for components of sig-
naling pathways by assigning p values using Wilcoxon’s
matched pair signed rank test to compare groups of genes
associated with particular pathways instead of conventional
gene-wise analysis [20]. The analysis, summarized in Table 1,
identifies changes in key components of the WNT, transforming
growth factor (TGF)f, fibroblast growth factor (EGF), mitogen-
activated protein kinase, NOTCH, Hedgehog, JAK/STAT, and
extracellular matrix signaling pathways, as well as regulators of
the cytoskeleton, apoptosis, cell cycle, and metabolic processes,
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such as oxidative phosphorylation, methionine metabolism, and
folate biosynthesis. The list of complete KEGG annotated path-
ways identified as operative in ESCs is given in supplemental
online Table 8.

TGFpB and BMP Signaling

Consistent with recent reports identifying TGFB/ACTIVIN/
NODAL signaling as critical for maintaining hESC pluripotency
[33-35], expression of NODAL ligand, its coreceptor TDGF1,
and the antagonists LEFTY] and LEFTY?2 is reduced following
OCT4 knockdown (Fig. 4C). Downregulation of LEFTYI,
LEFTY2, and NODAL could result from them being SOX2/
NANOG targets (supplemental online Tables 6 and 7) or
through loss of autocrine NODAL signaling as hESCs differen-
tiate [36]. In contrast, expression of FST (FOLLISTATIN), a
potent ACTIVIN and weak BMP antagonist is significantly
upregulated on OCT4 knockdown (Fig. 4B). Since FST tran-
scription can be induced by ACTIVIN A, this might point to
increased ACTIVIN signaling triggered by OCT4 depletion,
coincident with downregulation of the ACTIVIN A antagonist
TDGF1. OCT4 knockdown increases expression of BMP4 and
its downstream target gene /D2, as well as reducing its antag-
onist CHORDIN (Fig. 4A), in line with the observation that
BMP4 induces trophoblast differentiation in hESCs [17].

FGF Signaling

FGF signaling is known to play an essential role in preventing
hESC differentiation [35, 37, 38], and reduced expression of the
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Figure 4. Comparative expression patterns of genes involved in the transforming growth factor-B signaling pathway. The BMP and ACTIVIN/
NODAL axes of the pathway are presented in (A) and (B, C), respectively. A sequential illustration of the pathways (adapted from the KEGG
database) is given above each histogram. Genes within open boxes are those with background tags >0.9, and therefore their expression was deemed

as not detected. Abbreviation: BMP, bone morphogenetic protein.

hESC autocrine factor FGF2 and FGFI2 was observed on
OCT4 knockdown (Figs. 3, 5A). In contrast, however, expres-
sion of FGF8 and the novel FGF-like receptor FGFRLI was
upregulated, indicating that hESC differentiation along the tro-

phoblast lineage may involve complex modulation of FGF sig-
naling. It may be significant that a potential NANOG binding
site is identifiable within the FGF8 promoter (supplemental
online Table 7).
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Figure 5. Comparative expression patterns of genes involved in FGF (A), apoptosis (B), WNT (C), and NOTCH (D) signaling pathways.
Abbreviations: FGF, fibroblast growth factor; FGFR, fibroblast growth factor receptor.

WNT Signaling

The role of WNT signaling in human ESCs is controversial
because of conflicting reports as to its role in ESC self-renewal
[39, 40]. Our analysis of this pathway shows that although
expression of WNT antagonists DKK/, DKK3, and FRZB in-
creases upon OCT4 knockdown, FRAT2, a GSK3B-interacting
positive effector of WNT signaling [41], is downregulated (Fig.
5C). The presence of OCT4, NANOG, and SOX2 binding sites
within the DKKI, FZD2, and FRAT2 promoters indicates that
these WNT components are influenced directly by these key
stem cell regulators (supplemental online Table 6).

NOTCH and Hedgehog Signaling

Although both these pathways regulate the fate of many types of
stem cells, there is currently little evidence for their involvement
in controlling the fate of embryonic stem cells [42]. Examina-
tion of NOTCH pathway components revealed downregulation
of CBF?2 and upregulation of NOTCH?2, TLE2, DTX4, and HES1
upon OCT4 knockdown (Fig. 5D). TLE2, a transcriptional re-
pressor [43], is regulated by NANOG and SOX2 (supplemental
online Tables 6 and 7). Analysis of Hedgehog (Hh) signaling
components showed reduced levels of both PTCHI, a Hh re-
ceptor and target for SOX2 and NANOG (supplemental online
Table 7), and the Hh-regulated transcriptional repressor GLI3.

Apoptosis

Efficient growth of undifferentiated ESCs (self-renewal) re-
quires the inhibition of apoptosis, as well as differentiation [44];
we therefore screened the data set for differentially expressed
apoptosis-related genes (Fig. 5B). Although expression levels of
the pro- and antiapoptotic genes BCL2 and BAX did not change,
genes encoding the DNA fragmentation factor (DFFA), the
apoptosis-inducing factor (PDCDS), and CASPASE 3 were sig-
nificantly downregulated, whereas NFKBIA and the calpains
CAPN6, CAPNI, and CAPNSI were upregulated on OCT4
knockdown.

www.StemCells.com

Epigenetic Control of Pluripotency and Trophoblast
Lineage Specification

Mutant mouse ESCs lacking DNA methyltransferase activity
[45, 46], methyl DNA binding protein function [47], or histone
acetylase activity [48] exhibit impaired differentiation, high-
lighting the critical role chromatin modification plays in regu-
lating embryonic differentiation. To investigate whether the
expression of chromatin and epigenetic modifiers is affected by
OCT4 depletion, we identified differentially regulated genes
involved in methyl/folate cycle, DNA methylation, methyl DNA
binding, and histone modification communication (supplemen-
tal online Fig. 4). Downregulation of MAT2A (methionine ad-
enosyltransferase II «) and MTRR (5-methyltetrahydrofolate-
homocysteine methyltransferase) was observed at 72 hours of
OCT4 depletion (supplemental online Fig. 4A), supporting the
involvement of folic acid metabolism in the maintenance of
pluripotency [49]. The de novo methyltransferase DNMT3B was
downregulated upon OCT4 depletion, contrasting with the
maintenance methylase DNMT1, which showed no significant
change. The, histone lysine methyltransferase (H3-K4-HMTase)
SET7 was dramatically upregulated upon OCT4 knockdown,
contrasting with downregulation of the histone lysine methyl-
transferase EZH2 (H3-K27-HMTase) (supplemental online Fig.
4B). The acetylases H2AFY and H2AFY2 and the deacetylase
HDAC6 also show significant upregulation on OCT4 knock-
down (supplemental online Fig. 4C, 4D). These expression
patterns perhaps indicate that the hES-to-trophoblast transition
is accompanied by significant changes in histone acetylation and
methylation patterns.

The nonhistone chromatin-associated proteins HMGBI,
HMGB3, DPPA4, NASP, chromatin assembly factor 1
(CHAF1A), PHF17, PHF5A, POLE3, and retinoblastoma bind-
ing protein 7 (RBBP7) are all significantly downregulated as a
consequence of OCT4 depletion (supplemental online Fig. 4B).
Of these, HMGB1, DPPA4, and HMGB3 have previously been
shown to be highly enriched in undifferentiated stem cells and
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Figure 6. Cluster analysis of 15 genes bearing expression profiles the
most similar to that of the trophoblast marker BMP4. The comparison
was made between this study and the previously published expression
data on human ICM and trophectoderm cells [20]. Colors correspond to
normalized signals. For each gene, signals were divided by the average
gene signal across all conditions (log scale). Red boxes indicate that the
signal in the particular condition is higher than the average signal,
whereas green boxes indicate the opposite. Hierarchical clustering dis-
plays subgroups using Pearson correlation as a pairwise similarity
measure and complete linkage as an update rule. The analysis was done
using J-Express Pro 2.6 software (MolMine AS). Abbreviations: EGFP,
enhanced green fluorescent protein; ICM, inner cell mass; MAX, max-
imum; MIN, minimum; RNAi, RNA interference.

isolated ICM cells [20]. The RBBP7-encoded protein has been
shown to interact with MBD3 and may have a role in the
regulation of cell proliferation and differentiation [50].

Interestingly, we also observed downregulated expression of
PARPI (Fig. 3), which encodes a chromatin-associated enzyme,
poly(ADP-ribosyl) transferase, capable of modifying nuclear
proteins. This DNA-dependent ribosylation has been shown to
regulate cell proliferation, transformation, and differentiation
[51]. Indeed, Parpi-deficient mouse embryonic stem cells dif-
ferentiate more readily into trophoblast-like cells, implying that
one of the functions of this protein is to restrict differentiation in
this lineage [52].

Altered expression of imprinted genes was also observed
(upregulation of CALCR and GNAS and downregulation of
KIP2 and UBE3A; supplemental online Fig. 4E). KIP2 (a cyclin-
dependent kinase inhibitor) acts as a key regulator of embryo-
genesis through regulation of cell cycle by blocking the activity
of G1 cyclin/Cdk complexes and the regulation of actin dynam-
ics through binding to LIMK-1 [53, 54]. Differential gene
expression of other cell cycle-related genes was also observed
(supplemental online Fig. 5), including the upregulation of
CDKN2B, a cyclin-dependent kinase inhibitor, and downregu-
lation of CDC25A, which is required for progression from G1 to
the S-phase of the cell cycle, consistent with the limited G1
phase and rapid cell cycle characteristic of undifferentiated
ESCs [55, 56].

RNAi-Mediated Suppression of OCT4 Function in
Human ESCs Recapitulates Primary Differentiation
at the Blastocyst Stage of Development

To examine how closely the transcriptomes of an ICM and
trophectoderm (TE) cell matches that of an undifferentiated
ESC and OCT4 RNAi-mediated trophoblast cell, we compared
our current data set with that derived from the blastocyst [20].
We identified potential candidate genes that were overexpressed
in the TE- and OCT4-deficient ESCs compared with the ICM
and undifferentiated ESCs when a cluster analysis of genes
coregulated in the same manner as BMP4 was performed (Fig.
6). Genes upregulated in the TE- as well as the OCT4-depleted
hESCs are involved in the organization of the extracellular

matrix (PDLIM3), cell growth and differentiation (AKRIC3 and
PLXNDI), transcriptional regulation (PME-1, MGCI11349/
ZXDC, and KIAAI1245/COASI), signal transduction processes
(ARL7, PIP5SKIC, RASLI2, ARHGAPS, SELM, and DKK3, an
inhibitor of the WNT pathway), and novel genes (KIAA1949,
Cl4orfl73, and FLJ20507/TMEM127). We do not present de-
tailed analysis of this data set here for the simple reason that the
vast amount of data is beyond the scope of this study. In
summary, these results would imply that these TE marker genes
could serve as additional factors required for inducing tropho-
blast differentiation and further propagation of these cells.

DISCUSSION

The first differentiation event in mammalian development is the
formation of the trophectoderm; this event is controlled by
antagonism between OCT4 and the trophoblast transcription
factors CDX2 and EOMES [27]. To begin dissecting the com-
plex molecular events that underpin this event in humans, we
adopted a functional genomics approach using RNAi to sup-
press OCT4 function in a human ESC line and microarray-based
gene expression profiling. The quality of the data set was
rigorously tested in several ways, including numerous statistical
tests, achieving consistent reproducibility between replicates as
measured by the coefficient of variations of intensity for each
gene. The data set is therefore qualitative, quantitative, and
comprehensive.

Our microarray analysis shows that OCT4 knockdown in
hESCs is accompanied by a reduction in overall complexity of
gene expression and differential regulation of more than 1,000
genes, many of which are consistent with a loss of pluripotency
and specification of the trophoblast lineage. Among the differ-
entially expressed genes, 60 correspond to direct OCT4 targets
identified in human ESCs [14], 49 to targets in mouse ESCs
[15], and nine (including OCT4, SOX2, NANOG, and EOMES)
to targets identified as conserved in human and mouse ESCs. An
additional set of 162 consists of targets for SOX2 and NANOG,
but not OCT4 [14, 15]. This pattern is compatible with OCT4,
SOX2, and NANOG constituting an interdependent network,
where loss of expression of one factor ultimately leads to the
extinction of the others. A differentiation pathway may depend
on factor-specific interactions (for example, between OCT4,
EOMES, and CDX2 [27]) or other genes. The overall low
overlap may be attributed to the differences in the platforms
used (RNAi, ChIP-chip, and ChIP-PET) and also the transcrip-
tion factor binding sites being mapped. In addition, off-target
indirect effects induced by the OCT4-RNAi manipulation in our
study and that in the mouse [15] may have contributed to the
disparity between our list of OCT4 targets. Nonetheless, we
cannot exclude the possibility of species differences in the mode
of regulation of pluripotency and self-renewal of ESCs. Indeed,
our analysis of changes in gene expression and gene ontologies
highlights the involvement of cell signaling interactions, epige-
netic modifications, chromatin remodeling, and metabolic pro-
cesses in the ES-to-trophoblast transition.

Examination of differentially expressed components of sig-
nal transduction pathways supports previous findings demon-
strating the importance of TGFB, BMP, and FGF signaling in
regulating hESC differentiation [18, 35]. NODAL, its coreceptor
TDGF1, and transcriptional targets, LEFTY1/2 were downregu-
lated upon OCT4 knockdown, whereas the ACTIVIN-regulated
antagonist Follistatin was upregulated. This might reflect a
switch from NODAL/TDGF1 to ACTIVIN signaling during
trophoblast differentiation and would be compatible with the
recently reported involvement of ACTIVIN in trophoblast pro-
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liferation in mouse [57, 58]. BMP4, an inducer and marker of
trophoblast, was upregulated upon OCT4 knockdown within 24
hours. Given the importance of this factor in regulating ESCs
from both mouse and human ESCs, it is notable that the BMP4
promoter was not identified as a target of OCT4, nor of SOX2
or NANOG, indicating that the induction could be mediated
indirectly [14]. This could entail a cascade involving GATAG, a
target of OCT4 and NANOG in hESCs and regulator of BMP4
expression [59] or NANOG [60]. FGF2 expression is down-
regulated upon OCT4 knockdown, consistent with FGF signal-
ing blocking hESC differentiation. However, the induction of
FGFS also points to a likely role for this pathway in trophoblast
differentiation. Indeed, induction of components of NOTCH
signaling upon OCT4 knockdown could mediate aspects of FGF
signaling to promote the generation of trophoblast progenitors
[61], in a manner related to that described for neural differen-
tiation in ESCs and somatic progenitor cells [62, 63]. Many
signaling pathways regulate cell survival, as well as differenti-
ation, and it was therefore interesting to find that some pro-
apoptotic genes, including CASPASE 3, were downregulated on
OCT4 knockdown, supporting the notion that ESCs may be
inherently poised for apoptosis because of conflict between
signals maintaining the balance between self-renewal and dif-
ferentiation [16, 44].

OCT4 downregulation also had significant effects on ex-
pression of epigenetic and chromatin modifiers. The reciprocal
expression patterns of the histone lysine methyltransferases
SET7 (up) and EZH2 (down), as well as downregulation of the
DNA methyltransferase DNMT3B and a number of histone and
nonhistone chromatin-associated proteins, suggest that loss of
pluripotency is associated with global changes in chromatin
organization [64]. These changes may be actively involved in
ESC differentiation per se, but they may, in addition, specifi-
cally reflect the generation of an extraembryonic cell type.

As anticipated, the list of OCT4-dependent genes includes
as yet uncharacterized novel genes that may represent candi-
dates for further investigation into pluripotency and trophoblast

differentiation. Our data provide a reference for combining
RNAi and functional genomics using human ESCs to study
some of the earliest differentiation events of human postimplan-
tation development. This is supported by the finding that the
trophoblast marker BMP4 is enriched in both the TE- and the
OCT4-depleted cells at both the 24- and 72-hour time points.
Furthermore, the global analysis (data not shown) revealed
distinct and overlapping expression patterns between the ICM
and undifferentiated ESCs, thus implying that the ICM consist
of a transit population of pluripotent cells and that cultured
ESCs are an in vitro adaptation of these. Alternatively, the
differences between the two data sets may be explained by
experimental limitations associated with the scarce human em-
bryo material [20]. Detailed analysis and confirmation of these
differences are under way and therefore not included here, as
they are beyond the scope of the current study. This type of
undertaking should also contribute to the construction of a
molecular framework that facilitates robust and predicable con-
trol of ESC differentiation and their successful and safe appli-
cation in stem cell-based therapy in the future.

A CKNOWLEDGMENTS

We are grateful to the German Resource Centre for Genome
Research (Berlin, Germany), to Dr. Claus Hultschig for printing
the slides, and to Dr. David Hay for help with immunofluores-
cence. This work was supported by the Max Planck Society, the
Deutsche Forschungsgemeinschaft (DFG-AD 184/4-1), the Bio-
technology and Biological Sciences Research Council (T.C.B.)
and the Geron Corporation (Y.B.).

DISCLOSURES

The authors indicate no potential conflicts of interest.

REFERENCES

1 Rossant J. Stem cells from the mammalian blastocyst. STEM CELLS
2001;19:477-482.

2 Thomson JA, Itskovitz-Eldor J, Shapiro SS et al. Embryonic stem cell
lines derived from human blastocysts. Science 1998;282:1145-1147.

3 Reubinoff BE, Pera MF, Fong CY et al. Embryonic stem cell lines from
human blastocysts: Somatic differentiation in vitro [see comments] [pub-
lished erratum appears in Nat Biotechnol 2000;18:559]. Nat Biotechnol
2000;18:399 -404.

4 Pesce M, Gross MK, Scholer HR. In line with our ancestors: Oct-4 and
the mammalian germ. Bioessays 1998;20:722-732.

5 Adjaye J, Bolton V, Monk M. Developmental expression of specific
genes detected in high-quality cDNA libraries from single human pre-
implantation embryos. Gene 1999;237:373-383.

6 Goto T, Adjaye J, Rodeck CH et al. Identification of genes expressed in
human primordial germ cells at the time of entry of the female germ line
into meiosis. Mol Hum Reprod 1999;5:851-860.

7 Nichols J, Zevnik B, Anastassiadis K et al. Formation of pluripotent stem
cells in the mammalian embryo depends on the POU transcription factor
Oct4. Cell 1998;95:379-391.

8 Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4
defines differentiation, dedifferentiation or self-renewal of ES cells. Nat
Genet 2000;24:372-376.

9 Hay DC, Sutherland L, Clark J et al. Oct-4 knockdown induces similar
patterns of endoderm and trophoblast differentiation markers in human
and mouse embryonic stem cells. STEM CELLS 2004;22:225-235.

10 Matin MM, Walsh JR, Gokhale PJ et al. Specific knockdown of Oct4 and
beta2-microglobulin expression by RNA interference in human embry-
onic stem cells and embryonic carcinoma cells. STEM CELLS 2004;22:
659-668.

www.StemCells.com

11 Avilion AA, Nicolis SK, Pevny LH et al. Multipotent cell lineages in
early mouse development depend on SOX2 function. Genes Dev 2003;
17:126-140.

12 Chambers I, Colby D, Robertson M et al. Functional expression cloning
of nanog, a pluripotency sustaining factor in embryonic stem cells. Cell
2003;113:643-655.

13 Mitsui K, Tokuzawa Y, Itoh H et al. The homeoprotein Nanog is required
for maintenance of pluripotency in mouse epiblast and ES cells. Cell
2003;113:631-642.

14 Boyer LA, Lee TI, Cole MF et al. Core transcriptional regulatory
circuitry in human embryonic stem cells. Cell 2005;122:947-956.

15 Loh Y-H, Wu Q, Chew J-L et al. The Oct4 and Nanog transcription
network regulates pluripotency in mouse embryonic stem cells. Nat
Genet 2006;38:431-440.

16 Ying QL, Nichols J, Chambers I et al. BMP induction of Id proteins
suppresses differentiation and sustains embryonic stem cell self-renewal
in collaboration with STAT3. Cell 2003;115:281-292.

17 Xu RH, Chen X, Li DS et al. BMP4 initiates human embryonic stem cell
differentiation to trophoblast. Nat Biotechnol 2002;20:1261-1264.

18 Xu RH, Peck RM, Li DS et al. Basic FGF and suppression of BMP
signaling sustain undifferentiated proliferation of human ES cells. Nat
Methods 2005;2:185-190.

19 Kameda T, Thomson JA. Human ERas gene has an upstream premature
polyadenylation signal that results in a truncated, noncoding transcript.
STEM CELLS 2005;23:1535-1540.

20 Adjaye J, Huntriss J, Herwig R et al. Primary differentiation in the
human blastocyst: Comparative molecular portraits of inner cell mass
and trophectoderm cells. STEM CELLS 2005;23:1514-1525.

21 Cleveland WS. Robust locally weighted regression and smoothing scat-
terplots. J Am Stat Assoc 1979;368:829—-836.

22 Herwig R, Aanstad P, Clark M et al. Statistical evaluation of differential
expression on cDNA nylon arrays with replicated experiments. Nucleic
Acids Res 2001;29:E117.

2002 ‘22 Yok |\ Uuo ¥113ueD TO IdIA ¥ WOoI'S|pOWSIS MMM LI} PRpeo lUMOQ


http://stemcells.alphamedpress.org

510

OCT4 RNAI Induces Trophoblast Differentiation

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

Paulin D, Jakob H, Jacob F et al. In vitro differentiation of mouse
teratocarcinoma cells monitored by intermediate filament expression.
Differentiation 1982;22:90-99.

Surani MA. Reprogramming of genome function through epigenetic
inheritance. Nature 2001;414:122—-128.

Storey JD. A direct approach to false discovery rates. J R Stat Soc Ser B
2002;64:479-498.

Russ AP, Wattler S, Colledge WH et al. Eomesodermin is required for
mouse trophoblast development and mesoderm formation. Nature 2000;
404:95-99.

Niwa H, Toyooka Y, Shimosato D et al. Interaction between Oct3/4 and
Cdx2 determines trophectoderm differentiation. Cell 2005;123:917-929.
Chew JL, Loh YH, Zhang W et al. Reciprocal transcriptional regulation
of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells.
Mol Cell Biol 2005;25:6031-6046.

Rodda DJ, Chew JL, Lim LH et al. Transcriptional regulation of nanog
by OCT4 and SOX2. J Biol Chem 2005;280:24731-24737.

Ben Shushan E, Sharir H, Pikarsky E et al. A dynamic balance between
ARP-1/COUP-TFII, EAR-3/COUP-TFI, and retinoic acid receptor:reti-
noid X receptor heterodimers regulates Oct-3/4 expression in embryonal
carcinoma cells. Mol Cell Biol 1995;15:1034-1048.

Butteroni C, De Felici M, Scholer HR et al. Phage display screening
reveals an association between germline-specific transcription factor
Oct-4 and multiple cellular proteins. J Mol Biol 2000;304:529-540.
Chambers I, Smith A. Self-renewal of teratocarcinoma and embryonic
stem cells. Oncogene 2004;23:7150-7160.

Besser D. Expression of nodal, lefty-a, and lefty-B in undifferentiated
human embryonic stem cells requires activation of Smad2/3. J Biol
Chem 2004;279:45076-45084.

James D, Levine AJ, Besser D et al. TGFbeta/activin/nodal signaling is
necessary for the maintenance of pluripotency in human embryonic stem
cells. Development 2005;132:1273-1282.

Vallier L, Alexander M, Pedersen RA. Activin/Nodal and FGF pathways
cooperate to maintain pluripotency of human embryonic stem cells.
J Cell Sci 2005;118:4495-4509.

Dvash T, Mayshar Y, Darr H et al. Temporal gene expression during
differentiation of human embryonic stem cells and embryoid bodies.
Hum Reprod 2004;19:2875-2883.

Dvorak P, Dvorakova D, Koskova S et al. Expression and potential role
of fibroblast growth factor 2 and its receptors in human embryonic stem
cells. STEM CELLS 2005;23:1200-1211.

Levenstein ME, Ludwig TE, Xu RH et al. Basic fibroblast growth factor
support of human embryonic stem cell self-renewal. STEM CELLS
2006;24:568 -574.

Dravid G, Ye Z, Hammond H et al. Defining the role of Wnt/beta-catenin
signaling in the survival, proliferation, and self-renewal of human em-
bryonic stem cells. STEM CELLS 2005;23:1489-1501.

Sato N, Meijer L, Skaltsounis L et al. Maintenance of pluripotency in
human and mouse embryonic stem cells through activation of Wnt
signaling by a pharmacological GSK-3-specific inhibitor. Nat Med 2004;
10:55-63.

Saitoh T, Moriwaki J, Koike J et al. Molecular cloning and character-
ization of FRAT2, encoding a positive regulator of the WNT signaling
pathway. Biochem Biophys Res Commun 2001;281:815-820.

Walsh J, Andrews PW. Expression of Wnt and Notch pathway genes in
a pluripotent human embryonal carcinoma cell line and embryonic stem
cell. APMIS 2003;111:197-210; discussion 210-211.

Javed A, Guo B, Hiebert S et al. Groucho/TLE/R-esp proteins associate
with the nuclear matrix and repress RUNX (CBF(alpha)/AML/
PEBP2(alpha)) dependent activation of tissue-specific gene transcription.
J Cell Sci 2000;113:2221-2231.

44

45

46

47

48

49

50

51

52

54

55

56

57

58

59

60

61

62

63

Duval D, Trouillas M, Thibault C et al. Apoptosis and differentiation
commitment: Novel insights revealed by gene profiling studies in mouse
embryonic stem cells. Cell Death Differ 2006;13:564-575.

Li E, Bestor TH, Jaenisch R. Targeted mutation of the DNA meth-
yltransferase gene results in embryonic lethality. Cell 1992;69:
915-926.

Jackson M, Krassowska A, Gilbert N et al. Severe global DNA hypo-
methylation blocks differentiation and induces histone hyperacetylation
in embryonic stem cells. Mol Cell Biol 2004;24:8862—8871.

Tate P, Skarnes W, Bird A. The methyl-CpG binding protein MeCP2 is
essential for embryonic development in the mouse. Nat Genet 1996;12:
205-208.

Lee JH, Hart SR, Skalnik DG. Histone deacetylase activity is required for
embryonic stem cell differentiation. Genesis 2004;38:32-38.

Steele W, Allegrucci C, Singh R et al. Human embryonic stem cell
methyl cycle enzyme expression: Modelling epigenetic programming in
assisted reproduction? Reprod Biomed Online 2005;10:755-766.
Zhang Y, Ng HH, Erdjument-Bromage H et al. Analysis of the NuRD
subunits reveals a histone deacetylase core complex and a connection
with DNA methylation. Genes Dev 1999;13:1924-1935.

Ku MC, Stewart S, Hata A. Poly(ADP-ribose) polymerase 1 interacts
with OAZ and regulates BMP-target genes. Biochem Biophys Res Com-
mun 2003;311:702-707.

Hemberger M, Nozaki T, Winterhager E et al. Parpl-deficiency induces
differentiation of ES cells into trophoblast derivatives. Dev Biol 2003;
257:371-381.

Dyer MA, Cepko CL. p27Kipl and p57Kip2 regulate proliferation in
distinct retinal progenitor cell populations. J Neurosci 2001;21:
4259-4271.

Yokoo T, Toyoshima H, Miura M et al. p57Kip2 regulates actin dynam-
ics by binding and translocating LIM-kinase 1 to the nucleus. J Biol
Chem 2003;278:52919-52923.

Savatier P, Huang S, Szekely L et al. Contrasting patterns of retinoblas-
toma protein expression in mouse embryonic stem cells and embryonic
fibroblasts. Oncogene 1994;9:809-818.

Fluckiger AC, Marcy G, Marchand M et al. Cell cycle features of primate
embryonic stem cells. STEM CELLS 2006;24:547-556.

Munir S, Xu G, Wu Y et al. Nodal and ALK7 inhibit proliferation and
induce apoptosis in human trophoblast cells. J Biol Chem 2004;279:
31277-31286.

Erlebacher A, Price KA, Glimcher LH. Maintenance of mouse tropho-
blast stem cell proliferation by TGF-beta/activin. Dev Biol 2004;275:
158-169.

Nemer G, Nemer M. Transcriptional activation of BMP-4 and regulation
of mammalian organogenesis by GATA-4 and -6. Dev Biol 2003;254:
131-148.

Suzuki A, Raya A, Kawakami Y et al. Maintenance of embryonic stem
cell pluripotency by Nanog-mediated reversal of mesoderm specifica-
tion. Nat Clin Pract Cardiovasc Med 2006;3(suppl 1):114-122.
Nakayama H, Liu Y, Stifani S et al. Developmental restriction of Mash-2
expression in trophoblast correlates with potential activation of the
notch-2 pathway. Dev Genet 1997;21:21-30.

Lowell S, Benchoua A, Heavey B et al. Notch promotes neural lineage
entry by pluripotent embryonic stem cells. PLoS Biol 2006;4:e121.
Miralles F, Lamotte L, Couton D et al. Interplay between FGF10 and
Notch signalling is required for the self-renewal of pancreatic progeni-
tors. Int J Dev Biol 2006;50:17-26.

Lee TI, Jenner RG, Boyer LA et al. Control of developmental regulators
by Polycomb in human embryonic stem cells. Cell 2006;125:301-313.

Q See www.StemCells.com for supplemental material available online.

Stemt CrLLS

2002 ‘22 Yok |\ Uuo ¥113ueD TO IdIA ¥ WOoI'S|pOWSIS MMM LI} PRpeo lUMOQ


http://stemcells.alphamedpress.org

Analysis of Oct4-Dependent Transcriptional Networks Regulating Self-Renewal
and Pluripotency in Human Embryonic Stem Cells
Yasmin Babaie, Ralf Herwig, Boris Greber, Thore C. Brink, Wasco Wruck, Detlef
Groth, Hans Lehrach, Tom Burdon and James Adjaye
Sem Cells 2007;25;500-510; originally published online Oct 26, 2006;
DOI: 10.1634/stemcells.2006-0426

Thisinformation is current as of March 22, 2007

Updated Information including high-resolution figures, can be found at:
& Services http://www.StemCells.com/cgi/content/full/25/2/500
Supplementary Material Supplementary material can be found at:

http://www.StemCells.com/cgi/content/ful|/2006-0426/DC2

(04 AlphaMed Press

2002 ‘22 Yok |\ Uuo ¥11sueD TO IdIA e WOoI'S|pOWSIS MMM L0} PRpeO lUMOQ


http://www.StemCells.com/cgi/content/full/25/2/500
http://www.StemCells.com/cgi/content/full/2006-0426/DC2
http://stemcells.alphamedpress.org

