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Abstract. Translationally invariant one-dimensional three-body systems with mutually different pair 
potentials are derived that possess a third constant of  motion, both classically and quantum-mechani- 
cally; a Lax pair is given, and all (even) regular solutions of  the corresponding functional equation are 
obtained 
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Deriving a functional equation that guarantees the integrability of the so-called 
Calogero-Moser systems [i], it has been assumed that all particles interact by 
means of the same two-body force. As a consequence, one finds that this force has 
to be singular at zero distance. Considering a more general Ansatz for the Lax 
matrix, however, we were led to a functional equation, which - in the simplest case, 
i.e. three mutually interacting particles of equal mass - also possesses solutions that 
are regular (!) at the origin. 

Consider the following quantum-mechanical, or classical, Hamiltonian: 

1 
H = 2ram (p2 + p 2  +p~)  + f ( q l  - q2) -k-g(q2 --  q3) -k- h(ql - q3). (1) 

Clearly, 

[P, H] = O, P = Pl + P2 + P3. (2 )  

Let us then look under which conditions 

1 3 3 3 
O = ~mm (pl +P~-+P3) + p ~ ( f +  h) + P 2 ( f + g )  +P3(g + h) (3) 

will (Poisson-) commute with H (it automatically commutes with P, and for 
suitably smooth, real f ,  g, h will also be Hermitean, despite its nonsymmetric form): 

1 3 3 
[O, H] = ~mm[P 3 + P 2 + P 3 , f + g  +h]  + 

+ ~ - - ~ [ p ~ ( f + h )  + P 2 ( f + g )  +P3(g +h) ,  p2] + 

+ [p~ ( f+  h) + P 2 ( f + g )  +P3(g + h ) , f +  g + h]. (4) 
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The first and second terms cancel identically, while the condition that the third term 
should be zero, reads 

h(x + y)(f'(x) - g'(y)) + 

+ h'(x + y)(f(x) -g(y))  + 

+f(x)g'(y) - f ' (x)g(y) = 0, (5) 

where we have put x = q~ - q2 and y = q2 - q3. Note that if f =  (f,  g, h) solves (5), 
so will 

f+(c,c,c),  c ' f ,  f(c" ), c e R  (6) 

as  we l l  as  p e r m u t i n g  f a n d  g.  

We would like to solve (5) with the following two assumptions* 

f ( O ) ,  g(O),  h ( O ) f i n i t e ,  ( 7 a )  

if(O) = g'(O) = h'(O) = O. (7b) 

Setting in ( 5 )  y = 0 or  x = O, respectively, we get 

g(O) --f(O)'] 
f(x) = g(O) 1 + k -~  - g(O) ]' (8) 

( 1 ' f (0)  -- g(0) "~ g( Y) f( 0) 

as the solutions of the resulting ordinary differential equations; we have thereby 
used the first symmetry in (6) to set 

h(0) = 0. (9) 

Also, we assume f(0),  g(0), and f (0)  - g ( 0 )  to be different from zero (otherwise the 
solutions reduce to those of an effective two-body problem). In any case, (8) implies 
that 

f(x) �9 g(x) =f(O) �9 g(O) (10) 

Substituting in (5) g and h in terms o f f ,  yields 

+ y) - f(O))(f(x + y) - g(O))(f'(x)__ +f(O)g(O) f'(y)f--~) ( f (x  + 

f f(0)g(0)~ 
+ (f(0) -g(O))f'(x +y) (x) f (y)  ] 

( ~  f(x)ff(Y)'~=O. (11) - f (O)( f (x  + y) - g(O)) z -~ f2(y)  ,] 

�9 Thus, excluding the (regular) 'Toda solutions'f  (x) =f0  e"x, g ( Y )  = go eaY, h(z )  = h o e -az, as well as the 
(singular) 'Calogero-Moser solutions' f = g = h = ~(x).  
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Expanding (11) a round  y = 0, and using the remaining symmetries in (6) to put,  

wi thout  loss o f  generality, 

f (O)  = 1, f " (O)  = _ 2 ( g ( 0 )  - 1), (12) 

we find (as a necessary, but  a-priori not  sufficient condition) that the following 

ordinary differential euqation has to be satisfied by F ( x ) : = f i x )  - g ( 0 )  

F " F - F  '2 = 2 e F ( t ( t -  1) - F 2 ) ,  t . '=g(0),  ~ = + 1 (13) 

which can easily be seen to imply 

F '2 = - 4 ~ ( F  3 + (2t  - 1)F 2 + t( t  - 1)F) (14) 

or, letting H..= - a ( F  + (2t - 1)/3), 

H"- = 4 H  3 -- g2 H - g3, 

4 2 g z = 3 (  t - - t + l )  (15) 

8e 
g3 = ---27 (t + l)(t -- 2 ) ( / - -  �89 

As is well known,  (15) may be taken as the defining equat ion for the Weierstrass 

~ - f u n c t i o n  [2]. Thus 

H(x)  = ~ ( x  + Xo). (16) 

The discriminant A = g 3 _  27932 turns out  to be 

A =  16t2(1 - / ) 2  > 0, (17) 

so that the two half-periods col and co2 are real and purely imaginary,  respectively 

[2]. Writ ing 

H '2 = 4 (H - el )(H - e2)(H - e3), (15') 

we find that H ' (0 )  = 0 implies that x0 is one o f  the half-periods col, o92, or col + co2, 

as ~ (which is a single-valued doubly-periodic function) takes the values el, e3 and 

e2, at these points, respectively [2, (8.163)]. 

Thus,  H is even and the scaling symmetry in (6) can actually be extended to 

purely imaginary c, which allows us to choose 

= - 1 (18) 

without  loss o f  generality. Calculating the e, (letting el > e2 > e3, following the 
notat ion o f  [2]), we find, e.g., for 0 < t < 1 

2 - t  2 t -  1 
el - 3 ' e 2 -  3 ' e 3 = --�89 + i). (19) 

Thus,  H(0)  = e, (cf. (12)), and Xo = col; hence, 

f ( x )  = ~ ( x  + col) - e 3 .  (20a) 
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Using (8), and special cases of  the addition theorem [2, (8.166,2)] for ~(u  + v), 
(20a) implies 

g(x) = # ( x  + co I + co2) - e3, (20b) 

h(x) = ~(x  + co2) - e3. (20c) 

Note that all three functions are />0 and that (20), when put into (1), corresponds 
to two particles (1 and 2) tightly bound together, while the third interacts via 
oscillatory potentials. 

We can (and need to) check, then, that (20) indeed satisfies (5) - j u s t  use the 
addition theorem for ~( (x  + col) + (Y + col + co2)). Applying (6) to (20) - includ- 
ing imaginary scale t ransformat ions-  finally yields the general (modulo permuta- 
tions of f ,  g, and h) solution of (5) subject to (7). Looking at how (20) satisfies (5), 
we are easily led to 

f ( x )  = ~ ( x  + col + a) 

g(x) "~ ~t~(X "~ col -~ ('02 "~ b) (21) 

h ( x ) = ~ ( x  + c o 2 + a + b )  a , b ~  

satisfying (5) (but, in general, not (7), of course). 
Naturally, we would like to know how f, g~ and h look, written as power series. 

Instead of  giving the Taylor expansions of  ~ around, its half-periods in their 
standard form [3], we would like to present them in the form which we had 
originally deduced from (5), by making a power series Ansatz (and comparing low 
powers of x and y), before we obtained (20) in closed form: 

f ( x )  = 1 + ( t  -- 1) ~ Am l(l)(--)mx 2m, 
I 

g ( x ) = t ( l + ( t - - l ) ~ B m - I ( t ) ( - - ) m x 2 m )  (22' 

h(x) = --t  ~ C m_ l(t)( --)mx2m 
I 

Am, Bin, and C,. are mth order polynomials (in t) satisfying various identities and 
recursion formulae, such as 

Am(t) = ( - - ) " C . . (  1 -- t), 

1 
Cm(t) = 

(m + 1)(2m + 1) 

) m+i (-)' 'C,_l(1-t)Cm_,(t), 

Bin(t) = - t m ( - ) m C m ( l - ~ ) ,  (23a) 

[tCm ,(t) + ( _ ) , . - l ( / _  l )C, .  1(1 - - t ) ]  + 

Co = 1. (23b) 
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C , , , = A , , , + ~ A  I IC.,  i = - B . , - t  BI--IC,,,  /, 
l I 

to list a few of  them. 
Using (23), we find 

Ao = CI) = 1, B o = -- 1, 

A, = ~ ( t - 2 ) ,  C, =~ ( t  + i), B1 = ~(2t - 1), 

A ~ = ~ ( 2 t 2 - 1 7 t + 1 7 ) ,  B2= - ~ ( 1 7 t 2 -  17t + 2). 

Cz = ~ ( 2 t 2 +  13t + 2 ) ,  

l 
C 3 -  3 �9 3 �9 5 �9 7 (t3 + 30t2 + 30t + 1). 

Concerning the general expression for C,., partial results like 

22,. + 1 C ; . ( 0 )  

Cm(O) -- (2m + 2)! '  Cm(0) - 

m + t  

Cm(1)=2~("+2)  ~ b2.b2(m+2 .) 
n = l  

b,, = [Bernoulli numbers[ [2], 

m + ~ ( 2  2m-  1), 
2 

( 2 2 " -  1 ) (22(m+2-" ) -  1) 

(2n)!(2(m + 2 - n))! 
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(23c) 

(23d) 

(24) 

(25) 

f~: = (sn(x + ~o~, ~/t))  -1, (26) 

f23 = (sn(x + col + co2, x/ t))  1 

A3 -- (sn(x -I- (-0 2 , N~)) 1 

where the z, have to satisfy 

(zl -- z2)f,2 =f23f ]3  + f ' 3 f ~ 3 ,  

(z2 - z3)f23 = - f , 2 f ] 3  - f '~2 f13 ,  (27) 

(z, -- z3)f ,  3 =fief;_3 --f{2f~-3" 

and the form of  the expansion found in [3] indicates that a manageable closed 
expression for C,.( t )  may be difficult to find. 

Let us now give a Lax pair for  the classical systems described by (1), with f ,  g, h 
as given in (20): 

m = 1, 0 < t < 1, f,, = f , ( q ,  - qj ) = - f j , .  

L = -t.'fl2 P2 tf23J, M = fi-~ z2 , i/~ = [M, L], 

- iL3  -if23 p3 /  \ f i 3  ,f~3 - 
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We can show that the z, may be taken to be of the form 

f"'J (28) z , =  • ~ , .  

The consistency condition for (27), however, yields (5), with f = f [ 2 ,  g =f~3, and 
h :f123 . 

Let us conclude by noting that our results extend to the case of  
N = NI + N2 + N3 particles, where (up to (6)) particles of  equal type interact via 
~(x)  while particles of  type (1, 2), (1, 3), (2, 3) interact via ~ ( x  + ~ol), ~ ( x  + 092), 
~ ( x  + 091 + ~2), respectively. 

Acknowledgement 

We would like to thank M. Bordemann, O. Eyal, W. Lang, O. Ogievetsky, and 
A. M. Perelomov for useful discussions. 

References 
1. Moser, J., Adv. Math. 16, 197 (1975); 

Calogero, F., Lett. Nuovo Cimento 13, 411 (1975); 
Olshanetsky, M. A. and Perelomov, A. M., Invent. Math. 37, 93 (1976). 

2. Gradshteyn, I. S. and Ryzhik, I. M., Tables of Integrals Series and Products, Academic Press, New 
York, 1965. 

3. Abramowitz, M. and Stegun, I. (eds), Handbook of Mathematical Functions, National Bureau of 
Standards, 1964. 

Note added: While this paper was in press, Martin Bordemann pointed out to us 
that H (as in (1), with (20)-(21))  is actually canonically equivalent to a model 
indicated in the second reference of  [1]. 


