
MAX-PLANCK-INSTITUT

FÜR
INFORMATIK

 	

� �
Synthesizing Semantics for Extensions of

Propositional Logic

Hans Jürgen Ohlbach

MPI–I–94–225 June 94

���
�

�� k

I N F O R M A T I K

Im Stadtwald

D 66123 Saarbrücken

Germany

Author’s Address

Hans Jürgen Ohlbach
Max–Planck–Institut für Informatik
Im Stadtwald
D-66123 Saarbrücken
F. R. Germany
email: ohlbach@mpi-sb.mpg.de

Acknowledgements

I would like to thank Dov Gabbay as well as my colleagues Andreas Nonnengart and Renate Schmidt for
very fruitful discussions.

This work was supported by the ESPRIT project 6471 MEDLAR and by the BMFT funded project
LOGO (ITS 9102).

Abstract

Given a Hilbert style specification of a propositional extension of standard proposi-
tional logic, it is shown how the basic model theoretic semantics can be obtained from
the axioms by syntactic transformations. The transformations are designed in such a
way that they eliminate certain derived theorems from the Hilbert axiomatization by
turning them into tautologies.

The following transformations are considered. Elimination of the reflexivity and
transitivity of a binary consequence relation yields the basic possible worlds framework.
Elimination of the congruence properties of the connectives yields weak neighbourhood
semantics. Elimination of certain monotonicity properties yields a stronger neighbour-
hood semantics. Elimination of certain closure properties yields relational possible
worlds semantics for the connectives.

Propositional logic as basis of the specification allows to turn those parts which
are not eliminated into second–order predicate logic (PL2) formulae. In many cases
these formulae can be simplified to an equivalent first–order predicate logic (PL1)
formula which describes the corresponding frame property. All transformations work
for arbitrary n-place connectives. The steps can be fully automated by means of PL1
theorem provers and quantifier elimination algorithms. The meta theory guarantees
that all transformation steps are sound and complete. As a by–product, translations
into multi–modal logic are developed.

Key Words: Logic, Transformations, Semantics

Contents

1 Introduction 3

2 Transformation Operations 6
2.1 K-Transformations . 6
2.2 Quantifier Elimination . 9

3 A Test Example 10

4 The Transformations 11
4.1 Reflexivity and Transitivity . 11
4.2 Congruence Properties . 12

4.2.1 Sets as Neighbourhoods . 14
4.2.2 Binary Neighbourhood Relations . 15

4.3 Monotonicity Properties . 16
4.4 Transformations Based on Stone’s Representation Theorem 18
4.5 Closure Properties . 19
4.6 Binary Accessibility Relations . 23
4.7 Truth Value Semantics . 25

5 The Semantics Generation Procedure 27

6 Summary 28

A Appendix: Proofs for the Test Example 31

2

1 Introduction

Logics can be defined in various ways. The most abstract way is by means of a Hilbert system. A
Hilbert system is a kind of grammar. It specifies how to enumerate all formulae to be considered
as theorems. For encoding vague notions, like “knows”, “believes” and “wants”, a Hilbert style
axiomatization is usually the method of choice because in Hilbert systems their properties can be
expressed in a very abstract and intuitive way. Proving theorems in Hilbert systems, however, is
extremely inefficient. It involves enumerating the theorems until the formula under consideration
is eventually obtained. (Lemma A.2, for example, gives a good impression what theorem proving
from Hilbert axioms means.)

One reason for developing an alternative to Hilbert systems is the desire to get more efficient
calculi. Another reason is to understand the logic better by bringing properties to the surface
which are sometimes very deeply hidden. Who, besides Lukasiewics, would for example guess that
the Hilbert axiom

(p → q) → r) → ((r → p) → (s → p)) (1)

together with the rule: from p and p → q infer q (2)

specify the implicational fragment of propositional logic [Luk70, p. 295]? An alternative way to
describe a logic is by mapping the syntactic constructs to a (hopefully) simple and well understood
mathematical structure, a Boolean algebra or more generally, a structure, i.e. a set with relations
and functions defined over this set. The mapping must include an interpreter or a satisfiability
relation for evaluating the truth value of a given formula in the structure. Typical examples for this
semantical description of a logic are Tarski’s set theoretic semantics for predicate logic or Kripke’s
possible worlds semantics for modal logic [Kri59, Kri63].

The usual way the correlations between the axiomatic description and the semantics are pre-
sented is: the axioms and the semantics are defined and soundness and completeness are proved.
Soundness and completeness guarantee that a formula is a theorem in the axiomatic description
if and only if it is a valid formula in the semantics. Finding an appropriate semantic structure,
however, is nontrivial and requires experience and intuition. The purpose of this paper is to over-
come this problem and to show how the process of finding a semantics can be automated to a large
extend. The long–term goal of this work is the development of a logic engineering workbench where
application oriented logics can be specified on a very abstract level and the investigation of the so
defined logic can be left to the computer.

As examples for semantics of a logic consider the different versions of the semantics of modal
logic. Common to all of them is the possible worlds framework as basic semantic structure. Each
possible world determines the interpretation of the propositional variables and the classical con-
nectives in the usual way. The interpretation of formulae with non–classical operators is defined in
terms of relations or functions connecting the worlds. The weakest semantics for modal logic is the
(weak) neighbourhood semantics (also called minimal model semantics [Che80]). Each world has
sets of worlds as ‘neighbourhoods’. A formula 2p is true in a world w iff the truth set of p, i.e. the
set of worlds where p is true, is among w’s neighbourhoods. This semantics satisfies the ME rule,
p⇔ q implies 2p⇔2q, but no stronger axiom or rule. In strong neighbourhood semantics, 2p is
true in a world w iff one of w’s neighbourhoods is a subset of p’s truth set. Strong neighbourhood
semantics satisfies a monotonicity property: p⇒ q implies 2p⇒2q. The next stage is the well
known Kripke semantics with a binary accessibility relation. But this is not the end of the story.
For example, modal logic S5 has a semantics in terms of an accessibility relation with the extra
condition that the accessibility condition is an equivalence relation. This condition guarantees that
the S5 axioms hold. An alternative semantics for S5 has the truth condition for the 2–operator:
2p is true in a world iff p is true everywhere. In this semantics without accessibility relation, all
S5 axioms are tautologies.

Each version of the semantics consists of two parts. The basic semantics contains just the defi-
nition of the primitive notions, neighbourhood relations or accessibility relations for example, and
the satisfiability relation. The possible worlds together with the relations and functions operating
on them are usually called frames.

3

The second part of the full specification of the semantics restricts the class of semantic structures
by imposing constraints on the frames (so called frame conditions) and sometimes by restricting
the assignment of truth values to the propositional variables. Modal logic T, for example is charac-
terized by restricting the class of frames to those with reflexive accessibility relations. Intuitionistic
logic as another example has a restriction on the assignment of propositional variables: if p is true
in a world w then it remains true in all words accessible from w.

Each part of the semantics validates a certain part of the Hilbert axioms. The basic seman-
tics of normal modal logic with binary accessibility relation for example validates the K-axiom
2(p⇒ q) ⇒ (2p⇒2q) and the Necessitation rule: from p infer 2p. The reflexivity condition on
the accessibility relation validates the axiom 2p⇒ p. Obviously, there is a hierarchy of semantics.
A semantics S1 is stronger than a semantics S2 if the basic part of S1 validates more axioms than
the basic part of S2. A semantics is optimal for a Hilbert system if all axioms are validated in the
basic part and no extra conditions are needed.

The questions we address in this paper are: where do these semantic notions, possible worlds,
neighbourhoods, accessibility relations, satisfiability relations etc. come from? Is their invention
really a creative act, or is there a systematic way to obtain them directly from the Hilbert axioms?
The second question is, can one compute the frame conditions, i.e. the restrictions on a given
semantic structure corresponding to Hilbert axioms with an automatic procedure? To answer
these questions I proceed as indicated in the following picture.

- -�
�
�

�
��3

Q
Q
Q

Q
QQs

HS PL1(HS)
Transformation

Υ(PL1(HS))

Transformation
rules Υ

semantics definitions
of the connectives

= frame conditions

=

We begin with an arbitrary Hilbert system HS. Using first–order predicate logic as meta logic,
the first step is to encode HS in PL1. In the PL1 axiomatization PL1(HS), the logical connectives
are encoded as function symbols and formulae are encoded as terms. The propositional variables
in Hilbert axioms are placeholders for arbitrary formulae. Therefore they become universally
quantified variables in PL1(HS). Actually we need a PL1 axiomatization of the Hilbert system
in terms of a binary consequence relation ⊢2. p ⊢2 q means q is derivable from p1.

The key observation underlying my approach for systematically finding a semantics comes from
automated theorem proving. In order to prove a conjecture from assumptions, one need not perform
the proof directly, but we can transform assumptions and conjectures and prove the transformed
conjectures from the transformed assumption, provided the transformation Υ guarantees

assumption⇒ conjecture iff Υ(assumption) ⇒ Υ(conjecture). (3)

The working hypothesis of this paper is therefore

The semantics of an axiomatically defined logic is the result of a carefully designed
transformation of predicate logic formulae. The transformation rules represent the in-
terpretation function and the non–tautologous transformed Hilbert axioms are the frame
conditions.

An optimal transformation turns all axioms into tautologies. In this case, proving a theorem φ
from HS reduces to proving Υ(φ) without any additional assumptions. The guideline for finding
a good transformation is therefore the intention to turn axioms into tautologies, or to make them
in some other way redundant.

1If the Hilbert system is originally specified with a unary ‘provability’ predicate ⊢1, the deduction theorem p ⊢2
q iff ⊢1 (p → q) can be used to translate it into the formulation with a binary consequence relation. This, however,
excludes axiomatizations in terms of the provability predicate where the top–level connectives of the formulae are
not some sort of implication.

4

Ideally one would like to have a procedure Trans Gen which, given a formula φ as input,
computes a transformation Υφ with property (3) such that Υφ(φ) = true. If PL1(HS) consists
of the formulae φ1, . . . , φn one would compute Υφ1 = Trans Gen(φ1), get φ′

i = Υφ1(φi) for
i = 2, . . . , n, compute Υφ′

2
= Trans Gen(φ′

2), apply it to φ′
3, . . . , φ

′
n and repeat the process until

all axioms are turned into tautologies. And, in fact, in [OGP94], we sketch such a procedure
Trans Gen. Unfortunately this idea does not work in general. The reason is that Υ may produce
an infinite conjunction of formulae, and then the process does not terminate. But even if this
method worked, it would not be very satisfactory because we do not want any transformation,
but a transformation that gives some insight into the structure of the logic. I therefore propose
an approach which is restricted to a certain class of logics, but gives better results for them. The
idea is to develop transformations for very concrete formulae or formula schemas. For each given
Hilbert system, we then check which of the formulae out of our database of formulae with known
transformations is a theorem. That means we decompose

PL1(HS) ⇔ φ1 ∧ . . . ∧ φk ∧ rest

and for the φi we develop transformations once and for all. The transformations for φ1 ∧ . . . ∧ φk

specify the basic semantics and the transformation of the rest gives the frame conditions. The
properties φi investigated in this paper are the n–place connective versions of the following four
properties of a one–place 2–operator, formulated with a binary consequence relation ⊢2.

φ1 = reflexivity and transitivity of ⊢2
φ2 = p ⊢2 q ∧ q ⊢2 b⇒2p ⊢2 2q (ME rule)
φ3 = p ⊢2 q ⇒2p ⊢2 2q (monotonicity)
φ4 = w ⊢2 2p ∧ w ⊢2 2q ⇒ w ⊢2 2(p ∧ q). (closure property)

These properties are of a very basic nature. They hold in many logics. The transformations
we have developed for φ1 to φ4 reconstruct the well known semantic structures. φ1 gives rise to
the basic possible worlds framework and the satisfiability relation. Elimination of φ2 reconstructs
weak neighbourhood semantics, elimination of φ3 reconstructs strong neighbourhood semantics,
and finally, φ4 is responsible for the usual accessibility relation.

Although in this paper, only these four properties are investigated, the technique for finding
the transformations is not restricted to these cases. Following our recipe, it should not be too
difficult to extend the results to other properties.

Since the transformations for φ1 to φ4 are sound and complete (property (3)), each given Hilbert
system for which some of the φi have been proved can be transformed, and we are guaranteed that
a transformed theorem follows from the transformed Hilbert system if and only if it follows from
the original system. This gives us a general soundness and completeness result for the whole class
of logics with these properties φi. Proving the φi from a given Hilbert system is usually nontrivial.
But fortunately it is a pure PL1 theorem proving problem which can be solved with an automated
theorem prover.

As we shall see, the result of the transformation of a Hilbert system is an axiomatization of
the corresponding frame properties. A considerable simplification of the axioms describing the
frame properties is possible if a propositional logic is part of the axiomatization. The Lindenbaum
algebra of a propositional logic is a Boolean algebra, which, by Stone’s representation theorem, is
isomorphic to a field of sets. This property can be exploited to turn formula variables, which in the
PL1 formulation are ordinary variables ranging over some domain, into set variables ranging over
the powerset of the set of ‘worlds’. Each such set can be correlated with a formula which is valid
exactly at this set. Thus, ordinary variables become formula variables. By this transformation the
Hilbert axioms which do not become tautologies become second–order predicate logic formulae.
In many cases, however, these PL2 formulae are equivalent to PL1 formulae describing properties
of the neighbourhood or accessibility relations. Thus, we have a two-step transformation. The
first step translates the original Hilbert axiom into a PL1 formula. The original formula variables
are ordinary PL1 variables. The transition to PL2 turns these variables into predicate variables.
In the second step the predicate variables are completely eliminated by a quantifier elimination
procedure and an equivalent PL1 formula is computed – if there is one. This formula specifies a

5

frame property. That means the correspondence problem [vB84], i.e. the problem of finding for
a given Hilbert axiom a corresponding property at the semantic level, reduces to the problem of
finding for a PL2 formula an equivalent PL1 formula. This problem can in many cases be solved
with a quantifier elimination algorithm. The algorithm we have developed for this purpose [GO92a]
is briefly described in Section 2.2.

PL2 formulae without PL1 equivalents specify so–called incomplete logics. Since the transition
to PL2 formulae which turns ordinary variables into predicate variables is not mandatory, we still
have a way to deal with these incomplete systems.

The transformation techniques are described in the next section. Section 4 is the main section
of the paper. The particular transformations are introduced for arbitrary n-place connectives and
soundness and completeness is proved. In order to illustrate the various aspects of the method
and to demonstrate that the investigation of a concrete Hilbert system can be automated, we use
a very complicated test example. For proving the key lemmas for this test example we used the
Otter theorem prover. All proofs are listed in the Appendix.

Warning!

In this paper we use predicate logic as meta logic for the ‘object logic’ we want to investigate.
Therefore there are two kinds of semantics involved. The standard semantics of predicate logic is
needed when we talk about the general mechanisms and verify our methododology. The semantics
of the object logic, on the other hand, is the result of the transformations of the Hilbert system.
This should not be mixed up.

2 Transformation Operations

The transformations needed to synthesize the semantics follow essentially the same few schemas,
K-transformations [OGP94] and quantifier elimination [GO92a]. A short overview of both is given
in this section.

2.1 K-Transformations

To illustrate the basic idea of K-transformations2, suppose we have some set Φ of axioms which,
among other things, axiomatize a reflexive and transitive relation R, i.e.

∀x R(x, x) (4)

∀x, y, z R(x, y) ∧R(y, z) ⇒R(x, z) (5)

are either contained in Φ or derivable from Φ, and we want to get rid of the reflexivity and
transitivity of R.

In order to show that a formula C is entailed by Φ, one usually tries to refute Φ ∧ ¬C. Before
the refutation is actually started, every transformation on Φ ∧ ¬C which preserves satisfiability
and unsatisfiability is allowed. Skolemization of existential quantifiers is a typical example of a
routinely applied transformation which preserves satisfiability and unsatisfiability, but not logical
equivalences.

The translation we propose for eliminating reflexivity and transitivity of R exploits that these
two properties together imply

∀x, y R(x, y) ⇔ (∀w R(w, x) ⇒R(w, y)). (6)

To see this, suppose R(x, y) and R(w, x) hold. By transitivity, R(w, y) also holds, i.e. the “⇒”–part
is shown. For the “⇐”–part, take w = x and use the reflexivity of R to derive R(x, y).

2‘K-transformation’ is short for ‘Killer transformation’. These transformations ‘kill’ certain properties from
axiomatizations.

6

Since (6) is entailed by Φ, we could add it to Φ ∧ ¬C without loosing satisfiability or unsatis-
fiability. However, instead of (6), we add

∀x, y R(x, y) ⇔ (∀w R′(w, x) ⇒R′(w, y)) (7)

to Φ ∧ ¬C where R′ is a new predicate symbol. Clearly, if Φ ∧ ¬C is satisfiable then Φ ∧ ¬C ∧ (7)
is also satisfiable: the interpretation of R′ can be chosen to be the same as the interpretation of R.
In this case (7) is equivalent to (6), which follows from Φ. Thus, (7) is also true in the extended
interpretation. On the other hand, if Φ ∧ ¬C ∧ (7) is satisfiable then certainly Φ ∧ ¬C is satisfiable
as well.

But now we have a definition of R in terms of R′ where R′ is an uninterpreted new predicate
symbol. In the next step, (7) is used as a rewrite rule from left to right, replacing all occurrences
of R in Φ ∧ ¬C by the formula with R′. We obtain the transformed formula Φ′ ∧ ¬C ′ ∧ (7) with
R′ in place of R. This is a terminating equivalence preserving transformation.

What happens to the reflexivity and transitivity of R? ∀x R(x, x) becomes ∀x ∀w R′(w, x) ⇒
R′(w, x) which is a tautology (by the reflexivity of “⇒”). The transitivity (5) becomes
∀x, y, z (∀w R′(w, x) ⇒R′(w, y)) ∧ (∀w R′(w, y) ⇒R′(w, z)) ⇒ (∀w R′(w, x) ⇒R′(w, z)) which is
also a tautology (by the transitivity of ⇒). Thus, R′ need neither be reflexive nor transitive.

Nothing would have been gained if the definition (7) of R, could not be removed afterwards.
That means we have to show that Φ′ ∧ ¬C ′ ∧ (7) is satisfiable if and only if Φ′ ∧ ¬C ′ is satisfiable.
Since Φ′ ∧ ¬C ′ does not contain R any more, we can always find an interpretation for R, using (7)
as definition. Therefore each model for Φ′ ∧ ¬C ′ can be extended to a model for Φ′ ∧ ¬C ′ ∧ (7).
Thus, (7) can be eliminated. Φ′ ∧ ¬C ′ is the final result of our transformation.

A small example illustrates how this works. Suppose, besides transitivity of R we have the
facts

R(a, b) ∧R(b, c) ∧R(c, d)

From this, R(a, d) can be derived. The transformed formulae are:

∀w R′(w, a) ⇒R′(w, b)
∀w R′(w, b) ⇒R′(w, c)
∀w R′(w, c) ⇒R′(w, d).

The negated and transformed theorem is ¬∀w R′(w, a) ⇒R′(w, d) which is normalized to R′(e, a)
∧ ¬R′(e, d) where e is a Skolem constant. The transformed formulae can now be refuted without
transitivity of R′3.

What has actually happened is that the role of the reflexivity and transitivity of R has been
taken over by the reflexivity and transitivity of the implication connective. Many other examples
of K-transformations are of a similar kind. The built in properties of predicate logic take over the
role of special properties of non–logical symbols.

The General Transformation Procedure

The general procedure for transforming formulae Φ in a consistent way, i.e. without loosing satis-
fiability or unsatisfiability, consists of the following sequence of steps

extension transformation elimination
Φ → Φ ∧ transformer → Φ′ ∧ transformer → Φ′

where ‘transformer’ is a formula of the kind

Left⇔Right. (8)

(7) is an example for (8). The ‘extension’ step involves finding the transformer. In general this
is still a creative step. In [OGP94], however, we describe methods for automating this step to a

3In [OGP94] we optimize the transformation for reflexivity and transitivity. If reflexivity is kept and R is not
renamed, then only the positive R–literals need to be transformed. For the purposes of this paper, however, this
optimization is irrelevant.

7

certain extend. The actual transformation is done in the ‘transformation’ step. In the simplest case
the transformation strategy is just definitional replacement where (8) is used as rewrite rule form
left to right. It can, however, also be a much more complex combination of rewriting, inferencing
and deleting formulae. In the elimination step we delete the transformer. Since removing formulae
can turn unsatisfiable formula sets into satisfiable sets, this is also a nontrivial step which has to
be justified. To ensure that the transformation is satisfiability preserving, which is sufficient to do
theorem proving by refutation, the following lemmas have to be proved.

Definition 2.1 (Transformation Lemmas)
The extension lemma proves that satisfiability of Φ implies satisfiability of Φ ∧ transformer.
The transformation lemma proves that Φ ∧ transformer is satisfiable if and only if Φ′ ∧ transformer
is satisfiable, where Φ′ is the transformed version of Φ.
The elimination lemma proves that satisfiability of Φ′ implies satisfiability of Φ′ ∧ transformer. <

Lemma 2.2 (Faithfulness)
A K-transformation for which the extension lemma, the transformation lemma, and the elimina-
tion lemma have been proved, preserves satisfiability and unsatisfiability. We call this a faithful
transformation. It is sound and complete. <

There are standard cases of transformations which occur quite frequently. For these cases we
can prove some of the lemmas once and for all. In an actual case, it has only to be checked whether
the transformer is one of these standard types.

Definition 2.3 (Renamed Transformer)
A transformer Left⇔Right is called a renamed transformer for a formula Φ iff there is a formula
Left⇔Right0 entailed by Φ and Right is obtained from Right0 by renaming constant, function,
predicate symbols and sorts with new symbols not occurring in Φ. Different occurrences of the
same symbol in Right0 may be renamed differently. Left⇔Right0 is called the basis of the
transformer. <

Lemma 2.4 (Extension Lemma for Renamed Transformers)
The extension lemma (Def. 2.1) holds for renamed transformers. <

The proof of the extension lemma for this type of transformers amounts to proving that the
basis Left⇔Right0 follows from Φ. This is a standard theorem proving task which can be done
with automated theorem provers.

The transformer (7) for the elimination of reflexivity and transitivity is an example for a
renamed transformer. The proof of Left⇔Right0, i.e. (6) is trivial in this case.

As we have seen in the example with reflexivity and transitivity, the renamed predicate R′

need not be reflexive or transitive any more. An important observation is, however, that we can
assume that the renamed symbols have some or all properties of the original symbols. The proof
showing that there is an interpretation for (7) just interpreted R′ like R, and therefore R′ has R’s
properties in this interpretation. Thus, we are free to add suitable axioms for R′ without changing
satisfiability or unsatisfiability.

In the class of transformers specified in the next definition, the transformation process itself is
reduced to a simple rewriting operation.

Definition 2.5 (Rewriting Transformers)
A transformer ∀x1, . . . , xn R(x1, . . . , xn) ⇔Right where R does not occur in Right, is called a
rewriting transformer. The transformation strategy for rewriting transformers is just definitional
replacement, i.e. all occurrences R(s1, . . . , sn) are replaced with the corresponding instances of
Right. <

Lemma 2.6 (Transformation Lemmas for Rewriting Transformers)
The transformation lemma and the elimination lemma (Def. 2.1) hold for rewriting transformers.

<

8

Renamed rewriting transformers are the simplest transformers of all. The only thing which
has to be proved for this class of transformers is that the basis Left⇔Right0 for the transformer
follows from Φ. The transformer (7) turns out to be of this simple type.

The next class of transformers is of a more general nature. It allows us to exploit completeness
results for special inference strategies, as for example ordered resolution. (24) is an example for a
transformer of this kind.

Definition 2.7 (Saturation Transformers)
A transformer Left⇔Right is called a saturation transformer for the formula Φ if there is a
refutation complete deduction strategy and it can be shown that according to this strategy only
finitely many inferences between the transformer itself and the formulae in Φ are possible.
Φ is transformed by drawing all inferences between the transformer and Φ, this strategy allows.
Redundant formulae which are no longer necessary for finding a contradiction are removed. <

Lemma 2.8 (Transformation Lemmas for Saturation Transformers)
The transformation lemma and the elimination lemma (Def. 2.1) hold for saturation transformers.

<

The formula Φ which is transformed usually consists of the two parts, the assumption and
the negated onjecture. At the time of the development of the K-transformation, usually only
the assumption is known. Therefore the transformation lemma has to be proved for all potential
conjectures. Alternatively one can specify the class of admissible conjectures for which the K-
transformation works.

2.2 Quantifier Elimination

In [GO92a] we have developed an algorithm which can compute for second–order formulae of the
kind ∃P1, . . . , Pk Φ where Φ is a first–order formula, an equivalent first–order formula — if there
is one. Since ∀P1, . . . , Pk Φ ⇔¬∃P1, . . . , Pk ¬Φ, this algorithm can also be applied to universally
quantified predicate variables. Related methods can also be found in [Ack35a, Ack35b, Ack54,
Sza92, BGW92, Sim94].

The definition of the algorithm is:

Definition 2.9 (The SCAN Algorithm)
Input to SCAN is a formula α = ∃P1, . . . , Pn Φ with predicate variables P1, . . . , Pn and an arbitrary
first–order formula Φ.
Output of the SCAN — if it terminates — is a formula φα which is logically equivalent to α, but
not containing the predicate variables P1, . . . , Pn.
SCAN performs the following three steps:

1. Φ is transformed into clause form.

2. All C–resolvents and C–factors with the predicate variables P1, . . . , Pn have to be generated.
C–resolution (‘C’ for constraint) is defined as follows:

P (s1, . . . , sn) ∨ C P (. . .) and ¬P (. . .)
¬P (t1, . . . , tn) ∨D are the resolution literals
C ∨D ∨ s1 ̸= t1 ∨ . . . ∨ sn ̸= tn

and the C-factorization rule is defined analogously:

P (s1, . . . , sn) ∨ P (t1, . . . , tn) ∨ C
P (s1, . . . , sn) ∨ C ∨ s1 ̸= t1 ∨ . . . ∨ sn ̸= tn.

.

Notice that only C-resolutions between different clauses are allowed (no self resolution). A
C-resolution or C-factorization can be optimized by destructively resolving literals x ̸= t
where the variable x does not occur in t with the reflexivity equation. C–resolution and

9

C–factorization takes into account that second–order quantifiers may well impose conditions
on the interpretations which must be formulated in terms of equations and inequations.

As soon as all resolvents and factors between a particular literal and the rest of the clause set
have been generated (the literal is ‘resolved away’), the clause containing this literal must be
deleted (purity deletion). If all clauses are deleted this way, this means that α is a tautology.

All equivalence preserving simplifications may be applied freely. If an empty clause is gener-
ated, this means that α is contradictory.

3. If the previous step terminates and there are still clauses left then reverse the Skolemization.
<

The SCAN algorithm is correct in the sense that its result is logically equivalent to the input
formula. It cannot be complete, i.e. there may be second–order formulae which have a first–order
equivalent, but SCAN cannot find it. An algorithm which is complete in this sense cannot exists,
otherwise the theory of arithmetic would be enumerable.

The points where SCAN can fail to compute a first–order equivalent for α are (i) the resolution
does not terminate and (ii) reversing Skolemization is not possible. In the second case there is a
(again second–order) solution with existentially quantified Skolem functions.

3 A Test Example

For illustrating the various transformation steps, we use a test example. It is a propositional logic
extended with two more operators. The first one is a binary connective ; as an example for a
non–classical implication operator. ; is axiomatized with a variant (12) of the Lukasiewics axiom
(1) and its own version of Modus Ponens (13) below, both formulated with the binary consequence
relation.

Since, by the deduction theorem, the binary consequence relation corresponds to the propo-
sitional implication →, (12) is not precisely the Lukasiewics axiom. The difference is that the
top–level connective definitely is the propositional implication. For the connective ; we pretend
for the moment not to know anything besides the axioms. The result of our analysis should of
course be that this connective is in fact also propositional implication.

The second connective in our test example is the modal 2–operator. The 2–operator is axioma-
tized with the K-axiom and the Necessitation rule. Thus, we should be able to reproduce standard
relational possible worlds semantics. To make things more interesting, however, the K-axiom is
not formulated with the known propositional implication →, but with the new connective ;. The
semantics of the 2–operator therefore depends on the semantics of the ;–connective.

Example 3.1 (Our Main Test Example)
We use the following seven formulae as our test example. The first three formulae axiomatize
propositional logic. They are not important. Any other axiomatization of propositional logic
would do as well. The next two axioms formalize our “new” connective ;. We pretend not to
know anything more about it. The last two formulae axiomatize the modal 2–operator. (14) is a
formulation of the Necessitation rule ‘⊢1P implies ⊢12P ’ in terms of the binary consequence relation.
(15) is a version of the K-axiom, formulated with the ‘unknown’ connective ;.

∀p, q, r, s ((p → q) → r) ⊢2 ((r → p) → (s → p)) (9)

∀p, q, r, s p ⊢2 q ∧ (p → q) ⊢2 (r → s) ⇒ r ⊢2 s (10)

∀p ⊥ ⊢2 p (11)

∀p, q, r, s ((p; q) ; r) ⊢2 ((r; p) ; (s; p)) (12)

∀p, q, r, s p ⊢2 q ∧ (p; q) ⊢2 (r ; s) ⇒ r ⊢2 s (13)

∀p (∀q q ⊢2 p) ⇒ (∀q q ⊢2 2p) (14)

∀p, q 2(p; q) ⊢2 (2p;2q). (15)

10

<

In the sequel let A1 be the initial Hilbert system for the logic L we want to investigate. The set
consisting of (9) to (15) is an example for A1. The 2–operator as part of the test example shows
the correspondence between the techniques developed in this paper and the well known facts about
modal logic. The generalization of the semantics construction from a one–place operator like 2

to an non–classical n-place operator is illustrated with the binary ; connective. I recommend
the reader to follow this example carefully and in particular to compare the development of the
semantics for the 2–operator with the standard methods you can find in the literature, for example
in [Che80].

We use a many–sorted version of PL1 [Wal87] and we assume that the variables which are to
be understood as formula variables are of sort F (for Formula). In most cases we use the letters
p, q, r, s for formula variables without explicitly annotating them with the sort symbol F .

4 The Transformations

In this section, which is the main section of the paper, the transformation process is described.
The transformations are designed to eliminate properties of A1, or more precisely, absorb these
properties into the properties of our meta logic, predicate logic. First we eliminate the reflexivity
and transitivity of ⊢2. This transformation introduces the basic possible worlds framework and the
satisfiability relation. In the second and third step, the congruence properties and the monotonicity
properties of the connectives are eliminated. This gives rise to so–called neighbourhood semantics.
Finally in the last step certain closure properties are eliminated and we reconstruct possible worlds
semantics with n + 1–ary accessibility relations for n–place connectives.

4.1 Reflexivity and Transitivity

To start with, we want to eliminate reflexivity and transitivity of the consequence relation ⊢2.
The method for eliminating reflexivity and transitivity has been explained in Section 2.1. The
transformer is ∀p, q p⊢2 q ⇔ (∀w w |=L p⇒ w |=L q). But we can go a step further and introduce a new
sort W for the variable w. The first one of our sequence of transformers is therefore for all p, q:

T1: p ⊢2 q ⇔ (∀w:W w |=L p⇒ w |=L q) (16)

which is still a renamed rewriting transformer and therefore sound and complete.
We want to interpret the sort W as the set of ‘worlds’ in a possible worlds semantics and

the predicate |=L as the satisfiability relation. The intended reading for (16) is therefore really ‘q
is entailed by p iff q is true in all worlds satisfying p’. But for the moment (16) is still to be
understood as an ordinary predicate logic formula.

Completeness of T1 gives us our first completeness lemma.

Lemma 4.1 (Completeness Lemma for Possible Worlds)
If A1 implies reflexivity and transitivity of ⊢2 then for every formula φ: A1 entails φ iff A2 =defT1(A1)
entails T1(φ). <

Notation: Frequently we will use the following notation: Instead of w |=L p we write w ∈ |p|.
Syntactically, this is just an abbreviation. It allows us to abbreviate formulae ‘∀w w |=L p⇒ w |=L q’
by ‘|p| ⊆ |q|’ and formulae ‘∀w w |=L p⇔ w |=L q’ by ‘|p| = |q|’. Semantically, however, this |...|
notation has a particular meaning. |...| can be understood as a function mapping domain elements
to sets: |p| =def {w | (w,ℑ(p)) ∈ ℑ(|=L)} where ℑ is any predicate logic interpretation. On the level
of predicate logic semantics, defined by some ℑ, expressions like w ∈ |p| and |p| ⊆ |q| and |p| = |q|
are to be understood literally. As we shall see in Subsection 4.4, under certain circumstances, |=L
can be interpreted as membership relation. In this case this abbreviating notation is equivalent to
the original notation.

11

The methods discussed in this paper work for arbitrary n–place connectives. To simplify
notation we therefore use p⃗ as an abbreviation for p1, . . . , pn where n is the arity of the connectives
under consideration.

As proved in Lemma A.1 and A.2 in the Appendix, the consequence relation in our test example
(3.1) is in fact reflexive and transitive ands therefore the transformer T1 is applicable. If we apply
the transformer T1 to the last four axioms of our test example, we obtain

∀p, q, r, s ∀w:W w |=L ((p; q) ; r) ⇒ w |=L ((r ; p) ; (s; p))

∀p, q, r, s (∀w:W w |=L p⇒ w |=L q) ∧ (∀w:W w |=L p; q ⇒ w |=L r ; s)

⇒ (∀w:W w |=L r⇒ w |=L s)

∀p (∀q ∀w:W w |=L q ⇒ w |=L p) ⇒ (∀q ∀w:W w |=L q ⇒ w |=L 2p)

∀p, q ∀w:W w |=L 2(p; q)) ⇒ w |=L (2p;2q).

Obviously these formulae are no tautologies. Therefore we have to go on and find stronger trans-
formations.

4.2 Congruence Properties

After having eliminated reflexivity and transitivity of ⊢2, we now attack certain congruence proper-
ties. As we shall see, eliminating these properties on the syntactic side introduces neighbourhood
semantics (also called minimal model semantics [Che80]) on the semantic side.

Assumption: In the sequel we assume that ⊢2 is the only predicate symbol occurring in A1. In
this case only literals w |= t where w is a variable occur in A2. Furthermore, we assume that all
formula variables in A1 are universally quantified.

The congruence properties we want to eliminate are

∀p⃗, q⃗
∧

i(pi ⊢
2 qi ∧ qi ⊢2 pi) ⇒ f(p⃗) ⊢2 f(q⃗). (17)

For verifying (17) from A1, it can be split into individual lemmas for each argument position.

∀p, q (p ⊢2 q ∧ q ⊢2 p) ⇒∀s⃗, s⃗′f(s⃗, p, s⃗′) ⊢2 f(s⃗, q, s⃗′). (18)

The instances of (18) for our test example are

∀p, q (p ⊢2 q ∧ q ⊢2 p) ⇒∀s p; s ⊢2 q ; s) (19)

∀p, q (p ⊢2 q ∧ q ⊢2 p) ⇒∀s s; p ⊢2 s; q (20)

∀p, q (p ⊢2 q ∧ q ⊢2 p) ⇒2p ⊢2 2q. (21)

The proofs for these formulae are also listed in the Appendix (Lemmas A.3, A.4, A.5). The
congruence property (21) for the 2–operator corresponds to the well known ME rule, ⊢1(P ⇔Q)
implies ⊢1(2P ⇔2Q), which is the only rule required for classical modal systems.

The transformer T1 translates the congruence properties (17) for the connectives f into

∀p⃗, q⃗
∧

i(∀w:W w |=L pi ⇔ w |=L qi) ⇒ (∀w:W w |=L f(p⃗) ⇒ w. |=L f(q⃗)) (22)

A straightforward proof from this yields for all p⃗, w:

w |=L f(p⃗) ⇔ ∃x⃗:W w |=L f(x⃗) ∧
∧

i ∀v:W v |=L xi ⇔ v |=L pi (23)

as the basis for the next K-transformation, a renamed transformer (Def. 2.3), which is, for all p⃗, w:

T2: w |=L f(p⃗) ⇔∃x⃗:S Nf (w, x⃗) ∧
∧

i ∀v:W Ri
f (xi, v) ⇔ v |=L pi. (24)

Here we take advantage of the fact that different occurrences of a predicate may well be renamed
differently in a renamed transformer. The ‘w |=L f(x⃗)’ occurrence is renamed to Nf (w.x⃗) and the

12

‘v |=L xi’ occurrence is renamed to Ri
f (xi, v). This is the fist place where we introduced relations

between worlds as new semantic structures. It is easy to check that T2 in fact turns the congruence
properties (22) into tautologies.

The instances of (24) for our test example are:

w |=L (p; q) ⇔∃x, y:S N;(w, x, y) ∧ (∀v:W R1
;(x, v) ⇔ v |=L p) ∧

(∀v:W R2
;(y, v) ⇔ v |=L q) (25)

w |= 2p⇔∃x:S N2(w, x) ∧ (∀v:W R2(x, v) ⇔ v |=L p). (26)

Lemma 4.2 (Soundness and Completeness of the Transformer T2)
If A2 implies the congruence properties (22) for all functions f and as transformation strategy,
rewriting with T2 until all occurrences of the connectives disappear, is chosen, then the extension,
the transformation and the elimination lemmas (Def. 2.1) hold.

Proof : Extension Lemma: This lemma holds because the sort symbol S can be interpreted like W ,
Nf (w, x⃗) can be interpreted as w |=L f(w, x⃗), Ri

f (xi, v) can be interpreted as v |=L xi and then (24)
is true in the extended model because (23) is.

Transformation Lemma: Unfortunately the transformer T2 is no longer a simple definition for a
predicate. The left hand side is of the form w |=L f(p⃗), where w and the pi are variables. Since,
by the first transformer T1, all literals in A2 are of the form v |=L f(s⃗) where v is a variable and
the si are terms, the transformers can also be applied as rewrite rules. Due to the structure of the
transformers’ right hand sides, each rewrite step eliminates one occurrence of a connective at a
time. Furthermore, because there is a transformer for every connective f , eventually all occurrences
of the connectives are eliminated. We end up with formulae A3 containing only literals with the
Nf and Ri

f predicates with variables as their arguments, and literals v |=L pi where the pi are the
original variables. So far, this is an equivalence transformation which does not affect the models
at all.
Elimination Lemma: Although there are further inferences possible between the transformers and
A3, we can delete the transformers now without changing the satisfiability or unsatisfiability. The
argument is proof theoretic. We show that there is a complete inference strategy which does not
allow to draw any further inferences with the transformers in this particular case. The completeness
of the strategy then guarantees that the transformers are useless.
The strategy we use is ordered resolution with elimination of redundant clauses [BG90]. Ordered
resolution requires the definition of an ordering on literals. Only resolvents between the biggest
literals in a clause need to be generated and we still have a complete procedure. The redundancy
criterion, Bachmair and Ganzinger [BG90] have shown to be complete is: inferences are redundant
if the inferred clause follows from smaller (in the given ordering) clauses.
If we choose the ordering such that literals with the connectives f are bigger than the other literals,
we immediately see that no resolvents with literals at the right hand side of the transformers are
generated. These literals are smaller than the literal at the left hand side.
But there are still resolutions possible between the literals w |=L f(p⃗) from the left hand sides of the
transformers and literals v |=L p in A3, where p is a variable. We have assumed that these variables
are of the basic domain sort F (for ‘Formula’). That means, there are quantifications ∀p:F It
is well known that sorts can be written as one–place predicates. Instead of ∀p:F . . ., one writes
∀p F (p) ⇒ Now we assume this syntactic form for A3 and extend the ordering by requiring
that literals F (f(...)) are bigger than any other literals. Since the first rewrite step eliminates all
occurrences of connectives in A3, there are of course no literals of the form F (f(. . .)) in A3, but
only literals of the form F (p). Each resolution between w |=L f(p⃗) and v |=L p now instantiates p
to f(. . .). That means, the resolvent contains literals F (f(. . .)) and is therefore bigger than the
parent clauses. This resolvent is redundant and needs not be generated.
Thus, we find that all resolvents with the transformers are redundant, which finally licenses their
deletion. <

Soundness and completeness of T2 together with Lemma 4.1 gives us the second completeness
lemma.

13

Lemma 4.3 (Completeness Lemma for Neighbourhood Relations)
If A1 implies reflexivity and transitivity of ⊢2 and the congruence properties (17) for all connectives
then for every formula φ: A1 entails φ iff A3 =def T2(T1(A1)) entails T2(T1(φ)). <

4.2.1 Sets as Neighbourhoods

The transformer (24) is not yet recognizable as neighbourhood semantics we are familiar with
from textbooks. The next transformation therefore combines the relations N and Ri into one
neighbourhood relation N ′ with sets as arguments. To this end we define a K-transformation Q
by

∃x⃗:S Nf (w, x⃗) ∧
∧

i(∀v:W Ri
f (xi, v) ⇔ φ(v, pi))

⇔ (27)
∃X⃗ N ′

f (w, X⃗) ∧
∧

i(∀v:W v ∈ Xi ⇔ φ(v, pi))

where φ(v, pi) is any formula containing v and pi as free variables and ∈ is the membership relation.

Lemma 4.4 (Soundness and Completeness of Q)
If A1 implies reflexivity and transitivity of ⊢2 together with the congruence properties (17) for all
connectives, and the transformation strategy to be applied to A3 is rewriting inside–out using Q
as rewrite rule from left to right, then the transformation lemmas hold for Q.

Proof : Extension Lemma: The extension Lemma 2.4 for Q can be proved by defining the N ′
f

according to
N ′

f (w, X⃗) ⇔∃x⃗ Nf (w, x⃗) ∧
∧

i(∀v xi ∈ Xi ⇔Ri
f (xi, v))

The sets Xi are just the set of Ri
f–accessible points from some Nf–accessible point as the figure

below illustrates for a single neighbourhood set.

-��������:

XXXXXXXXz

�
�

�
�
�
�

��>

Z
Z

Z
Z
Z
Z

ZZ~

HHHHHHHHHHHHHHj

R1
f

v1

v2

v3

φ(v1, pi)

. . .

N ′
f

X1

. . .

φ(v3, pi)

φ(v2, pi)
w Nf

x

This definition of N ′
f entails the transformer (27).

Transformation Lemma: Since the transformer T2 generates formulae with exactly the structure
of the left hand side of (27), the transformation strategy can simply be rewriting, starting with
the innermost occurrences of the pattern. All instances of the left hand side are replaced by the
corresponding instances of the right hand side. This is an equivalence preserving transformation.
It eliminates the predicates Nf and Ri

f completely.

Elimination Lemma: In order to prove the elimination lemma we interpret Nf as N ′
f and Ri

f as
membership relation. This makes (27) a valid formula. <

The composition of the two transformers T2 (24) and Q (27) is

T3: w |=L f(p⃗) ⇔∃X⃗ N ′
f (w, X⃗) ∧

∧
i Xi = |pi| (28)

where Xi = |pi| is an abbreviation for ∀v v ∈ Xi ⇔ v |=L pi.

14

The instances of (28) for ; and 2 in our test example are:

w |=L (p; q) ⇔ ∃X,Y N ′
;(w,X, Y) ∧X = |p| ∧ Y = |q| (29)

w |=L 2p ⇔ ∃X N ′
2(w,X) ∧X = |p|. (30)

In (30) we recognize the standard definition of neighbourhood semantics for the modal 2–operator.
(29) is the generalization of neighbourhood semantics to an implication like connective.
Soundness and completeness of T3 together with Lemma 4.3 yields the next completeness result.

Lemma 4.5 (Completeness Lemma for Sets as Neighbourhoods)
If A1 implies reflexivity and transitivity of ⊢2 and the congruence properties (17) for all connectives
then for every formula φ: A1 entails φ iff A4 =def T3(T1(A1)) entails T3(T1(φ)). <

4.2.2 Binary Neighbourhood Relations

The transformer Q is only a structural modification, more or less syntactic sugar. An alternative
to Q is the transformer P. It reduces the n-ary neighbourhood relation to a binary relation and it
breaks the equivalence into two implications. P is defined for all p⃗ and w as

∃x⃗:S Nf (w, x⃗) ∧
∧

i ∀v:W Ri
f (xi, v) ⇔ φi(v, pi)

⇔ (31)
∃x:S′Kf (w, x) ∧

∧
i(∀v:W Ri+

f (xi, v) ⇒ φi(v, pi)) ∧ (∀v:W Ri−
f (xi, v) ⇒¬φi(v, pi)).

Lemma 4.6 (Soundness and Completeness of P)
If (i) A1 implies that ⊢2 is reflexive and transitive and (ii) A1 implies the congruence properties (17)
for all connectives and (iii) the transformation strategy to be applied to A3 is inside–out rewriting,
using P as rewrite rule from left to right, then the transformation lemmas hold for P.

Proof : Extension Lemma: To prove the extension lemma we have to define for a given interpreta-
tion ℑ an extension ℑ′ with an interpretation for the new sort S′ and the new relations Kf and
Ri+

f such that (31) is true. For the new sort S′ we define ℑ(S′) =def ℑ(W)n, i.e. the set of n-tuples

of worlds. For K we define (w, (x⃗)) ∈ ℑ′(K) iff (w, x⃗) ∈ ℑ(Nf). Finally ((x⃗), v) ∈ ℑ′(Ri+
f) iff

(xi, v) ∈ ℑ(Ri
f) and ((x⃗), v) ∈ ℑ′(Ri−

f) iff (xi, v) ̸∈ ℑ(Ri
f). It is easy to show that these definitions

satisfy (31).

Transformation Lemma: The transformation strategy is definitional replacement, which is an equiv-
alence transformation. In T2(T1(A1)) the formulae all have the structure of the left hand side of
(31). These formulae can be replaced by the corresponding instances of the right hand side.
Equivalence transformations preserve models.

Elimination Lemma: To exhibit the elimination lemma we define for a given interpretation ℑ of
the transformed system an extension ℑ′ with an interpretation for the old sort S and the old
relations N and Ri

f such that (31) again becomes true. We define ℑ′(S) =def 2ℑ(W), ℑ′(Ri
f)=def ∋ and

(w, X⃗) ∈ ℑ′(Nf) iff Xi ⊇ Ri+
f (x) and Xi ∩ Ri−

f (x) = ∅ for some x ∈ ℑ(S′), where Ri+
f (x) =def {y |

(x, y) ∈ ℑ(Ri+
f)}.

That means, the elements of ℑ′(S) are sets of worlds and the neighbourhoods of w are all the
supersets of Ri+

f –accessible worlds which do not intersect with the set of Ri−
f –accessible worlds.

To show that this interpretation satisfies (31), first suppose the right hand side of (31) is true
for some w and p⃗. That means there is some x with Ri+

f (x) ⊆ |pi| and Ri−
f (x) ⊆ |pi|c, where

|pi| =def{v | φ(v, pi) is true in ℑ′}, and |pi|c is the complement of |pi|. According to the construction

of ℑ′(Nf), for all supersets Xi of |pi| which do not intersect with |pi|c, Nf (w, X⃗) holds. In particular
this is true for Xi = |pi| and therefore the left hand side of (31) is also true.

Now assume the left hand side of (31) holds, i.e. there is some X⃗ with Nf (w, X⃗) and Xi = |pi|.
From the construction of ℑ′(Nf) we know there is some x with Kf (w, x) and Ri+

f (x) ⊆ Xi and

Xi ∩Ri−
f (x) = ∅. Therefore Ri−

f (x) ⊆ |pi|c and thus the right hand side of (31) is also true. <

15

Composing the transformers T2 and P yields the new transformer B1 (for ‘Binary’).
For all w and p⃗:

w |=L f(p⃗) ⇔∃x:S′ Kf (w, x) ∧
∧

i(∀v:W Ri+
f (xi, v) ⇒ v |=L pi) ∧ (∀v:W Ri−

f (xi, v) ⇒¬v |=L pi). (32)

As before, soundness and completeness of P together with Lemma 4.3 yields a further completeness
result.

Lemma 4.7 (Completeness Lemma for the B1 Transformation)
If A1 implies reflexivity and transitivity of ⊢2 and the congruence properties (17) for all connectives
then for every formula φ: A1 entails φ iff B1(T1(A1)) entails B1(T1(φ)). <

The transformation B1 (32) is identical with a transformation of a multi–modal logic formula
⟨Kf ⟩(

∧
i([R

i+
f]pi ∧ [Ri+

f]¬pi)) using the transformer T6, defined in (58) below, for a corresponding
number of normal unary modal operators. That means, there is a translation

π1(f(p⃗)) = ⟨K⟩(
∧

i([R
i+
f]π1(pi) ∧ [Ri+

f]¬π1(pi))) (33)

from the given logic L into a normal multi–modal logic. ⟨...⟩ is the parameterized 3–operator and
[...] is the parameterized 2–operator. This translation is further investigated in Section 4.6.

4.3 Monotonicity Properties

The congruence properties (17) can be strengthened in many cases to monotonicity properties:

upward monotonicity: ∀p, q p ⊢2 q ⇒∀s⃗, s⃗′f(s⃗, p, s⃗′) ⊢2 f(s⃗, q, s⃗′) (34)

downward monotonicity: ∀p, q p ⊢2 q ⇒∀s⃗, s⃗′f(s⃗, q, s⃗′) ⊢2 f(s⃗, p, s⃗′). (35)

For example, for our test set the implication connective ; is downward monotonic in the first
argument and upward monotonic in the second argument and the 2–operator is upward monotonic.
This means,

p ⊢2 q ⇒∀s (s; p) ⊢2 (s; q) (36)

p ⊢2 q ⇒∀s (q ; s) ⊢2 (p; s) (37)

p ⊢2 q ⇒2p ⊢2 2q (38)

follow from A1. ((38) is the so–called MN rule.). (36) is proved in Lemma A.6, (37) is proved in
Lemma A.7, and (38) is proved in Lemma A.8.

The monotonicity properties (34) and (35) are translated by T1 into

upward monotonicity:

(∀w:W w |=L p⇒ w |=L q) ⇒∀s⃗, s⃗′ ∀w:W w |=L f(s⃗, p, s⃗′) ⇒ w |=L f(s⃗, q, s⃗′) (39)

downward monotonicity:

(∀w:W w |=L p⇒ w |=L q) ⇒∀s⃗, s⃗′ ∀w:W w |=L f(s⃗, q, s⃗′) ⇒ w |=L f(s⃗, p, s⃗′). (40)

If f(p⃗, q⃗) is downward monotonic in the first arguments p⃗ and upward monotonic in the last
arguments q⃗ (we shall assume this ordering of the argument positions from now on) one can prove
from these two formulae for all p⃗, q⃗, w

w |=L f(p⃗, q⃗) ⇔∀x⃗
∧

i(∀v:W v |=L xi ⇒ v |=L pi) ⇒∃y⃗
∧

j(∀v:W v |=L yj ⇒ v |=L qj) ∧ w |=L f(x⃗, y⃗).

The proof is given in Lemma A.9 of the Appendix. This equivalence can be used as the basis for
a more stronger K-transformation than T2. The new transformer T4 is

w |=L f(p⃗, q⃗) ⇔ ∀x⃗:S
∧

i(∀v:W Ri
f (xi, v) ⇒ v |=L pi) ⇒

∃y⃗:S
∧

j(∀v:W Rj
f (yj , v) ⇒ v |=L qj) ∧Nf (w, x⃗, y⃗). (41)

16

The soundness and completeness proof for this transformer is identical to the proof for T2 (Lemma
4.2).

The instances of (41) for our test connectives are

w |=L (p; q) ⇔ ∀x:S (∀v:W R1
;(x, v) ⇒ v |=L p) ⇒

∃y:S (∀v:W R2
;(y, v) ⇒ v |=L q) ∧N;(w, x, y)

w |=L 2q ⇔ ∃y:S (∀v:W R2(y, v) ⇒ v |=L q) ∧N2(w, y).

Just as we derived variations of the neighbourhood relation for the congruence properties, we can
derive the corresponding variations of the neighbourhood relation for the monotonicity properties.
The variant with sets as arguments of the neighbourhood relation which corresponds to T3 is

T5: w |=L f(p⃗, q⃗) ⇔∀X⃗ X⃗ ⊆ |p⃗| ⇒ ∃Y⃗ Y⃗ ⊆ |q⃗| ∧N ′
f (w, X⃗, Y⃗). (42)

A version with binary neighbourhood relation which corresponds to B1 seems not possible in
general. Only for connectives which are either upward monotonic or downward monotonic in all
their arguments, a corresponding transformation is possible. For the upward monotonic version
the K-transformation

∃y⃗:S
∧

i(∀v:W Ri
f (yi, v) ⇒ φ(v, qi)) ∧Nf (w, y⃗)

⇔
∃y:S′Kf (w, y) ∧

∧
i(∀v:W R

′i
f (y, v) ⇒ φ(v, qi))

is sounds and complete. This is because the n arguments y⃗ of Nf can be replaced with the one
argument y of Kf by interpreting y as the n–tuple of the values assigend to y⃗ and by interpreting the

R
′i
f –relations as projection functions which extract the ith component of this n–tuple. Combined

with T4 (41), we obtain a transformer

B+
2 : w |=L f(p⃗) ⇔∃y:S′Kf (w, y) ∧

∧
i(∀v:W R

′i
f (y, v) ⇒ v |=L qi)

which in turn gives rise to a translation

π+
2 (f(p⃗)) = ⟨Kf ⟩(

∧
i[R

′i
f]π+

2 (pi)) (43)

into a multi–modal logic. For the downward monotonic version the K-transformation is

∀y⃗:S
∧

i(∀v:W Ri
f (xi, v) ⇒ φi(v, pi)) ⇒Nf (w, y⃗)

⇔
∀y:S′Kf (w, y) ⇒

∨
i(∃v:W R

′i
f (y, v) ∧ ¬φi(v, pi)).

The right hand side of the equivalence is the contrapositive of the left hand side. Kf (w, y) is
interpreted this time as ¬Nf (w, y⃗). Again y represents the n-tuple y⃗. Combined with T4, we
obtain a transformer

B−
2 : w |=L f(p⃗) ⇔ ∀y:S′ Kf (w, y) ⇒

∨
i(∃v:W R

′i
f (y, v) ∧ ¬v |=L pi) (44)

which this time gives rise to a translation

π−
2 (f(p⃗)) = [Kf](

∨
i ⟨R

′i
f ⟩¬π

−
2 (pi))

into a multi–modal logic. Finally, we obtain the completeness lemma

Lemma 4.8 (Completeness Lemma for the Monotonic Case)
If (i) A1 implies that ⊢2 is reflexive and transitive, and (ii) A1 implies the congruence properties (17)
for all connectives and the monotonicity properties for some connectives then for every formula φ:
A1 entails φ iff A entails φ′, where A and φ′ are transformed by the strongest transformers, i.e. the
transformers for monotonicity if possible, otherwise the transformer for the congruence relations.
They can be mixed arbitrarily. <

17

4.4 Transformations Based on Stone’s Representation Theorem

The transformations we consider in this section correspond to the transition from neighbourhood
semantics to standard relational Kripke semantics in modal logic. Unfortunately this transition
requires the relatively strong assumption that the logic defined by A1 is an extension of standard
propositional logic. For propositional logic it is known that its Lindenbaum algebra is a Boolean
algebra, and Boolean algebras are isomorphic to fields of sets. As we shall see, this enables us to take
quantifications ∀p . . . w |=L p . . . as quantifications over sets ∀p . . . w ∈ p . . . or their characteristic
predicates ∀p . . . p(w) . . . respectively. With this assumption a semantics in the usual way is
obtained and many properties of the system can be simplified considerably.

Lemma 4.9 (Congruence Relation)
If A1 entails the reflexivity and transitivity of |=L and the congruence properties (17) hold for all
connectives f then the relation p ≈ q =def (A1 entails (p ⊢2 q ∧ q ⊢2 p)), is a congruence relation on
L–terms.

Proof : ≈ is reflexive and transitive because ⊢2 is. It is symmetric by definition. It is a congruence
relation because we assumed that the congruence properties of ⊢2 hold for all connectives. <

For a term s let [s] be its ≈–congruence class. L|≈ =def {[s] | s is an L–term} is called the
Lindenbaum algebra of L. If L contains propositional logic, its Lindenbaum algebra is a Boolean
algebra.

Definition 4.10 (Transition to PL2)
The transformation S replaces all occurrences of literals of the form w |=L p, where p is a variable or
constant symbol with a literal p(w). Quantifications ∀p . . . w |=L p . . . are turned into quantifications
of the form ∀p . . . p(w) . . . and likewise for existential quantifications. <

Theorem 4.11 (Soundness and Completeness of S)
If

1. A1 contains an axiomatization of standard propositional logic (this implies that |=L is reflexive
and transitive),

2. A1 entails the congruence properties (17) for all connectives f ,

3. T ̸= T1 is any of the sound and complete transformations defined above and

4. φ is a formula with ⊢2 as the only predicate and whose conjunctive normal form contains at
least one positive literal in each conjunct (we say φ is positive)

then, A1 entails φ iff S(T (T1(A1))) entails S(T (T1(φ))).

Proof : Case 1: A1 entails ∀p, q p ⊢2 q.
Since at least one literal of φ’s conjunctive normal form is positive, i.e. it has the form s ⊢2 t,
φ is obviously true, given A1. By the previous completeness theorems, T (T1(A1)) entails α =def

∀p, q, w w |=L p⇒ w |=L q, i.e. T (T1(A1)) ⇔ T (T1(A1)) ∧ α. Since S(α) = (∀p, q, w p(w) ⇒ q(w))
and this is a contradiction, S(T (T1(A1))) entails everything, in particular it entails φ.

Case 2: A1 is consistent with β =def ∃p, q ¬(p ⊢2 q).
Thus, A1 entails φ iff A1 ∧ β entails φ and A1 ∧ ¬β entails φ. The latter case is actually already
considered in case 1. Therefore, w.l.o.g. we can assume that A1 entails β. By the completeness
theorems for T we have, A1 entails φ iff T (T1(A1)) entails T (T1(φ)). Let A′ =def T (T1(A1)) and
φ′ =defT (T1(φ)). We need to show, A′ entails φ′ iff S(A′) entails S(φ′). By assumption 1 and Lemma
4.9, {[p] | p is an L-term} is a Boolean algebra. We have

p ≈ q iff A1 entails p ⊢2 q ∧ q ⊢2 p
iff A2 entails ∀w:W w |=L p⇔ w |=L q
iff in every interpretation ℑ of A2: |p| = |q|

where |p| = {w | (w,ℑ(p)) ∈ ℑ(|=L)}.

18

Thus, q ∈ [p] iff for every interpretation ℑ of A′, |p| = |q|. Hence, {|p| | p ∈ domain(ℑ)} is a
Boolean algebra for every interpretation of A′. By Stone’s representation theorem [Sto36], every
Boolean algebra is isomorphic to a field of sets. Therefore {|p| | p ∈ domain(ℑ)} is isomorphic to
the powerset of some base set. Because of the assumption β the Boolean algebra contains at least
two elements, the base set of the corresponding powerset is therefore not empty.
Since the transformations S(A′) and S(φ′) affect only literals of the form . . . |=L p, where p is a
variable or constant symbol, and p occurs only as the second argument of the |=L –predicate, there
is an isomorphism between the interpretations of A′ and S(A′). By structural induction on the
formulae it can be shown that this isomorphism guarantees that A′ and S(A′) entail the same
theorems. <

Notice that S can turn a consistent axiomatization into an inconsistent axiomatization when A1

entails ∀p, q p ⊢2 q. This is usually an undesired phenomenon. Therefore one should check whether
this formula is entailed by A1 or not. A model generation program like John Slaney’s FINDER
can do this automatically [PS90].

There is a weaker version S ′ of S. S ′ replaces literals w |=L p with w ∈ p. Since the formula
∀p, q ∀w w ∈ p⇒ w ∈ q is consistent, whereas ∀p, q ∀w p(w) ⇒ q(w) is inconsistent, there is a slight
difference between S ′ and S. If A1 does not entail ∀p, q p ⊢2 q, however, these two are equivalent.
In the following we shall make this assumption and use S ′ and S both interchangeably.

p ⊢2 q is transformed by T1 into ∀w w |=L p⇒ w |=L q, and this in turn is transformed by S ′ into
∀w w ∈ p⇒ w ∈ q which means p ⊆ q. Thus, from now on the ⊢2–relation can be interpreted as
subset relation. As further consequences, we need no longer the notations w ∈ |p| and |p| = |q| etc.
for atomic p’s and q’s.

The |...|–function is no longer necessary. w ∈ |p| becomes w ∈ p and |p| = |q| becomes p = q,
where p and q now denote sets. This allows considerable simplifications. For example, the formula
T3(f(p⃗)) = ∃X⃗ N ′

f (w, X⃗) ∧
∧

i Xi = |pi| simplifies to just N ′
f (w, p⃗).

Example 4.12 (for Transformations with S)
As a first example, suppose A1 contains γ =def ∀p 2p ⊢2 ¬p where ¬ is classical negation and
(w |= ¬p) ⇔¬(w |= p) has been verified already.
γ′ =def T3(T1(γ)) = ∀p, w (∃XN ′

2(w,X) ∧X = |p|) ⇒¬w ∈ |p|.
S ′(γ′) = ∀p, w N ′

2(w, p) ⇒ w ̸∈ p.
γ′′ =def T5(T1(γ)) = ∀p, w (∃XX ⊆ |p| ∧N ′

2(w,X)) ⇒¬w ∈ |p|.
S(γ′′)) = ∀p, w (∃X(∀v v ∈ X ⇒ p(v)) ∧N ′

2(w,X)) ⇒¬p(w).
This last formula is a PL2 formula which is equivalent to the PL1 formula ∀w,X ¬N ′

2(w,X) (try
the SCAN algorithm on it). Thus, under the monotonicity assumption of 2 (we used T3), 2p ⊢2 ¬p
enforces that no world has any neighbourhood at all, not even the empty set.

As a second example, we take the monotonicity properties (34) and (35). The composition of the
transformers T1, T3 and S translates these two formulae into:

upward monotonicity: ∀p, q p ⊆ q ⇒∀s⃗, s⃗′∀w:W N ′
f (w, s⃗, p, s⃗′) ⇒N ′

f (w, s⃗, q, s⃗′) (45)

downward monotonicity: ∀p, q p ⊆ q ⇒∀s⃗, s⃗′∀w:W N ′
f (w, s⃗, q, s⃗′) ⇒N ′

f (w, s⃗, p, s⃗′). (46)

Since p and q are variables, we could use again the simpler notation N(w, p) instead of ∃X N(w,X)
∧X = |p| which these transformers initially produce.
Upward monotonicity thus enforces for the neighbourhood relation closedness under supersets, and
downward monotonicity enforces closedness under subsets. <

4.5 Closure Properties

In modal logic, relational possible worlds semantics can be obtained from neighbourhood semantics
if the neighbourhood structure is closed under supersets and intersections. We generalize this
result now for arbitrary connectives. The key formula which must hold in order to strengthen
neighbourhood semantics to relational semantics in modal logic is (2q1 ∧2q2) ⇒2(q1 ∧ q2). A

19

slightly weaker property which can be formulated without the ∧ –connective and which is sufficient
for this purpose is

∀q1, q2, w w ⊢2 2q1 ∧ w ⊢2 2q2 ⇒∃s s ⊢2 q1 ∧ s ⊢2 q2 ∧ w ⊢2 2s. (47)

The s replaces q1 ∧ q2 or something stronger respectively.
In line with the previous sections where we tried to find transformations eliminating particular

properties of the consequence relation and connectives f , the properties we want to eliminate now,
are for each upward monotonic argument position of f
(to simplify notation we assume this is the last argument position):

∀p⃗, q1, q2, w w ⊢2 f(p⃗, q1) ∧ w ⊢2 f(p⃗, q2) ⇒∃s s ⊢2 q1 ∧ s ⊢2 q2 ∧ w ⊢2 f(p⃗, s) (48)

and for each downward monotonic argument position of f
(to simplify notation we assume this is the first argument position):

∀p1, p2, q⃗, w w ⊢2 f(p1, q⃗′) ∧ w ⊢2 f(p2, q⃗) ⇒∃s p1 ⊢2 s ∧ p2 ⊢2 s ∧ w ⊢2 f(s, q⃗). (49)

The instance of (48) for the 2–operator is (47). The instance of (48) for the ;–connective is (50)
and the instance of (49) for the ;–connective is (51) below.

∀p, q1, q2, w w ⊢2 (p; q1) ∧ w ⊢2 (p; q2) ⇒∃s s ⊢2 q1 ∧ s ⊢2 q2 ∧ w ⊢2 (p; s) (50)

∀p1, p2, q, w w ⊢2 (p1 ; q) ∧ w ⊢2 (p2 ; q) ⇒∃s p1 ⊢2 s ∧ p2 ⊢2 s ∧ w ⊢2 (s; q). (51)

(50) is proved in Lemma A.10. (51) is proved in Lemma A.11 and (47) is proved in Lemma A.12
in the Appendix.

Induction on natural numbers shows that from the closure properties (48) and (49) the stronger
versions with finite premises

∀q1, . . . , qm, p⃗, w (
∧m

i=1 w ⊢2 f(p⃗, qi)) ⇒∃s (
∧m

i=1 s ⊢
2 qi) ∧ w ⊢2 f(p⃗, s) (52)

∀p1, . . . , pm, q⃗, w (
∧m

i=1 w ⊢2 f(pi, q⃗)) ⇒∃s (
∧m

i=1 pi ⊢
2 s) ∧ w ⊢2 f(s, q⃗) (53)

follow.

Lemma 4.13 (Finite Closure Properties of the Neighbourhood Relation)
If A1 is an extension of propositional logic then the closure formula (52) for the kth argument
together with the upward monotonicity for the same argument implies closedness under finite
intersections of the corresponding argument position in the neighbourhood relation. Conversely,
(53) and downward monotonicity implies closedness under finite unions.

Proof : We prove the first part. The proof for closedness under unions is analogous. Since the
qi and pi are variables in (52), the composition of the transformers T1, T3 and S, applied to (52)
yields a formula which is equivalent to

∀q1, . . . , qm, p⃗, w
∧m

i=1 N
′
f (w, p⃗, qi) ⇒∃s (

∧m
i=1 s ⊆ qi) ∧N ′

f (w, p⃗, s).
This in turn is equivalent to

∀q1, . . . , qm, p⃗, w
∧m

i=1 N
′
f (w, p⃗, qi) ⇒∃s s ⊆

∩m
i=1 qi ∧N ′

f (w, p⃗, s)
and since the monotonicity formulae imply that the neighbourhood relation is closed under super-
sets in the ‘s-argument’ (see Example 4.12), we obtain

∀q1, . . . , qm, p⃗, w
∧m

i=1 N
′
f (w, p⃗, qi) ⇒N ′

f (w, p⃗,
∩m

i=1 qi),
i.e. closedness under finite intersections. A similar transformation of (53) yields

∀p1, . . . , pm, q⃗, w
∧m

i=1 N
′
f (w, pi, q⃗) ⇒N ′

f (w,
∪m

i=1 pi, q⃗).
i.e. closedness under finite unions. <

Unfortunately closedness under finite unions and intersections is not sufficient for our next
transformation step. We need closedness under arbitrary intersections and unions respectively. As
the lemma below shows, this can be assumed in fact, provided A1 consists of definite Horn clauses.

20

Lemma 4.14 ((52) for m = ∞)
If A1 consists of definite Horn clauses (they have exactly one positive literal), and (52) holds for
all finite m, and φ is a finite formula, then A1 entails φ iff A1 ∧ δ entails φ, where δ is (52) for
m = ∞.

Proof : The ‘if’–direction is trivial. For the ‘only–if’–direction suppose A1 ∧ δ entails φ. It suffices
to show that φ is true in all Herbrand interpretations of A1. Since A1 consists of definite Horn
clauses, this can be reduced further. It is sufficient to show that φ holds in the unique minimal
Herbrand interpretation ℑ0, which is the intersection of all Herbrand interpretations of A1. We
now construct an extension of ℑ0 as a model for A1 ∧ δ. Let A0 =def A1. For i > 0, we construct
ℑi and Ai as follows. For each term w and set {p1, . . . , p∞} of terms for which the premise of δ
holds in ℑi−1, but the conclusion does not hold, we create a new constant symbol s and add the
corresponding conclusion literals of δ to Ai−1. Ai is the result of this extension. ℑi is the minimal
Herbrand interpretation of Ai. ℑi is a superset of ℑi−1.
Now let A =def

∪
Ai and ℑ =def

∪
ℑi. A consists of A1 and infinitely many additional unit clauses. ℑ

is the minimal Herbrand model of A and by construction, ℑ satisfies (52). Therefore A entails δ.
Since A also contains A1, A entails φ. Because of the compactness of PL1, a finite subset of A′ of
A already entails φ. Suppose A′ contains some of the additional unit clauses s ⊢2 qi or w ⊢2 f(p⃗, s)
for some of the newly created constant symbols s. Since A1 implies (52) for all finite m, there is
also a term s′ such that s′ ⊢2 qi and w ⊢2 f(p⃗, s′) is entailed by A1. s does not occur in φ. Therefore
the clauses with s can be replaced with the corresponding clauses with s′. In other words, a subset
A′ of A1 is sufficient to derive φ, and that’s what we set out to show. <

Analogously we can show that (53) for m = ∞ can be assumed either. As a corollary of the
above lemma and the Lemma 4.13 we get:

Corollary 4.15 (Closure Properties of the Neighbourhood Relation)
If A1 satisfies all the conditions of Theorem 4.11 and additionally A1 consists of definite Horn
clauses and (48) holds for the upward monotonic argument positions and (49) holds for the down-
ward monotonic argument positions of f then closedness under arbitrary intersections, and closed-
ness under arbitrary unions, respectively, holds:

(
∧

i∈I N
′
f (w, X⃗, Yi)) ⇒N ′

f (w, X⃗,
∩

i∈I Yi)

(
∧

i∈I N
′
f (w,Xi, Y⃗)) ⇒N ′

f (w,
∪

i∈I Xi, Y⃗).

<
Unfortunately for the proof we used that A1 consists of definite Horn clauses. It is not clear
whether this is an artefact of the proof technique or whether this is necessary in general.

Lemma 4.16 (Accessibility Relation)
If the neighbourhoud relation N ′ is serial for at least one argument position, for example
∀w, X⃗ ∃Y N ′(w, X⃗, Y) holds, and N ′ is closed under subsets and union in the first group of
arguments and closed under supersets and intersections in the last group of arguments in the sense
of Corollary 4.15, then there exists a relation R on worlds with

N ′(w, X⃗, Y⃗) ⇔∀x⃗, y⃗ R(w, x⃗, y⃗) ⇒ (
∧

i xi ∈ Xi) ⇒ (
∨

j yj ∈ Yj). (54)

Proof : For the first part of the proof we assume the serial argument position of N ′ is one where N ′

is upward monotonic and hence closed under intersections. W.l.o.g. let this be the last argument
position.
We split N ′s arguments into N ′(w, x⃗, y⃗′, y) where x⃗ denotes the downward monotonic argument
positions and all others are upward monotonic. All but the last argument position may be empty.
y⃗ abbreviates ‘y⃗′, y’. For a world w and sets X⃗, Y⃗ ′ we define the intersection of all neighbourhoods:

⊓ (w, X⃗, Y⃗ ′) =def
∩

Y N ′(w, X⃗, Y⃗ ′, Y). (55)

Since N ′ is serial, the range of the intersection is not empty. Closedness under intersections for
the downward monotonic argument positions means for all w, X⃗, Y⃗ ′

N ′(w, X⃗, Y⃗ ′,⊓(w, X⃗, Y⃗ ′)). (56)

21

Notice that, (56) is false if N ′ is not serial. In this case ⊓(w, X⃗, Y⃗ ′) is the set of all worlds, but
this is not neccessarily a neighbourhood.
The accessibility relation R is now defined as

R(w, x⃗, y⃗) ⇔ y ∈ ⊓(w, {x⃗}, {y⃗′}c). (57)

Recall {y}c denotes the complement of the set {y}.

⇒ part of (54).

Suppose N ′(w, X⃗, Y⃗ ′, Y) is true and ∀x⃗, y⃗ R(w, x⃗, y⃗′, y) ⇒ (
∧

i xi ∈ Xi) ⇒ (
∨

j yj ∈ Y ′
j ∨ y ∈ Y) is

false. That means the following facts are assumed for some w, X⃗, Y⃗ ′, Y, a⃗, b⃗′, b

(a) N ′(w, X⃗, Y⃗ ′, Y)

(b) R(w, a⃗, b⃗′, b)
(c) ai ∈ Xi for the downward monotonic arguments
(d) bi ̸∈ Y ′

i for the first upward monotonic arguments
(e) b ̸∈ Y for the last upward monotonic argument

≻ (f) b ∈ ⊓(w, {a⃗}, {⃗b′}c) (b) and (57)

≻ (g) N ′({a⃗}, {⃗b′}c,⊓(w, {a⃗}, {⃗b′}c) (f) and (56)

(h) N ′({a⃗}, Y⃗ ′, Y) (a), (c) and downward monotonicity

(i) Y⃗ ′ ⊆ {⃗b′}c from (d)

≻ (j) N ′({a⃗}, {⃗b′}c, Y) (h), (i) and upward monotonicity

(k) ⊓(w, {a⃗}, {⃗b′}c) ⊆ Y (g), (j) and (55)
≻ contradiction with (e) and (f).
≻ The ⇒ part of (54) holds. ‘≻ ’ denotes ‘this implies’.

⇐ part of (54).

Suppose ∀x⃗, y⃗′, y R(w, x⃗, y⃗′, y) ⇒ (
∧

i xi ∈ Xi) ⇒ (
∨

j y
′
j ∈ Y ′

j ∨ y ∈ Y) is true.
≻ ∀x⃗, y⃗′, y y ∈ ⊓(w, {x⃗}, {y⃗′}c) ⇒ (y ∈ Y ∨ ¬(

∧
i xi ∈ Xi) ∨

∨
j y

′
j ∈ Y ′

j)) (57)
≻ ∀x⃗, y⃗′ ((

∧
i xi ∈ Xi) ∧ (

∧
j y

′
j ̸∈ Y ′

j)) ⇒ ⊓ (w, {x⃗}, {y⃗}′c) ⊆ Y (logic and set theory)
≻ ∀x⃗, y⃗′ ((

∧
i xi ∈ Xi) ∧ (

∧
j y

′
j ̸∈ Y ′

j)) ⇒N ′(w, {x⃗}, {y⃗′}c, Y) (56) and (upward monotonicity)

≻ ∀y⃗′ (
∧

j y
′
j ̸∈ Y ′

j) ⇒N ′(w, X⃗, {y⃗′}c, Y) (closedness under unions)

≻ N ′(w, X⃗, Y⃗ ′, Y) (closedness under intersections)
≻ The ⇐ part of (54) holds.

If the argument position where N ′ is serial is not upward monotonic, but downward monotonic,
there is a proof for the lemma which is just dual to the proof given above. Instead of intersections,
use the union of all neighbourhoods. Therefore we do not give the proof here. <

Seriality of the neighbourhood relation is one of the conditions in the previous lemma. The
next lemma shows how this can be proved by alternatively proving an appropriate lemma from
A1.

Lemma 4.17 (Seriality of the Neighbourhood Relation)
If A1 satisfies the conditions of Theorem 4.11 and the formula ∀w ∀p⃗ ∃q w ⊢2 f(p⃗, q) is provable
from A1 then the neighbourhood relation is serial in the last argument.

Proof : Since p and q are variables, this formula can be translated directly into ∀w ∀p⃗ ∃q N ′
f (w, p⃗, q).

<

Seriality for other argument positions are proved analogously. For our test connectives we prove
∀w, p ∃q w ⊢2 p; q in Lemma A.13 and ∀w∃q w ⊢2 2q in Lemma A.14.

Now we are ready to define a transformer that eliminates the closure properties.

Lemma 4.18 (Transformer for Closure Properties)
If A1 satisfies the conditions of Theorem 4.11 and Lemmas 4.13 and 4.17 for some connective f
then the following transformer

T6: w |=L f(p⃗, q⃗) ⇔∀x⃗, y⃗ Rf (w, x⃗, y⃗) ⇒ (
∧

i xi |=L pi) ⇒ (
∨

j yj |=
L qj) (58)

22

is sound and complete for A2.

Proof : Extension Lemma: Soundness and completeness of the transformer T3 implies that there
is an extension of a model for A2 which satisfies (28): w |=L f(p⃗) ⇔∃X⃗ N ′

f (w, X⃗) ∧
∧

i Xi = |pi|.
In this model w |=L f(p⃗) ⇔N ′

f (w, |p⃗|) holds. But according to Lemma 4.16, N ′
f (w, |p⃗|) is equivalent

to the right hand side of (58).
The other lemmas are proved as in Lemma (4.2). <

The instances of T6 for our test connectives are:

w |=L (p; q) ⇔ ∀x, y R;(w, x, y) ⇒ (x |=L p⇒ y |=L q) (59)

w |=L 2q ⇔ ∀y R2(w, y) ⇒ y |=L q (60)

and we recongize the standard relational semantics for the 2–operator. If we had axiomatized the
2–operator with the classical implication connective → instead of ;, then the transformer (60)
together with T1 would turn the two axioms (14) and (15) for the 2–operator into tautologies and
we had found an optimal semantics for 2. In order to obtain this result also for our axiomatization,
we need to show that ; is equivalent to →. Therefore we continue the investigation of the ;–
connective in In Section 4.7.

For ∧ –like connectives, the seriality condition cannot be proved, because ∀w, p ∃q w⊢2(p ∧ q) is
certainly not a theorem. In this case there is no semantics in terms of the accessibility relation as
above. Usually, however, ∧ –like connectives are defined connectives. If it is for example defined
as (p&q) ⇔¬(p; ¬q) then the semantics for ; can be used to define the semantics for &:

w |=L (p&q) ⇔∃x, y R;(w, x, y) ∧ x |=L p ∧ y |=L q

Theorem 4.19 (Soundness and Completeness of the Transformation)
If A1 satisfies all the conditions of 4.18 and φ is a positive formula (see 4.11) then A1 entails φ iff
T (T1(A1)) entails T (T1(φ)) where T is the strongest admissible transformer. <

4.6 Binary Accessibility Relations

As we have seen in Lemma 4.18, n–place connectives correspond to n+1–ary accessibility relations.
It is well known that m–place relations can be decomposed into m+ 1 binary relations. This trick
can be used to find a translation into normal multi–modal systems. To this end we define a further
K-transformation. For all p⃗, q⃗, w:

∀x⃗, y⃗:W R(w, x⃗, y⃗) ⇒ ((
∧

i φi(xi, pi)) ⇒ (
∨

j φj(yj , qj))⇔ (61)
∀z:S′ K(w, z) ⇒ ((

∧
i ∃xi:W Ri(z, xi) ∧ φi(xi, pi)) ⇒

(
∨

j ∀yj :W Rj(z, yj) ⇒ φj(yj , qj)).

Lemma 4.20 (Soundness and Completeness of (61))
The transformation lemmas hold for the K-transformation (61), if we use as transformation strat-
egy inside–out rewriting, applying (61) from left to right on formulae which are the result of a
transformation using T6.

Proof : Extension Lemma: We have to show that every interpretation ℑ for the accessibility relation
R can be extended to an interpretation ℑ′ satisfying (61). We interpret the sort S′ as the set of
n–tuples of worlds and the predicates Rk as the kth projection function for these n–tuples. This
interpretation satisfies (61).
Transformation Lemma: The results of a transformation with T6 are just formulae with the same
structure as (61)’s left hand side. Therefore the transformation is an equivalence transformation.
Elimination Lemma: We have to show that every interpretation ℑ for the transformed system can
be extended to an interpretation ℑ′ satisfying (61). We define R as follows

R(w, x⃗, y⃗) ⇔∃z K(w, z) ∧
∧

i Ri(z, xi) ∧
∧

j Rj(z, xj).

23

This implies
∀x⃗, y⃗ R(w, x⃗, y⃗) ⇒ ((

∧
i φi(xi, pi)) ⇒ (

∨
j φj(yj , qj))

⇔∀x⃗, y⃗ (∃z K(w, z) ∧
∧

i Ri(z, xi) ∧
∧

j Rj(z, xj)) ⇒ ((
∧

i φi(xi, pi)) ⇒ (
∨

j φj(yj , qj))
⇔∀z K(w, z) ⇒ x⃗, y⃗

∧
i Ri(z, xi) ∧

∧
j Rj(z, xj)) ⇒ ((

∧
i φi(xi, pi)) ⇒ (

∨
j φj(yj , qj))

⇔∀z K(w, z) ⇒ (
∨

i ∀xi ¬Ri(z, xi) ∨ φi(xi, pi)) ∨ (
∨

j ¬Rj(z, xj) ∨ φj(yj , qj))
⇔∀z K(w, z) ⇒ ((

∧
i ∃xi Ri(z, xi) ∧ φi(xi, pi)) ⇒ (

∨
j ∀yj Rj(z, yj) ⇒ φj(yj , qj)). <

The composition of T6 with the transformer (61) is

B3 w |=L f(p⃗, q⃗) ⇔∀z:S′ K(w, z) ⇒ ((
∧

i ∃xi:W Ri(z, xi) ∧ φi(xi, pi)) ⇒
(
∨

j ∀yj :W Rj(z, yj) ⇒ φj(yj , qj)). (62)

This in turn corresponds to a translation function π3 which maps n-place connectives to modal
operators:

π3(f(p⃗, q⃗)) = [K]((
∧

i ⟨Ri⟩π3(pi)) ⇒
∨

j [Rj]π3(qj)). (63)

At different places we have defined translations πi into the language of multi–modal logic. But
there is a very subtle point to be discussed here. The transformers B1, B+

2 , B−
2 and B3 introduce a

new sort S′. That means the worlds are split into two different kinds, worlds of sort W and worlds
of sort S′. The outermost quantification of T1(φ), however, quantifies over the sort W . Therefore
the frame conditions specified by φ don’t hold for all worlds, but only for the worlds of sort W .

To see what this means, suppose as an example, φ = 2p⊢2p. Let us assume strong neighbourhood
semantics. Quantifier elimination of S(B+

2 (T1(φ))) yields ∀w:W ∀v:S′ K(w, v) ⇒R(v, w). This
is the frame property corresponding to φ. Now consider φ′ =def π+

2 (φ) = ⟨K⟩[R]p ⊢2 p. Quantifier
elimination of S(T6(T1(φ′))) yields ∀w, v:W K(w, v) ⇒R(v, w). That means, if we interpret the
formula φ′ as a normal axiom schema in normal multi modal logic, we get frame conditions for all
worlds whereas the original schema φ specified a frame condition only for certain worlds. Thus,
the target system for the πi is not standard multi modal logic, but a refined version with some
more structure.

The additional structure in the semantics is the separation into two different sets of worlds. The
accessibility relations K lead from the W–type worlds to the S′–type worlds and vice versa for the
R–relations. The additional structure on the syntactic side is an invariant on the nesting sequence
of the modal operators. All translations πi yield K–type operators followed by R–type operators
which are again followed by K–type operators etc. Formulae like [K][K] . . . or [R][R] . . . do not
occur. Therefore we can classify the formulae as K–type formula if the top–level operators are
K–type connectives operating on R–type formulae. Analogously, R–type formulae have top–level
operators of R–type operating on K–type formulae. Pure classical propositional formulae fall into
both sets. K–type formulae are to be interpreted only at W–type worlds and R–type formulae are
to be interpreted at S′–type worlds.

I omit giving a formal definition because I think the structure is simple. What is important,
however, is that the axiomatization of this logic with K-axiom and Necessitation rules for each of
these operators needs to be modified also. For the K–type operators, K-axiom and Necessitation
rule are defined only for R–type formulae, and vice versa for the R–type operators. For example,
the p’s and q’s in the K-axiom [K](p⇒ q) ⊢ ([K]p⇒ [K]q) for the K–type operator must be R–
type formulae, otherwise the syntactic structure does not match the semantics. Let us call this
logic a separated multi modal logic.

Exploiting soundness and completeness of T6 we can now prove soundness and completeness of
these translations into separated multi–modal logic.

Theorem 4.21 (Translation into Multi–Modal Logic: Soundness and Completeness)
The translations π1, π+

2 , π−
2 and π3 (defined in (33), (43), (44) and (63)) to the separated multi

modal logic are sound and complete.

Proof : Let T ′
6 be the instance of T6 for the appropriate number of parameterized modal operators.

For K–type operators, T ′
6 quantifies over worlds of sort W and for R–type operators, T ′

6 quantifies
over worlds of sort S. By the definition of the πi, π1 ◦ T1 ◦ T ′

6 = T1 ◦ B1, holds π+
2 ◦ T1 ◦ T ′

6 =
T1 ◦ B+

2 ,holds π−
2 ◦ T1 ◦ T ′

6 = T1 ◦ B−
2 holds and also π3 ◦ T1 ◦ T ′

6 = T1 ◦ B3 holds, where ◦ denotes

24

composition. Let (π,B) be one of these four pairs of transformers. If K is the set of K-axioms and N
is the set of Necessitation rules for the different modal operators then soundness and completeness
(s&c) of the transformers B and T ′

6 allow us to prove
A1 ⇒ φ

iff B(T1(A1)) ⇒B(T1(φ)) (s&c) of T1 and B
iff T ′

6 (T1(π(A1))) ⇒T ′
6 (T1(π(φ))) above equations

iff T ′
6 (T1(K) ∧ T1(N) ∧ T1(π(A1))) ⇒T ′

6 (T1(π(φ))) T ′
6 (T1(K) ∧ T1(N)) = true

iff T1(K) ∧ T1(N) ∧ T1(π(A1)) ⇒T1(π(φ)) (s&c) of T ′
6

iff K ∧N ∧ π(A1) ⇒ π(φ) (s&c) of T1.
<

Usually the direct B–transformations using binary accessibility relations is sufficient, and we
need not take a detour via multi modal logic. Therefore I have not investigated the difference
between this kind of separated multi modal logic, introduced above and the standard multi modal
logic. I conjecture that there is no significant difference as long as the syntactic invariant of
the nested K–type and R–type formulae is guaranteed. Direct translations for modal logic with
neighbourhood semantics into normal bi- or tri-modal logic respectively have been investigated
by Olivier Gasquet and Andreas Herzig [GH93a, GH93b]. It turnes out that it is extremely
complicated to extend the frame properties from the worlds of sort W to all worlds. There is no
general scheme and each frame property has to be treated individually.

4.7 Truth Value Semantics

For a connective f with a semantics defined in terms of the accessibility relation we can prove that
f is actually a classical connective by proving that the accessibility relation collapses to a point
relation.

A point relation is one where general reflexivity ∀x R(x, . . . , x) holds and all arguments of R
‘collapse’ in the following sense: ∀x⃗ R(x⃗) ⇒

∧
i,j xi = xj holds.

For our test connective ; we can actually prove these properties. In order to illustrate how
the translation, quantifier elimination and theorem proving techniques work together, we list all
the details. First, the two axioms (12) and (13), namely

∀p, q, r, s ((p; q) ; r) ⊢2 ((r ; p) ; (s; p))
∀p, q, r, s p ⊢2 q ∧ (p; q) ⊢2 (r ; s) ⇒ r ⊢2 s,

can be translated with a composition of the transformers T1,T6 and S. This is simple rewriting.
The results are:
∀w (∀u, v R(w, u, v) ⇒ ((∀x, y R(u, x, y) ⇒ (p(x) ⇒ q(y))) ⇒ r(v)))

⇒ (∀a, b R(w, a, b) ⇒ ((∀x, y R(a, x, y) ⇒ (r(x) ⇒ p(y))) ⇒ (∀c, d R(b, c, d) ⇒ (s(c) ⇒ p(d)))))
and
((∀w p(w) ⇒ q(w)) ∧ (∀w (∀u, v (R(w, u, v) ⇒ p(u) ⇒ q(v))) ⇒ (∀u, v R(w, u, v) ⇒ (r(u) ⇒ s(v)))))

⇒ (∀w r(w) ⇒ s(w)).

All predicates except R are universally quantified. To simplify the formulae we apply the
quantifier elimination algorithm SCAN. First we negate the formulae in order to get existentential
quantifications. The negation is clausified, all existentially quantified predicates are resolved away,
the quantifiers are reconstructed and the formula is negated again. Lets start with the first formula.
Its negation is
∃w (∀u, v R(w, u, v) ⇒ ((∀x, y R(u, x, y) ⇒ (p(x) ⇒ q(y))) ⇒ r(v)))

∧ (∃a, b R(w, a, b) ∧ (∀x, y R(a, x, y) ⇒ (r(x) ⇒ p(y))) ∧ (∃c, d R(b, c, d) ∧ s(c) ∧ ¬p(d))).

The clause form is

C1 ¬R(w, u, v),R(u, f(u, v), g(u, v)), r(v)
C2 ¬R(w, u, v), p(f(u, v)), r(v)
C3 ¬R(w, u, v),¬q(g(u, v)), r(v)
C4 R(w, a, b)
C5 ¬R(a, x, y),¬r(x), p(y)

25

C6 R(b, c, d)
C7 s(c) u, v, x, y are variables.
C8 ¬p(d) all other symbols are Skolem constants or functions.

The result of resolving p, q, r, s away is

C ′
1 ¬R(w, u, v),R(u, f(u, v), g(u, v)),¬R(a, v, d)

C ′
2 ¬R(w, u, v), f(u, v) ̸= d,¬R(a, v, d)

C4 R(w, a, b)
C6 R(b, c, d).

The quantifier prefix is reconstructed. f and g become existentially quantified variables again.
The resulting formula is

∃w, a, b, c, d ∀u, v ∃x, y R(w, a, b) ∧R(b, c, d) ∧ (¬R(w, u, v) ∨ ¬R(a, v, d) ∨ (R(u, x, y) ∧ x ̸= d)
To obtain the final result, this formula is negated.

∀w, a, b, c, d (R(w, a, b) ∧R(b, c, d)) ⇒∃u, v R(w, u, v) ∧R(a, v, d) ∧ ∀x, y R(u, x, y) ⇒ x = d.
(64)

That means in relational possible worlds semantics the Lukasiewics axiom (12) corresponds to the
property (64) of the accessibility relation.

Now lets turn to the second formula. Its negation is
((∀w p(w) ⇒ q(w)) ∧ ∀w (∀u, v R(w, u, v) ⇒ (p(u) ⇒ q(v))) ⇒ (∀u, v R(w, u, v) ⇒ (r(u) ⇒ s(v))))

∧ (∃w r(w) ∧ ¬s(w)).

The clause form is

C1 ¬p(w), q(w)
C2 R(w, f(w), g(w)),¬R(w, x, y),¬r(x), s(y)
C3 p(f(w)),¬R(w, x, y),¬r(x), s(y)
C4 ¬q(g(w)),¬R(w, x, y),¬r(x), s(y)
C5 r(a) w, x, y are variables.
C6 ¬s(a) f, g, a are Skolem symbols.

The result of resolving p, q, r, s away is

C ′
2 R(w, f(w), g(w)),¬R(w, a, a)

C ′
3 f(w) ̸= g(w),¬R(w, a, a).

The quantifier prefix is reconstructed. f and g become existentially quantified variables. The
resulting formula is ∃a ∀w ∃u, v ¬R(w, a, a) ∨ (R(w, u, v) ∧ u = v).
Negating this formula, we obtain the final result

∀a ∃w R(w, a, a) ∧ ∀u, v R(w, u, v) ⇒ u = v. (65)

That means in relational possible worlds semantics our version of Modus Ponens (13) corresponds
to the property (65) of the accessibility relation.

From the two translated axioms (64) and (65), the three lemmas
∀x R(x, x, x) and ∀w, u, v R(w, u, v) ⇒ w = u and ∀w, u, v R(w, u, v) ⇒ u = v
follow, which shows that R collapses to a point relation. The proofs were found with the Otter
theorem prover. They are listed in A.15 in the Appendix. The transformer

w |=L (p; q) ⇔ ∀x, y R;(w, x, y) ⇒ (x |=L p⇒ y |=L q)
now simplifies to

w |=L (p; q) ⇔ (w |=L p⇒ w |=L q)
which proves the equivalence between ; and ⇒.

26

5 The Semantics Generation Procedure

We collect the results of the previous section and define a procedure for developing the semantics
for the given non–classical operators.

We start with an arbitrary formula set A1 containing the ⊢2–predicate. Naturally A1 should be
consistent, otherwise the following steps have no meaning.

Step 1 Prove that ⊢2 is reflexive and transitive.

Step 2 Prove the congruence properties, (17) for all connectives. If there are connectives where
this is not possible, the logic is outside the scope of the current theory. If the congruence
properties hold for all connectives and ⊢2 is the only predicate in A1, and all formula
variables are universally quantified then any of the transformers T2 (24), T3 (28) or B1 (32)
defines a sound and complete semantics.

Step 3 Try proving for each connective f the monotonicity properties (34) and (35) from A1. In
this step we determine for each argument position of f , whether it is upward or downward
monotonic. We assume that each argument position is monotonic. If some but not all
argument positions are monotonic, or one argument position is both upward and downward
monotonic, there is a straightforward extension of our theory which can deal with this (we
leave it to the reader to show this).

The actual semantics is now determined by one of the transformers T4 (41), T5(42), B+
2 (43)

or B−
2 (44) respectively, for each monotonic connective, and one of the previous transformers

for the non–monotonic connectives. All can be mixed freely.

Step 4 Check whether A1 contains an axiomatization of standard propositional logic. Find a
model for A1 ∧ (∃p, q ¬(p ⊢2 q)) to ensure that the next transformations do not produce
inconsistencies. If both conditions are fulfilled, one can simplify the previously transformed
axioms A by applying the transformer S which replaces literals v |=L p in A with p(v) and
trying the quantifier elimination algorithm on these PL2 formulae. Notice that this is an
optional simplification step. If the quantifier elimination algorithm does not compute an
equivalent first–order formula, then the original translated first–order formula A is the
final result of the transformation. In this way we can also deal with so–called incomplete
systems.

Step 5 If the conditions of the previous step are fulfilled and A1 consists of definite Horn clauses
only, then check for the closure properties. For the connectives which are either upward
or downward monotonic for each argument position, try proving (48) for each upward
monotonic argument position and (49) for each downward monotonic argument position.
If this is successful then the transformer T6 (58) yields the classical relational possible
worlds semantics. Translate A1 again using the strongest possible transformer for each
connective. As in the previous step, these translated axioms can be simplified using the
transformer S and quantifier elimination.

Notice that this step and the corresponding completeness proof subsumes the Sahlquist
technique frequently used in modal logic to get frame properties from Hilbert axioms
[Sah75, vB83].

Step 6 For connectives with relational semantics (the previous step was successful) try proving
that the accessibility relation collapses to a point relation (see Section 4.7). If this is
provable then the connective has a standard truth value semantics.

The completeness lemmas guarantee that a (positive) theorem can be proved from the original
Hilbert axioms A1 if and only if the translated theorem can be proved from the resulting translated
axiom system.

27

6 Summary

I have presented an alternative way for developing model theoretic semantics from an axiomatic
specification of non–classical propositional logics. The semantics is represented as syntactic trans-
formation rules. These transformation rules are derived from particular theorems of the original
system and they translate these theorems into tautologies. Reflexivity and transitivity of a binary
consequence relation yields the basic possible worlds framework. The congruence properties of the
connectives yield weak neighbourhood semantics. The monotonicity properties yield a stronger
neighbourhood semantics. The closure properties yield relational possible worlds semantics for the
connectives.

Propositional logic as basis of the specification allows us to turn those parts which are not elim-
inated into second–order predicate logic formulae. In many cases these formulae can be simplified
to a first–order predicate logic formula which describes the corresponding frame property. As a
consequence, the correspondence problem reduces to a quantifier elimination problem which can
be solved with a quantifier elimination algorithm like SCAN. All transformations preserve satisfi-
ability and unsatisfiability. This is sufficient for the soundness and completeness of the generated
semantics.

Sometimes there are alternative transformations for the same property. For example the trans-
formations which produce neighbourhood semantics may define a neighbourhood relation between
worlds or a neighbourhood relation between a world and sets of worlds. Moreover, one can de-
fine transformations which produce for n–place connectives only binary accessibility relations. We
have shown how these transformation can be turned into a translation from the original logic into
multi–modal logic.

With PL1 theorem provers, quantifier elimination algorithms and model finders, all steps of
the transformation process can be automated.

This work can be extended in various directions. For example, one can try to find transfor-
mations for other properties than the ones considered in this paper. The starting point for our
method were the congruence properties of the connectives. There are, however, quite interesting
and useful connectives which do not have the congruence properties and for which our method
does not work. An example is Fagin and Halpern’s awareness operator [FH88].

In order to apply Stone’s representation theorem we need to have a propositional logic as basis.
It should be investigated whether some of the representation theorems for weaker structures than
Boolean algebras can be exploited to investigate extensions of intuitionistic or relevance logics. Of
particular interest are of course logics with quantifiers. It is not clear how quantifiers fit into our
framework.

Although in this paper we investigated only specifications of logics, the ideas and techniques
used are independent of this particular application. There might be other areas where similar
manipulations of logical specifications also yield interesting results. In particular, the area of
representation theorems for algebraic systems is related to this work. For example Jónsson and
Tarski’s representation theorem for Boolean algebras with operators [JT51, JT52] gives an alter-
native completeness theorem for relational possible worlds semantics. Transferring the ideas and
methods developed in this paper to algebraic logic and to general algebra seems promising.

References

[Ack35a] Wilhelm Ackermann. Untersuchung über das Eliminationsproblem der mathematischen
Logik. Mathematische Annalen, 110:390–413, 1935.

[Ack35b] Wilhelm Ackermann. Zum Eliminationsproblem der mathematischen Logik. Mathema-
tische Annalen, 111:61–63, 1935.

[Ack54] Wilhelm Ackermann. Solvable Cases of the Decision Problem. North–Holland Pu. Co.,
1954.

28

[BG90] Leo Bachmair and Harald Ganzinger. On restrictions of ordered paramodulation with
simplification. In CADE-10: 10th International Conference on Automated Deduction,
Lecture Notes in Artificial Intelligence, pages 427–441, Kaiserslautern, FRG, 1990.
Springer-Verlag. Copy filed.

[BGW92] Leo Bachmair, Harald Ganzinger, and Uwe Waldmann. Theorem proving for hierarchic
first-order theories. In G. Levi and H. Kirchner, editors, Algebraic and Logic Pro-
gramming, Third International Conference, pages 420–434. Springer-Verlag, LNCS 632,
September 1992.

[Che80] B. F. Chellas. Modal Logic: An Introduction. Cambridge University Press, Cambridge,
1980.

[FH88] Ronald Fagin and Joseph Halpern. Belief, awareness, and limited reasoning. Artificial
Intelligence, 34:39–76, 1988.

[GH93a] Olivier Gasquet and Andreas Herzig. Translating inaccessible worlds logic into bi-
modal logic. In Michael Clarke, Rudolf Kruse, and Seraf́ın Moral, editors, Symbolic
and Quantitative Approaches to Reasoning and Uncertainty, Proceedings of ECSQARU
’93, Granada, Spain, Nov. 1993, volume 747 of LNCS, pages 145–150, Granada, Spain,
8–10 November 1993.

[GH93b] Olivier Gasquet and Andreas Herzig. Translating non-normal modal logics into normal
modal logics. In I. J. Jones and M. Sergot, editors, Proc. of International Workshop on
Deontic Logic in Computer Science (DEON–94), TANO, Oslo, December 1993.

[GO92a] Dov M. Gabbay and Hans Jürgen Ohlbach. Quantifier elimination in second–order
predicate logic. South African Computer Journal, 7:35–43, July 1992. also published in
[GO92b].

[GO92b] Dov M. Gabbay and Hans Jürgen Ohlbach. Quantifier elimination in second–order predi-
cate logic. In Bernhard Nebel, Charles Rich, and William Swartout, editors, Principles of
Knowledge Representation and Reasoning (KR92), pages 425–435. Morgan Kaufmann,
1992. also published as a technical report MPI-I-92-231 of the Max-Planck-Institut für
Informatik, Saarbrücken and in the South African Computer Journal, 1992.

[JT51] B. Jónsson and A. Tarski. Boolean algebras with operators, Part I. American Journal
of Mathematics, 73:891–939, 1951.

[JT52] B. Jónsson and A. Tarski. Boolean algebras with operators, Part II. American Journal
of Mathematics, 74:127–162, 1952.

[Kri59] S. A. Kripke. A completeness theorem in modal logic. Journal of Symbolic Logic, 24:1–
14, 1959.

[Kri63] S. A. Kripke. Semantical analysis of modal logic i, normal propositional calculi.
Zeitschrift für mathematische Logik und Grundlagen der Mathematik, 9:67–96, 1963.

[Luk70] J. Lukasiewicz. Selected Works. North Holland, 1970. Edited by L. Borkowski.

[McC89] William W. McCune. OTTER User’s Guide. Mathematical and Computer Science
Devision, Argonne National Laboratory, april 1989.

[McC90] William McCune. Otter 2.0. In Mark Stickel, editor, Proc. of 10th Internation Con-
ference on Automated Deduction, LNAI 449, pages 663–664. Springer Verlag, 1990.

[OGP94] Hans Jürgen Ohlbach, Dov Gabbay, and David Plaisted. Killer transformations. Tech-
nical Report MPI-I-94-226, Max-Planck-Institut für Informatik, Saarbrücken, Germany,
1994. To be published in Proc. of the 1993 Workshop on Proof Theory in Modal Logic,
Hamburg.

29

[PS90] P. Pritchard and J. Slaney. Computing models of propositional logics. In 10th Interna-
tional Conference on Automated Deduction, CADE-10, LNCS 449, page 685. Springer
Verlag, 1990.

[Sah75] H. Sahlqvist. Completeness and correspondence in the first and second order seman-
tics for modal logics. In S. Kanger, editor, Proceedings of the 3rd Scandinavian Logic
Symposium, 1973, pages 110–143, Amsterdam, 1975. North Holland.

[Sim94] Harold Simmons. The monotonous elimination of predicate variables. Journal of Logic
and Computation, 4(1), 1994.

[Sto36] M. H. Stone. The theory of representations for boolean algebras. Transactions of
American Mathematical Society, 40:37–111, 1936.

[Sza92] Andrzej Sza las. On correspondence between modal and classical logic: Automated
approach. Technical Report MPI–I–92–209, Max-Planck-Institut für Informatik,
Saarbrücken, March 1992.

[vB83] Johan van Benthem. The Logic of Time. Reidel, Kluwer Academic Publishers, Dor-
drecht, 1983.

[vB84] Johan van Benthem. Correspondence theory. In Gabbay Dov M and Franz Guenthner,
editors, Handbook of Philosophical Logic, Vol. II, Extensions of Classical Logic, Synthese
Library Vo. 165, pages 167–248. D. Reidel Publishing Company, Dordrecht, 1984.

[Wal87] Christoph Walther. A Many-Sorted Calculus Based on Resolution and Paramodulation.
Research Notes in Artificial Intelligence. Pitman Ltd., London, 1987.

30

A Appendix: Proofs for the Test Example

We list the proofs for the key lemmas needed Section 4 for jusitfying the application of the trans-
formations. All proofs were found by the theorem prover Otter [McC89, McC90]. The proofs of the
lemmas below are almost the original output listings of Otter. Only the superfluous information
has been deleted and the layout has been changed slightly. I used Otter Version 2.2xa on a Solburn
machine with SuperSparc processors. Some of the proofs required several hours of CPU time, and
the program generated up to 70 million clauses. Otter is a refutational theorem prover. Therefore
the theorem to be proved is negated and the systems tries to find the empty clause F, the basic
contradiction. ‘|’ is Otter’s symbol for disjunction. x != y means x ̸= y. All other symbols are self
explanatory.

In most cases I used hyperresolution as inference rule. Except for the weighting limit, which
limits the size of the derived clauses, no other control parameter was changed from its default
value. For some of the proofs the weighting limit turned out to be crucial. No proof could be
found for other weighting limits. During the proof search, however, there was no interaction with
the system. In most cases all formulae were put into the set of support (sos) list. This is necessary
because hyperresolution is not complete together with the sos strategy.

In the protocols below, d is used for the binary consequence relation ⊢2, i is the implication
connective and b stands for the 2–operator. x,y,z,u,v,w are variable symbols.

Lemma A.1 (Reflexivity of ⊢2)
From the axioms (12) and (13) we prove that the consequence relation is reflexive.

set(hyper_res).

formula_list(sos).

all r p q s d(i(i(p,q),r),i(i(r,p),i(s,p))).

all p q r s (d(p,q)&d(i(p,q),i(r,s))->d(r,s)).

% negated theorem.

-(all p d(p,p)).

end_of_list.

-------> sos clausifies to:

1 d(i(i(x1,x2),x3),i(i(x3,x1),i(x4,x1))).

2 -d(x5,x6)| -d(i(x5,x6),i(x7,x8))|d(x7,x8).

3 -d(c1,c1).

----> UNIT CONFLICT at 1.58 sec ----> 380 [379,3] F.

---------------- PROOF ----------------

4 [2,1,1] d(i(i(i(x,y),i(z,y)),i(y,u)),i(v,i(y,u))).

5 [4,2,4] d(x,i(i(y,z),i(z,i(y,z)))).

8 [5,2,1] d(i(i(i(x,y),i(y,i(x,y))),z),i(u,z)).

16 [8,2,1] d(x,i(i(i(y,i(z,y)),z),i(u,z))).

21 [16,2,1] d(i(i(i(i(x,i(y,x)),y),i(z,y)),u),i(v,u)).

253 [21,2,4] d(x,i(i(y,z),i(u,i(y,z)))).

259 [253,2,253] d(i(x,y),i(z,i(x,y))).

288 [259,2,1] d(i(i(x,i(y,z)),y),i(u,y)).

310 [288,2,1] d(i(i(x,y),i(z,i(y,u))),i(v,i(z,i(y,u)))).

369 [310,2,259] d(x,i(y,i(z,z))).

376 [369,2,369] d(x,i(y,y)).

379 [376,2,376] d(x,x).

380 [379,3] F.

<

Lemma A.2 (Transitivity of ⊢2)
From the axioms (12) and (13) we prove the transitivity of the consequence relation.

set(hyper_res).

formula_list(sos).

all r p q s d(i(i(p,q),r),i(i(r,p),i(s,p))).

all p q r s (d(p,q)&d(i(p,q),i(r,s))->d(r,s)).

31

all p d(p,p).

% negated theorem.

-(all p q r (d(p,q)&d(q,r)->d(p,r))).

end_of_list.

-------> sos clausifies to:

1 d(i(i(x1,x2),x3),i(i(x3,x1),i(x4,x1))).

2 -d(x5,x6)| -d(i(x5,x6),i(x7,x8))|d(x7,x8).

3 d(x9,x9).

4 d(c3,c2).

5 d(c2,c1).

6 -d(c3,c1).

----> UNIT CONFLICT at 3612.46 sec ----> 41345 [41344,6] F.

---------------- PROOF ----------------

7 [2,3,1] d(i(i(x,y),x),i(z,x)).

9 [7,2,7] d(x,i(y,y)).

10 [7,2,1] d(i(i(x,y),i(y,z)),i(u,i(y,z))).

11 [9,2,1] d(i(i(x,x),y),i(z,y)).

20 [10,2,1] d(i(i(x,i(y,z)),i(u,y)),i(v,i(u,y))).

30 [20,2,1] d(x,i(i(i(i(y,z),u),z),i(y,z))).

31 [20,2,1] d(i(i(x,i(y,z)),i(u,i(z,v))),i(w,i(u,i(z,v)))).

32 [30,2,30] d(i(i(i(x,y),z),y),i(x,y)).

34 [32,2,20] d(x,i(y,i(z,y))).

35 [32,2,7] d(x,i(y,x)).

37 [32,2,1] d(i(i(x,y),i(i(x,y),z)),i(u,i(i(x,y),z))).

47 [35,2,5] d(x,i(c2,c1)).

48 [35,2,4] d(x,i(c3,c2)).

50 [35,2,1] d(i(i(x,i(y,z)),y),i(u,y)).

51 [47,2,35] d(x,i(y,i(c2,c1))).

52 [47,2,1] d(i(i(c2,c1),x),i(y,x)).

53 [48,2,35] d(x,i(y,i(c3,c2))).

54 [48,2,1] d(i(i(c3,c2),x),i(y,x)).

56 [34,2,1] d(i(i(x,i(y,x)),z),i(u,z)).

58 [51,2,1] d(i(i(x,i(c2,c1)),y),i(z,y)).

60 [53,2,1] d(i(i(x,i(c3,c2)),y),i(z,y)).

267 [37,2,60] d(x,i(i(i(y,i(c3,c2)),z),z)).

268 [37,2,58] d(x,i(i(i(y,i(c2,c1)),z),z)).

269 [37,2,56] d(x,i(i(i(y,i(z,y)),u),u)).

270 [37,2,54] d(x,i(i(i(c3,c2),y),y)).

271 [37,2,52] d(x,i(i(i(c2,c1),y),y)).

272 [37,2,50] d(x,i(i(i(y,i(z,u)),z),z)).

284 [37,2,11] d(x,i(i(i(y,y),z),z)).

287 [37,2,7] d(x,i(i(i(y,z),y),y)).

294 [270,2,270] d(i(i(c3,c2),x),x).

297 [271,2,294] d(i(i(c2,c1),x),x).

300 [284,2,297] d(i(i(x,x),y),y).

303 [287,2,300] d(i(i(x,y),x),x).

306 [303,2,1] d(i(x,i(x,y)),i(z,i(x,y))).

307 [267,2,303] d(i(i(x,i(c3,c2)),y),y).

311 [268,2,307] d(i(i(x,i(c2,c1)),y),y).

315 [269,2,311] d(i(i(x,i(y,x)),z),z).

319 [272,2,315] d(i(i(x,i(y,z)),y),y).

323 [319,2,1] d(i(x,i(y,i(x,z))),i(u,i(y,i(x,z)))).

339 [306,2,306] d(x,i(i(y,i(y,z)),i(y,z))).

342 [339,2,339] d(i(x,i(x,y)),i(x,y)).

364 [342,2,10] d(i(i(x,y),i(y,z)),i(y,z)).

371 [364,2,1] d(i(i(x,y),i(z,x)),i(u,i(z,x))).

458 [371,2,32] d(x,i(y,i(z,x))).

605 [323,2,1] d(x,i(i(y,z),i(i(i(z,u),y),z))).

609 [605,2,605] d(i(x,y),i(i(i(y,z),x),y)).

32

622 [609,2,458] d(i(i(i(x,i(y,z)),u),z),i(x,i(y,z))).

674 [609,2,54] d(i(i(i(x,y),z),i(i(c3,c2),y)),i(x,y)).

676 [609,2,50] d(i(i(i(x,y),z),i(i(u,i(y,v)),y)),i(x,y)).

690 [609,2,7] d(i(i(i(x,y),z),i(i(y,u),y)),i(x,y)).

3887 [31,2,1] d(x,i(i(i(y,z),u),i(z,u))).

3899 [3887,2,3887] d(i(i(x,y),z),i(y,z)).

3908 [3899,2,1] d(x,i(i(x,y),i(z,y))).

4217 [3908,2,3899] d(x,i(i(i(y,x),z),i(u,z))).

4225 [3908,2,609] d(i(i(i(i(x,y),i(z,y)),u),x),i(i(x,y),i(z,y))).

4229 [3908,2,1] d(i(i(i(i(x,y),z),i(u,z)),x),i(v,x)).

4604 [4217,2,1] d(i(i(i(i(x,i(y,z)),u),i(v,u)),y),i(w,y)).

5104 [4229,2,342] d(i(i(i(i(x,y),z),i(u,z)),x),x).

5118 [5104,2,676] d(i(i(i(i(x,i(i(y,z),u)),i(y,z)),v),z),i(y,z)).

6337 [4604,2,342] d(i(i(i(i(x,i(y,z)),u),i(v,u)),y),y).

6354 [6337,2,674] d(i(i(x,i(i(i(c3,c2),i(y,z)),u)),z),i(y,z)).

16572 [4225,2,6354] d(i(i(x,y),z),i(i(i(c3,c2),i(x,y)),z)).

18364 [16572,2,1] d(i(i(c3,c2),i(i(x,y),z)),i(i(z,x),i(u,x))).

39219 [5118,2,690] d(i(i(x,i(i(i(y,z),y),u)),i(i(y,z),y)),y).

39255 [39219,2,4225] d(i(x,y),i(i(i(x,z),x),y)).

40733 [39255,2,5] d(i(i(c2,x),c2),c1).

40751 [39255,2,18364] d(i(c2,i(c3,x)),i(y,i(c3,x))).

40917 [40733,2,622] d(c2,i(x,c1)).

41296 [40751,2,40917] d(x,i(c3,c1)).

41344 [41296,2,41296] d(c3,c1).

41345 [41344,6] F.

<

Lemma A.3 (First Congruence Lemma for ;)
From the axioms (12) and (13) we prove the first congruence lemma (19) for ;:

∀p, q (p ⊢2 q ∧ q ⊢2 p) ⇒∀s p; s ⊢2 q ; s).
As lemmas we use reflexivity and transitivity of ⊢2.

set(hyper_res).

formula_list(sos).

all r p q s d(i(i(p,q),r),i(i(r,p),i(s,p))).

all p q r s (d(p,q)&d(i(p,q),i(r,s))->d(r,s)).

all p d(p,p).

all p q r (d(p,q)&d(q,r)->d(p,r)).

% negated theorem.

-(all p q (d(p,q)&d(q,p)-> (all s d(i(p,s),i(q,s))))).

end_of_list.

-------> sos clausifies to:

1 d(i(i(x1,x2),x3),i(i(x3,x1),i(x4,x1))).

2 -d(x5,x6)| -d(i(x5,x6),i(x7,x8))|d(x7,x8).

3 d(x9,x9).

4 -d(x10,x11)| -d(x11,x12)|d(x10,x12).

5 d(c3,c2).

6 d(c2,c3).

7 -d(i(c3,c1),i(c2,c1)).

----> UNIT CONFLICT at 886.29 sec ----> 35208 [35207,7] F.

---------------- PROOF ----------------

9 [2,3,1] d(i(i(x,y),x),i(z,x)).

11 [9,4,1] d(i(i(x,y),i(z,x)),i(u,i(z,x))).

13 [9,2,9] d(x,i(y,y)).

16 [13,2,1] d(i(i(x,x),y),i(z,y)).

18 [16,4,1] d(i(i(x,y),x),i(z,i(u,x))).

31 [18,2,9] d(x,i(y,i(z,y))).

34 [31,2,31] d(x,i(y,x)).

37 [34,4,6] d(c2,i(x,c3)).

33

40 [34,4,1] d(x,i(i(x,y),i(z,y))).

43 [34,2,5] d(x,i(c3,c2)).

47 [37,4,1] d(c2,i(i(c3,x),i(y,x))).

55 [43,2,1] d(i(i(c3,c2),x),i(y,x)).

770 [11,2,40] d(x,i(i(i(i(y,z),u),z),i(y,z))).

2355 [770,2,770] d(i(i(i(x,y),z),y),i(x,y)).

2421 [2355,4,55] d(i(i(i(i(c3,c2),x),y),x),i(z,x)).

2468 [2421,2,9] d(x,i(i(i(c3,c2),y),y)).

2479 [2468,2,2468] d(i(i(c3,c2),x),x).

2519 [2479,4,11] d(i(i(x,y),i(z,x)),i(z,x)).

2520 [2479,4,9] d(i(i(x,y),x),x).

2845 [2520,4,47] d(i(i(c2,x),c2),i(i(c3,y),i(z,y))).

35207 [2845,2,2519] d(i(c3,x),i(c2,x)).

35208 [35207,7] F.

<

Lemma A.4 (Second Congruence Lemma for ;)
From the axioms (12) and (13) we prove the second congruence lemma (20) for ;:

∀p, q (p ⊢2 q ∧ q ⊢2 p) ⇒∀s s; p ⊢2 s; p).
As lemmas we use again reflexivity and transitivity of ⊢2.

set(hyper_res).

formula_list(sos).

all r p q s d(i(i(p,q),r),i(i(r,p),i(s,p))).

all p q r s (d(p,q)&d(i(p,q),i(r,s))->d(r,s)).

all p d(p,p).

all p q r (d(p,q)&d(q,r)->d(p,r)).

% negated theorem.

-(all p q (d(p,q)&d(q,p)-> (all s d(i(s,p),i(s,q))))).

end_of_list.

-------> sos clausifies to:

1 d(i(i(x1,x2),x3),i(i(x3,x1),i(x4,x1))).

2 -d(x5,x6)| -d(i(x5,x6),i(x7,x8))|d(x7,x8).

3 d(x9,x9).

4 -d(x10,x11)| -d(x11,x12)|d(x10,x12).

5 d(c3,c2).

6 d(c2,c3).

7 -d(i(c1,c3),i(c1,c2)).

----> UNIT CONFLICT at 10394.18 sec ----> 126271 [126270,7] F.

---------------- PROOF ----------------

9 [2,3,1] d(i(i(x,y),x),i(z,x)).

11 [9,4,1] d(i(i(x,y),i(z,x)),i(u,i(z,x))).

13 [9,2,9] d(x,i(y,y)).

16 [13,2,1] d(i(i(x,x),y),i(z,y)).

18 [16,4,1] d(i(i(x,y),x),i(z,i(u,x))).

31 [18,2,9] d(x,i(y,i(z,y))).

34 [31,2,31] d(x,i(y,x)).

38 [34,4,5] d(c3,i(x,c2)).

40 [34,4,1] d(x,i(i(x,y),i(z,y))).

43 [34,2,5] d(x,i(c3,c2)).

45 [34,2,1] d(i(i(x,i(y,z)),y),i(u,y)).

51 [38,2,34] d(x,i(c3,i(y,c2))).

55 [43,2,1] d(i(i(c3,c2),x),i(y,x)).

83 [51,2,1] d(i(i(c3,i(x,c2)),y),i(z,y)).

327 [11,2,40] d(x,i(i(i(i(y,z),u),z),i(y,z))).

450 [327,2,327] d(i(i(i(x,y),z),y),i(x,y)).

498 [450,4,55] d(i(i(i(i(c3,c2),x),y),x),i(z,x)).

528 [498,2,9] d(x,i(i(i(c3,c2),y),y)).

534 [528,2,528] d(i(i(c3,c2),x),x).

34

564 [534,4,83] d(i(i(c3,i(x,c2)),y),y).

568 [534,4,45] d(i(i(x,i(y,z)),y),y).

574 [534,4,9] d(i(i(x,y),x),x).

829 [574,4,450] d(i(i(i(i(x,y),x),z),x),x).

905 [574,2,1] d(i(x,i(x,y)),i(z,i(x,y))).

5733 [905,4,829] d(i(x,i(x,y)),i(x,y)).

6649 [5733,4,1] d(i(i(x,y),z),i(i(z,x),x)).

16808 [6649,4,564] d(i(i(i(x,c2),y),c3),i(x,c2)).

16814 [6649,4,1] d(i(i(x,y),z),i(i(x,z),i(u,z))).

16845 [6649,2,568] d(i(x,i(y,i(x,z))),i(y,i(x,z))).

124104 [16845,2,16814] d(i(x,y),i(i(i(x,z),y),y)).

126270 [124104,4,16808] d(i(x,c3),i(x,c2)).

126271 [126270,7] F.

<

Lemma A.5 (Congruence Lemma for 2)
From the axioms (12) to (15) we prove the congruence lemma (21) for 2:

∀p, q (p ⊢2 q ∧ q ⊢2 p) ⇒2p ⊢2 2q.
Reflexivity and transitivity of ⊢2 are again used as lemmas.

set(hyper_res).

formula_list(sos).

all r p q s d(i(i(p,q),r),i(i(r,p),i(s,p))).

all p q r s (d(p,q)&d(i(p,q),i(r,s))->d(r,s)).

all p d(p,p).

all p q r (d(p,q)&d(q,r)->d(p,r)).

all p ((all x d(x,p))-> (all x d(x,b(p)))).

all p q d(b(i(p,q)),i(b(p),b(q))).

% negated theorem.

-(all p q (d(p,q)&d(q,p)->d(b(p),b(q)))).

end_of_list.

-------> sos clausifies to:

1 d(i(i(x1,x2),x3),i(i(x3,x1),i(x4,x1))).

2 -d(x5,x6)| -d(i(x5,x6),i(x7,x8))|d(x7,x8).

3 d(x9,x9).

4 -d(x10,x11)| -d(x11,x12)|d(x10,x12).

5 -d(f1(x13),x13)|d(x,b(x13)).

6 d(b(i(x14,x15)),i(b(x14),b(x15))).

7 d(c2,c1).

8 d(c1,c2).

9 -d(b(c2),b(c1)).

----> UNIT CONFLICT at 0.71 sec ----> 209 [208,9] F.

11 [2,3,1] d(i(i(x,y),x),i(z,x)).

15 [11,2,11] d(x,i(y,y)).

19 [15,2,1] d(i(i(x,x),y),i(z,y)).

27 [19,4,1] d(i(i(x,y),x),i(z,i(u,x))).

90 [27,2,11] d(x,i(y,i(z,y))).

94 [90,2,90] d(x,i(y,x)).

103 [94,2,8] d(x,i(c1,c2)).

104 [94,2,7] d(x,i(c2,c1)).

114 [103,5] d(x,b(i(c1,c2))).

117 [104,5] d(x,b(i(c2,c1))).

122 [114,4,6] d(x,i(b(c1),b(c2))).

126 [117,4,6] d(x,i(b(c2),b(c1))).

197 [122,2,122] d(b(c1),b(c2)).

208 [126,2,197] d(b(c2),b(c1)).

209 [208,9] F.

<

35

Lemma A.6 (Upwards Monotonicity Lemma for ;)
From the axioms (12) and (13) we prove the upward monotonicity lemma for ; (36):

p ⊢2 q ⇒∀s (s; p) ⊢2 (s; q).
Reflexivity and transitivity of ⊢2 are again used as lemmas.

set(hyper_res).

assign(max_weight,13).

formula_list(sos).

all r p q s d(i(i(p,q),r),i(i(r,p),i(s,p))).

all p q r s (d(p,q)&d(i(p,q),i(r,s))->d(r,s)).

all p d(p,p).

all p q r (d(p,q)&d(q,r)->d(p,r)).

% negated theorem.

-(all p q (d(p,q)-> (all s d(i(s,p),i(s,q))))).

end_of_list.

-------> sos clausifies to:

1 d(i(i(x1,x2),x3),i(i(x3,x1),i(x4,x1))).

2 -d(x5,x6)| -d(i(x5,x6),i(x7,x8))|d(x7,x8).

3 d(x9,x9).

4 -d(x10,x11)| -d(x11,x12)|d(x10,x12).

5 d(c3,c2).

6 -d(i(c1,c3),i(c1,c2)).

----> UNIT CONFLICT at 1041.75 sec ----> 54166 [54165,6] F.

8 [2,3,1] d(i(i(x,y),x),i(z,x)).

10 [8,4,1] d(i(i(x,y),i(z,x)),i(u,i(z,x))).

12 [8,2,8] d(x,i(y,y)).

15 [12,2,1] d(i(i(x,x),y),i(z,y)).

17 [15,4,1] d(i(i(x,y),x),i(z,i(u,x))).

30 [17,2,8] d(x,i(y,i(z,y))).

33 [30,2,30] d(x,i(y,x)).

36 [33,4,5] d(c3,i(x,c2)).

38 [33,4,1] d(x,i(i(x,y),i(z,y))).

40 [33,2,5] d(x,i(c3,c2)).

42 [33,2,1] d(i(i(x,i(y,z)),y),i(u,y)).

45 [36,2,33] d(x,i(c3,i(y,c2))).

47 [40,2,1] d(i(i(c3,c2),x),i(y,x)).

71 [45,2,1] d(i(i(c3,i(x,c2)),y),i(z,y)).

345 [10,2,38] d(x,i(i(i(i(y,z),u),z),i(y,z))).

491 [345,2,345] d(i(i(i(x,y),z),y),i(x,y)).

528 [491,4,47] d(i(i(i(i(c3,c2),x),y),x),i(z,x)).

563 [528,2,8] d(x,i(i(i(c3,c2),y),y)).

573 [563,2,563] d(i(i(c3,c2),x),x).

592 [573,4,71] d(i(i(c3,i(x,c2)),y),y).

594 [573,4,42] d(i(i(x,i(y,z)),y),y).

600 [573,4,8] d(i(i(x,y),x),x).

714 [600,4,491] d(i(i(i(i(x,y),x),z),x),x).

775 [600,2,1] d(i(x,i(x,y)),i(z,i(x,y))).

3013 [775,4,714] d(i(x,i(x,y)),i(x,y)).

3642 [3013,4,1] d(i(i(x,y),z),i(i(z,x),x)).

7874 [3642,4,592] d(i(i(i(x,c2),y),c3),i(x,c2)).

7882 [3642,4,1] d(i(i(x,y),z),i(i(x,z),i(u,z))).

7900 [3642,2,594] d(i(x,i(y,i(x,z))),i(y,i(x,z))).

53109 [7900,2,7882] d(i(x,y),i(i(i(x,z),y),y)).

54165 [53109,4,7874] d(i(x,c3),i(x,c2)).

54166 [54165,6] F.

<

Lemma A.7 (Downwards Monotonicity Lemma for ;)
From the axioms (12) and (13) we prove the downward monotonicity lemma for ; (37):

36

p ⊢2 q ⇒∀s (q ; s) ⊢2 (p; s).
As lemmas we use again reflexivity and transitivity of ⊢2.

set(hyper_res).

assign(max_weight,13).

formula_list(sos).

all r p q s d(i(i(p,q),r),i(i(r,p),i(s,p))).

all p q r s (d(p,q)&d(i(p,q),i(r,s)))->d(r,s)).

all p d(p,p).

all p q r (d(p,q)&d(q,r)->d(p,r)).

% negated theorem.

-(all p q (d(p,q)-> (all s d(i(q,s),i(p,s))))).

end_of_list.

-------> sos clausifies to:

1 d(i(i(x1,x2),x3),i(i(x3,x1),i(x4,x1))).

2 -d(x5,x6)| -d(i(x5,x6),i(x7,x8))|d(x7,x8).

3 d(x9,x9).

4 -d(x10,x11)| -d(x11,x12)|d(x10,x12).

5 d(c3,c2).

6 -d(i(c2,c1),i(c3,c1)).

----> UNIT CONFLICT at 82.77 sec ----> 11511 [11510,6] F.

8 [2,3,1] d(i(i(x,y),x),i(z,x)).

10 [8,4,1] d(i(i(x,y),i(z,x)),i(u,i(z,x))).

12 [8,2,8] d(x,i(y,y)).

15 [12,2,1] d(i(i(x,x),y),i(z,y)).

17 [15,4,1] d(i(i(x,y),x),i(z,i(u,x))).

30 [17,2,8] d(x,i(y,i(z,y))).

33 [30,2,30] d(x,i(y,x)).

36 [33,4,5] d(c3,i(x,c2)).

38 [33,4,1] d(x,i(i(x,y),i(z,y))).

40 [33,2,5] d(x,i(c3,c2)).

44 [36,4,1] d(c3,i(i(c2,x),i(y,x))).

47 [40,2,1] d(i(i(c3,c2),x),i(y,x)).

345 [10,2,38] d(x,i(i(i(i(y,z),u),z),i(y,z))).

491 [345,2,345] d(i(i(i(x,y),z),y),i(x,y)).

528 [491,4,47] d(i(i(i(i(c3,c2),x),y),x),i(z,x)).

563 [528,2,8] d(x,i(i(i(c3,c2),y),y)).

573 [563,2,563] d(i(i(c3,c2),x),x).

599 [573,4,10] d(i(i(x,y),i(z,x)),i(z,x)).

600 [573,4,8] d(i(i(x,y),x),x).

750 [600,4,44] d(i(i(c3,x),c3),i(i(c2,y),i(z,y))).

11510 [750,2,599] d(i(c2,x),i(c3,x)).

11511 [11510,6] F.

<

Lemma A.8 (Upwards Monotonicity Lemma for 2)
From the axioms (12) to (15) we prove the upward monotonicity lemma for 2 (38):

p ⊢2 q ⇒2p ⊢2 2q.
Reflexivity and transitivity of ⊢2 are used as lemmas.

set(hyper_res).

formula_list(sos).

all r p q s d(i(i(p,q),r),i(i(r,p),i(s,p))).

all p q r s (d(p,q)&d(i(p,q),i(r,s))->d(r,s)).

all p d(p,p).

all p q r (d(p,q)&d(q,r)->d(p,r)).

all p ((all x d(x,p))-> (all x d(x,b(p)))).

all p q d(b(i(p,q)),i(b(p),b(q))).

% negated theorem.

37

-(all p q (d(p,q)->d(b(p),b(q)))).

end_of_list.

-------> sos clausifies to:

1 d(i(i(x1,x2),x3),i(i(x3,x1),i(x4,x1))).

2 -d(x5,x6)| -d(i(x5,x6),i(x7,x8))|d(x7,x8).

3 d(x9,x9).

4 -d(x10,x11)| -d(x11,x12)|d(x10,x12).

5 -d(f1(x13),x13)|d(x,b(x13)).

6 d(b(i(x14,x15)),i(b(x14),b(x15))).

7 d(c2,c1).

8 -d(b(c2),b(c1)).

----> UNIT CONFLICT at 0.54 sec ----> 170 [169,8] F.

10 [2,3,1] d(i(i(x,y),x),i(z,x)).

14 [10,2,10] d(x,i(y,y)).

18 [14,2,1] d(i(i(x,x),y),i(z,y)).

26 [18,4,1] d(i(i(x,y),x),i(z,i(u,x))).

89 [26,2,10] d(x,i(y,i(z,y))).

93 [89,2,89] d(x,i(y,x)).

101 [93,2,7] d(x,i(c2,c1)).

108 [101,5] d(x,b(i(c2,c1))).

113 [108,4,6] d(x,i(b(c2),b(c1))).

169 [113,2,113] d(b(c2),b(c1)).

170 [169,8] F.

<

Lemma A.9 (Basis for Transformer T4)
From the monotonicity properties (40) and (39) we prove

w |=L f(p⃗, q⃗) ⇔∀x⃗
∧

i(∀v:W v |=L xi ⇒ v |=L pi) ⇒∃y⃗
∧

j(∀v:W v |=L yj ⇒ v |=L qj) ∧ w |=L f(x⃗, y⃗).
It is sufficient to prove it for two arguments of f, the first one being downward monotonic and the
second one being upward monotonic. ‘m(w,p)’ means w |=L p.
This time we use binary resolution and the set of support strategy.

set(binary_res).

set(factor).

formula_list(usable).

all p q ((all w (m(w,p)->m(w,q)))-> (all r w (m(w,f(r,p))->m(w,f(r,q))))).

all p q ((all w (m(w,p)->m(w,q)))-> (all r w (m(w,f(q,r))->m(w,f(p,r))))).

end_of_list.

-------> usable clausifies to:

1 m(f1(x1,x2),x1)| -m(w,f(x3,x1))|m(w,f(x3,x2)).

2 -m(f1(x1,x2),x2)| -m(w,f(x3,x1))|m(w,f(x3,x2)).

3 m(f2(x4,x5),x4)| -m(w,f(x5,x6))|m(w,f(x4,x6)).

4 -m(f2(x4,x5),x5)| -m(w,f(x5,x6))|m(w,f(x4,x6)).

formula_list(sos).

% negated theorem.

-(all p q w (m(w,f(p,q)) <->

(all x ((all v (m(v,x)->m(v,p))) ->

(exists y ((all v (m(v,y)->m(v,q))) & m(w,f(x,y)))))))).

end_of_list.

-------> sos clausifies to:

5 m(c2,f(c4,c3))|m(f3(x),x)| -m(v,f4(x))|m(v,c3).

6 m(c2,f(c4,c3))|m(f3(x),x)|m(c2,f(x,f4(x))).

7 m(c2,f(c4,c3))| -m(f3(x),c4)| -m(v,f4(x))|m(v,c3).

8 m(c2,f(c4,c3))| -m(f3(x),c4)|m(c2,f(x,f4(x))).

9 -m(c2,f(c4,c3))| -m(x7,c1)|m(x7,c4).

10 -m(c2,f(c4,c3))|m(f5(y),y)| -m(c2,f(c1,y)).

11 -m(c2,f(c4,c3))| -m(f5(y),c3)| -m(c2,f(c1,y)).

----> UNIT CONFLICT at 10.65 sec ----> 1090 [1089,164] F.

---------------- PROOF ----------------

38

47 [11,10] -m(c2,f(c4,c3))| -m(c2,f(c1,c3)).

60 [47,4] -m(c2,f(c4,c3))| -m(f2(c1,x),x)| -m(c2,f(x,c3)).

61 [47,3] -m(c2,f(c4,c3))|m(f2(c1,x),c1)| -m(c2,f(x,c3)).

66 [60] -m(c2,f(c4,c3))| -m(f2(c1,c4),c4).

67 [61] -m(c2,f(c4,c3))|m(f2(c1,c4),c1).

80 [66,9] -m(c2,f(c4,c3))| -m(f2(c1,c4),c1).

90 [80,67] -m(c2,f(c4,c3)).

93 [90,2] -m(f1(x,c3),c3)| -m(c2,f(c4,x)).

94 [90,1] m(f1(x,c3),x)| -m(c2,f(c4,x)).

119 [6,90] m(f3(x),x)|m(c2,f(x,f4(x))).

144 [8,90] -m(f3(x),c4)|m(c2,f(x,f4(x))).

156 [144,119] m(c2,f(c4,f4(c4))).

163 [156,94] m(f1(f4(c4),c3),f4(c4)).

164 [156,93] -m(f1(f4(c4),c3),c3).

455 [5,90] m(f3(x),x)| -m(y,f4(x))|m(y,c3).

546 [455,163] m(f3(c4),c4)|m(f1(f4(c4),c3),c3).

616 [546,164] m(f3(c4),c4).

844 [7,90] -m(f3(x),c4)| -m(y,f4(x))|m(y,c3).

968 [844,616] -m(x,f4(c4))|m(x,c3).

1089 [968,163] m(f1(f4(c4),c3),c3).

1090 [1089,164] F.

<

Lemma A.10 (Intersection Closure Lemma for ;)
From (11) to (13) we prove the closure lemma (50) for ;:

∀p, q, r, w w ⊢2 (r; p) ∧ w ⊢2 (r ; q) ⇒∃s s ⊢2 p ∧ s ⊢2 q ∧ w ⊢2 (r; s).
Reflexivity and transitivity of ⊢2 and the monotonicity properties for ; are used as lemmas.

set(hyper_res).

assign(max_weight,13).

formula_list(sos).

all r p q s d(i(i(p,q),r),i(i(r,p),i(s,p))).

all p q r s (d(p,q)&d(i(p,q),i(r,s))->d(r,s)).

all p d(p,p).

all p q r (d(p,q)&d(q,r)->d(p,r)).

all p d(bot,p).

all p q (d(q,p)-> (all s d(i(s,q),i(s,p)))).

all p q (d(p,q)-> (all s d(i(q,s),i(p,s)))).

% negated theorem.

-(all p q r w (d(w,i(r,p))&d(w,i(r,q))->

(exists s (d(s,p)&d(s,q)&d(w,i(r,s)))))).

end_of_list.

-------> sos clausifies to:

1 d(i(i(x1,x2),x3),i(i(x3,x1),i(x4,x1))).

2 -d(x5,x6)| -d(i(x5,x6),i(x7,x8))|d(x7,x8).

3 d(x9,x9).

4 -d(x10,x11)| -d(x11,x12)|d(x10,x12).

5 d(bot,x13).

6 -d(x14,x15)|d(i(x16,x14),i(x16,x15)).

7 -d(x17,x18)|d(i(x18,x19),i(x17,x19)).

8 d(c1,i(c2,c4)).

9 d(c1,i(c2,c3)).

10 -d(x20,c4)| -d(x20,c3)| -d(c1,i(c2,x20)).

-----> EMPTY CLAUSE at 4234.45 sec ----> 8834 [8482,10,8384,5493] F.

---------------- PROOF ----------------

13 [6,5] d(i(x,bot),i(x,y)).

14 [13,6] d(i(x,i(y,bot)),i(x,i(y,z))).

17 [7,13] d(i(i(x,y),z),i(i(x,bot),z)).

22 [7,5] d(i(x,y),i(bot,y)).

39

25 [22,4,13] d(i(x,bot),i(bot,y)).

93 [17,4,13] d(i(i(x,y),bot),i(i(x,bot),z)).

129 [1,4,17] d(i(i(x,y),z),i(i(z,bot),i(u,x))).

148 [2,25,1] d(i(i(bot,x),y),i(z,y)).

150 [2,13,1] d(i(i(x,y),x),i(z,x)).

151 [148,7] d(i(i(x,y),z),i(i(i(bot,u),y),z)).

161 [148,4,1] d(i(i(x,y),bot),i(z,i(u,x))).

169 [150,4,93] d(i(i(x,y),bot),i(z,x)).

226 [161,2,150] d(x,i(y,i(z,y))).

235 [226,2,226] d(x,i(y,x)).

237 [235,6] d(i(x,y),i(x,i(z,y))).

266 [235,4,1] d(x,i(i(x,y),i(z,y))).

381 [237,7] d(i(i(x,i(y,z)),u),i(i(x,z),u)).

800 [151,2,150] d(x,i(i(i(bot,y),z),z)).

813 [800,2,800] d(i(i(bot,x),y),y).

816 [813,6] d(i(x,i(i(bot,y),z)),i(x,z)).

848 [813,4,169] d(i(i(x,y),bot),x).

852 [813,4,150] d(i(i(x,y),x),x).

914 [848,7] d(i(x,y),i(i(i(x,z),bot),y)).

954 [852,7] d(i(x,y),i(i(i(x,z),x),y)).

964 [852,4,129] d(i(i(x,y),i(z,x)),i(z,x)).

1340 [816,4,266] d(x,i(i(x,y),y)).

1353 [816,4,129] d(i(i(x,y),z),i(i(z,bot),x)).

1361 [816,4,1] d(i(i(x,y),z),i(i(z,x),x)).

2816 [914,4,1340] d(x,i(i(i(i(x,y),z),bot),y)).

3735 [954,4,9] d(c1,i(i(i(c2,x),c2),c3)).

3736 [954,4,8] d(c1,i(i(i(c2,x),c2),c4)).

3901 [964,4,954] d(i(x,i(y,i(x,z))),i(y,i(x,z))).

3911 [964,4,14] d(i(i(x,y),i(z,bot)),i(z,x)).

4150 [1361,4,3736] d(c1,i(i(c4,i(c2,x)),i(c2,x))).

4151 [1361,4,3735] d(c1,i(i(c3,i(c2,x)),i(c2,x))).

5493 [3911,4,2816] d(x,i(y,i(i(x,i(y,bot)),z))).

6675 [381,4,4151] d(c1,i(i(c3,x),i(c2,x))).

6676 [381,4,4150] d(c1,i(i(c4,x),i(c2,x))).

6754 [6675,4,237] d(c1,i(i(c3,x),i(y,i(c2,x)))).

6781 [6676,4,237] d(c1,i(i(c4,x),i(y,i(c2,x)))).

7782 [3901,2,6781] d(i(c4,x),i(c1,i(c2,x))).

7783 [3901,2,6754] d(i(c3,x),i(c1,i(c2,x))).

8384 [7782,2,1353] d(i(i(c1,i(c2,x)),bot),c4).

8482 [7783,2,1353] d(i(i(c1,i(c2,x)),bot),c3).

8834 [8482,10,8384,5493] F.

<

Lemma A.11 (Union Closure Lemma for ;)
From (11) to (13) we prove the closure lemma (51) for ;.

∀p, q, r, w w ⊢2 (p; r) ∧ w ⊢2 (q ; r) ⇒∃s p ⊢2 s ∧ q ⊢2 s ∧ w ⊢2 (s; r).
As lemmas we use reflexivity and transitivity of ⊢2 and the monotonicity properties for ;.

set(hyper_res).

assign(max_weight,13).

formula_list(sos).

all r p q s d(i(i(p,q),r),i(i(r,p),i(s,p))).

all p q r s (d(p,q)&d(i(p,q),i(r,s))->d(r,s)).

all p d(p,p).

all p q r (d(p,q)&d(q,r)->d(p,r)).

all p q (d(q,p)-> (all s d(i(s,q),i(s,p)))).

all p q (d(p,q)-> (all s d(i(q,s),i(p,s)))).

% negated theorem.

-(all p q r x (d(x,i(p,r))&d(x,i(q,r))->

40

(exists s (d(p,s)&d(q,s)&d(x,i(s,r)))))).

end_of_list.

-------> sos clausifies to:

1 d(i(i(x1,x2),x3),i(i(x3,x1),i(x4,x1))).

2 -d(x5,x6)| -d(i(x5,x6),i(x7,x8))|d(x7,x8).

3 d(x9,x9).

4 -d(x10,x11)| -d(x11,x12)|d(x10,x12).

5 -d(x13,x14)|d(i(x15,x13),i(x15,x14)).

6 -d(x16,x17)|d(i(x17,x18),i(x16,x18)).

7 d(c1,i(c4,c2)).

8 d(c1,i(c3,c2)).

9 -d(c4,x19)| -d(c3,x19)| -d(c1,i(x19,c2)).

-----> EMPTY CLAUSE at 15.92 sec ----> 819 [726,9,728,727] F.

---------------- PROOF ----------------

16 [6,8] d(i(i(c3,c2),x),i(c1,x)).

17 [6,7] d(i(i(c4,c2),x),i(c1,x)).

26 [1,4,17] d(i(i(c2,x),c4),i(c1,i(y,c2))).

27 [1,4,16] d(i(i(c2,x),c3),i(c1,i(y,c2))).

32 [2,3,1] d(i(i(x,y),x),i(z,x)).

33 [32,6] d(i(i(x,y),z),i(i(i(y,u),y),z)).

38 [32,4,27] d(i(i(c3,x),c3),i(c1,i(y,c2))).

39 [32,4,26] d(i(i(c4,x),c4),i(c1,i(y,c2))).

45 [32,2,32] d(x,i(y,y)).

47 [45,6] d(i(i(x,x),y),i(z,y)).

61 [47,4,1] d(i(i(x,y),x),i(z,i(u,x))).

93 [61,2,32] d(x,i(y,i(z,y))).

98 [93,2,93] d(x,i(y,x)).

112 [98,4,39] d(c4,i(c1,i(x,c2))).

113 [98,4,38] d(c3,i(c1,i(x,c2))).

114 [98,4,1] d(x,i(i(x,y),i(z,y))).

467 [33,2,32] d(x,i(i(i(y,z),y),y)).

479 [467,2,467] d(i(i(x,y),x),x).

480 [479,6] d(i(x,y),i(i(i(x,z),x),y)).

681 [480,4,479] d(i(x,i(x,y)),i(x,y)).

726 [681,4,114] d(x,i(i(x,y),y)).

727 [681,4,113] d(c3,i(c1,c2)).

728 [681,4,112] d(c4,i(c1,c2)).

819 [726,9,728,727] F.

<

Lemma A.12 (Closure Lemma (47) for 2)
From (11) to (15) we prove the closure lemma (47) for 2.

∀p, q, w w ⊢2 2p ∧ w ⊢2 2q ⇒∃s s ⊢2 p ∧ s ⊢2 q ∧ w ⊢2 2s.
Reflexivity and transitivity of ⊢2 and the monotonicity properties for ; and 2 are used as lemmas.

set(hyper_res).

assign(max_weight,13).

formula_list(sos).

all r p q s d(i(i(p,q),r),i(i(r,p),i(s,p))).

all p q r s (d(p,q)&d(i(p,q),i(r,s))->d(r,s)).

all p d(p,p).

all p q r (d(p,q)&d(q,r)->d(p,r)).

all p d(bot,p).

all p q (d(p,q)-> (all s d(i(s,p),i(s,q)))).

all p q (d(p,q)-> (all s d(i(q,s),i(p,s)))).

all p ((all x d(x,p))-> (all x d(x,b(p)))).

all p q d(b(i(p,q)),i(b(p),b(q))).

all p q (d(p,q)->d(b(p),b(q))).

% negated theorem.

41

-(all p q w (d(w,b(p))&d(w,b(q))-> (exists s (d(s,p)&d(s,q)&d(w,b(s)))))).

end_of_list.

-------> sos clausifies to:

1 d(i(i(x1,x2),x3),i(i(x3,x1),i(x4,x1))).

2 -d(x5,x6)| -d(i(x5,x6),i(x7,x8))|d(x7,x8).

3 d(x9,x9).

4 -d(x10,x11)| -d(x11,x12)|d(x10,x12).

5 d(bot,x13).

6 -d(x14,x15)|d(i(x16,x14),i(x16,x15)).

7 -d(x17,x18)|d(i(x18,x19),i(x17,x19)).

8 -d(f1(x20),x20)|d(x,b(x20)).

9 d(b(i(x21,x22)),i(b(x21),b(x22))).

10 -d(x23,x24)|d(b(x23),b(x24)).

11 d(c1,b(c3)).

12 d(c1,b(c2)).

13 -d(x25,c3)| -d(x25,c2)| -d(c1,b(x25)).

-----> EMPTY CLAUSE at 14759.62 sec ----> 11001 [11000,13,7739,7383] F.

---------------- PROOF ----------------

33 [6,5] d(i(x,bot),i(x,y)).

45 [7,33] d(i(i(x,y),z),i(i(x,bot),z)).

56 [7,12] d(i(b(c2),x),i(c1,x)).

58 [7,5] d(i(x,y),i(bot,y)).

62 [58,4,33] d(i(x,bot),i(bot,y)).

134 [9,4,56] d(b(i(c2,x)),i(c1,b(x))).

158 [134,6] d(i(x,b(i(c2,y))),i(x,i(c1,b(y)))).

266 [45,4,33] d(i(i(x,y),bot),i(i(x,bot),z)).

579 [1,4,45] d(i(i(x,y),z),i(i(z,bot),i(u,x))).

617 [2,62,1] d(i(i(bot,x),y),i(z,y)).

621 [2,33,1] d(i(i(x,y),x),i(z,x)).

623 [617,7] d(i(i(x,y),z),i(i(i(bot,u),y),z)).

639 [617,4,1] d(i(i(x,y),bot),i(z,i(u,x))).

690 [621,4,266] d(i(i(x,y),bot),i(z,x)).

711 [621,2,621] d(x,i(y,y)).

715 [711,7] d(i(i(x,x),y),i(z,y)).

830 [715,4,33] d(i(i(x,x),bot),i(y,z)).

1171 [639,2,621] d(x,i(y,i(z,y))).

1198 [1171,2,1171] d(x,i(y,x)).

1365 [1198,4,1] d(x,i(i(x,y),i(z,y))).

1450 [1198,2,1] d(i(i(x,i(y,z)),y),i(u,y)).

1879 [1365,4,45] d(x,i(i(x,bot),i(y,z))).

3472 [623,2,621] d(x,i(i(i(bot,y),z),z)).

3494 [3472,2,3472] d(i(i(bot,x),y),y).

3498 [3494,6] d(i(x,i(i(bot,y),z)),i(x,z)).

3590 [3494,4,1450] d(i(i(x,i(y,z)),y),y).

3623 [3494,4,830] d(i(i(x,x),bot),y).

3646 [3494,4,690] d(i(i(x,y),bot),x).

3662 [3494,4,621] d(i(i(x,y),x),x).

3698 [3623,6] d(i(x,i(i(y,y),bot)),i(x,z)).

3775 [3646,7] d(i(x,y),i(i(i(x,z),bot),y)).

3776 [3646,6] d(i(x,i(i(y,z),bot)),i(x,y)).

5420 [3498,4,1879] d(x,i(i(x,bot),y)).

5434 [3498,4,1365] d(x,i(i(x,y),y)).

5438 [3498,4,579] d(i(i(x,y),z),i(i(z,bot),x)).

5471 [5420,7] d(i(i(i(x,bot),y),z),i(x,z)).

5768 [5434,10] d(b(x),b(i(i(x,y),y))).

6822 [5768,4,11] d(c1,b(i(i(c3,x),x))).

7383 [3698,4,3590] d(i(i(x,i(y,z)),i(i(u,u),bot)),y).

7455 [3775,10] d(b(i(x,y)),b(i(i(i(x,z),bot),y))).

7480 [3775,4,3662] d(i(x,i(x,y)),i(x,y)).

42

7513 [7480,4,158] d(i(c1,b(i(c2,x))),i(c1,b(x))).

7739 [3776,4,3662] d(i(i(x,y),i(i(x,z),bot)),x).

8290 [5438,10] d(b(i(i(x,y),z)),b(i(i(z,bot),x))).

8487 [5471,10] d(b(i(i(i(x,bot),y),z)),b(i(x,z))).

10097 [7455,4,6822] d(c1,b(i(i(i(i(c3,x),y),bot),x))).

10955 [8290,4,10097] d(c1,b(i(i(x,bot),i(i(c3,x),y)))).

10989 [8487,4,10955] d(c1,b(i(x,i(i(c3,i(x,bot)),y)))).

11000 [10989,2,7513] d(c1,b(i(i(c3,i(c2,bot)),x))).

11001 [11000,13,7739,7383] F.

<

Lemma A.13 (Seriality for ;)
We prove ∀w, p ∃q w ⊢2 p; q.

set(hyper_res).

formula_list(sos).

all r p q s d(i(i(p,q),r),i(i(r,p),i(s,p))).

all p q r s (d(p,q)&d(i(p,q),i(r,s))->d(r,s)).

all p d(p,p).

all p q r (d(p,q)&d(q,r)->d(p,r)).

% negated theorem.

-(all w p exists q d(w,i(p,q))).

end_of_list.

-------> sos clausifies to:

1 d(i(i(x1,x2),x3),i(i(x3,x1),i(x4,x1))).

2 -d(x5,x6)| -d(i(x5,x6),i(x7,x8))|d(x7,x8).

3 d(x9,x9).

4 -d(x10,x11)| -d(x11,x12)|d(x10,x12).

5 -d(c2,i(c1,x13)).

----> UNIT CONFLICT at 0.06 sec ----> 12 [11,5] F.

7 [2,3,1] d(i(i(x,y),x),i(z,x)).

11 [7,2,7] d(x,i(y,y)).

12 [11,5] F.
<

Lemma A.14 (Seriality for 2)
We prove ∀w ∃q w ⊢2 2q.

set(hyper_res).

formula_list(sos).

all r p q s d(i(i(p,q),r),i(i(r,p),i(s,p))).

all p q r s (d(p,q)&d(i(p,q),i(r,s))->d(r,s)).

all p d(p,p).

all p q r (d(p,q)&d(q,r)->d(p,r)).

all p ((all x d(x,p))-> (all x d(x,b(p)))).

all p q d(b(i(p,q)),i(b(p),b(q))).

all p q (d(p,q)->d(b(p),b(q))).

-(all w exists p d(w,b(p))).

end_of_list.

-------> sos clausifies to:

1 d(i(i(x1,x2),x3),i(i(x3,x1),i(x4,x1))).

2 -d(x5,x6)| -d(i(x5,x6),i(x7,x8))|d(x7,x8).

3 d(x9,x9).

4 -d(x10,x11)| -d(x11,x12)|d(x10,x12).

5 -d(f1(x13),x13)|d(x,b(x13)).

6 d(b(i(x14,x15)),i(b(x14),b(x15))).

7 -d(x16,x17)|d(b(x16),b(x17)).

8 -d(c1,b(x18)).

----> UNIT CONFLICT at 0.11 sec ----> 23 [22,8] F.

14 [2,3,1] d(i(i(x,y),x),i(z,x)).

43

19 [14,2,14] d(x,i(y,y)).

22 [19,5] d(x,b(i(y,y))).

23 [22,8] F.

<

Lemma A.15 (Collapsing Lemmas for ;)
We prove from (64) and (65) the general reflexivity ∀x R(x, x, x). Instead of the built–in equality
handling we use equality axioms together with the unit resulting (UR) strategy. Other parameter
settings did not work.

set(ur_res).

formula_list(sos).

all w exists x (R(x,w,w)& (all u v (R(x,u,v)->u=v))).

all w a b c d (R(w,a,b)&R(b,c,d)->

(exists u v (R(w,u,v)&R(a,v,d)& (all x y (R(u,x,y)->x=d))))).

% equality axioms

all x (x=x).

all x y z u v w (x=y&z=u&v=w&R(x,z,v)->R(y,u,w)).

% negated theorem

-(all x R(x,x,x)).

end_of_list.

-------> sos clausifies to:

1 R(f(w),w,w).

2 -R(f(w),u,v)|u=v.

3 -R(w,x1,x2)| -R(x2,x3,x4)|R(w,h(w,x1,x2,x3,x4),g(w,x1,x2,x3,x4)).

4 -R(w,x1,x2)| -R(x2,x3,x4)|R(x1,g(w,x1,x2,x3,x4),x4).

5 -R(w,x1,x2)| -R(x2,x3,x4)| -R(h(w,x1,x2,x3,x4),x,y)|x=x4.

6 x=x.

7 x!=y|z!=u|v!=w| -R(x,z,v)|R(y,u,w).

8 -R(c,c,c).

----> UNIT CONFLICT at 1.89 sec ----> 297 [296,287] F.

abbreviations:

f(f(x)) := k(x)

g(k(x),f(x),f(x),x,x) := g1(x)

f(c) := d

f(d) = f(f(c)) := e = k(c)

---------------- PROOF ----------------

9 [4,1,1] R(f(x),g1(x),x).

13 [9,2] g1(x)=x.

15 [7,13,6,9,8] d!=c.

24 [7,6,13,13,1] R(f(g1(x)),x,x).

27 [15,2] -R(f(x),d,c).

30 [27,7,6,6,1] c!=d.

192 [5,1,1,30] -R(h(f(e),e,e,d,d),c,x).

244 [192,7,13,6,9] d!=h(f(e),e,e,d,d).

258 [244,2] -R(f(x),d,h(f(e),e,e,d,d)).

261 [258,7,6,6,24] h(f(e),e,e,d,d)!=d.

279 [261,2] -R(f(x),h(f(e),e,e,d,d),d).

287 [279,7,6,6,13] -R(f(x),h(f(e),e,e,d,d),g(f(e),e,e,d,d)).

296 [3,1,1] R(k(x),h(k(x),f(x),f(x),x,x),g1(x)).

297 [296,287] F.

Now we prove from (64), (65) and the general reflexivity that the first two arguments of R collapse;
∀w, u, v R(w, u, v) ⇒ w = u.

set(ur_res).

assign(max_weight,40).

formula_list(sos).

all w exists x (R(x,w,w)& (all u v (R(x,u,v)->u=v))).

all w a b c d (R(w,a,b)&R(b,c,d)->

44

(exists u v (R(w,u,v)&R(a,v,d)& (all x y (R(u,x,y)->x=d))))).

all x (x=x).

% equality axioms

all x y z u v w (x=y&z=u&v=w&R(x,z,v)->R(y,u,w)).

all x R(x,x,x).

% negated theorem

-(all w u v (R(w,u,v)->w=u)).

end_of_list.

-------> sos clausifies to:

1 R(f(w),w,w).

2 -R(f(w),u,v)|u=v.

3 -R(w,x1,x2)| -R(x2,x3,x4)|R(w,h(w,x1,x2,x3,x4),g(w,x1,x2,x3,x4)).

4 -R(w,x1,x2)| -R(x2,x3,x4)|R(x1,g(w,x1,x2,x3,x4),x4).

5 -R(w,x1,x2)| -R(x2,x3,x4)| -R(h(w,x1,x2,x3,x4),x,y)|x=x4.

6 x=x.

7 x!=y|z!=u|v!=w| -R(x,z,v)|R(y,u,w).

8 R(x,x,x).

9 R(e,d,c).

10 e!=d.

----> UNIT CONFLICT at 435.17 sec ----> 8504 [binary,8503,7238] F.

---------------- PROOF ----------------

11 [2,10] -R(f(x),e,d).

15 [4,8,1] R(f(x),g(f(x),f(x),f(x),x,x),x).

18 [4,1,1] R(f(x),g(f(f(x)),f(x),f(x),x,x),x).

69 [15,2] g(f(x),f(x),f(x),x,x)=x.

81 [18,2] g(f(f(x)),f(x),f(x),x,x)=x.

247 [7,6,6,1,11] d!=e.

294 [7,81,81,6,8] R(x,x,g(f(f(x)),f(x),f(x),x,x)).

297 [7,69,69,6,8] R(x,x,g(f(x),f(x),f(x),x,x)).

463 [294,2] f(x)=g(f(f(f(x))),f(f(x)),f(f(x)),f(x),f(x)).

1079 [463,7,81,6,18] R(g(f(f(f(x))),f(f(x)),f(f(x)),f(x),f(x)),x,x).

4609 [5,8,8,247] -R(h(e,e,e,e,e),d,x).

7001 [5,8,8,297] h(x,x,x,x,x)=x.

7238 [7001,7,81,6,1079] R(f(h(x,x,x,x,x)),x,h(x,x,x,x,x)).

8481 [4609,7,6,6,9] e!=h(e,e,e,e,e).

8503 [8481,2] -R(f(x),e,h(e,e,e,e,e)).

8504 [8503,7238] F.

Now we prove from (64), (65), the general reflexivity, and collapsing of the first two arguments of
R, that the last two arguments collapse as well: ∀w, u, v R(w, u, v) ⇒ u = v.

set(ur_res).

assign(max_weight,40).

formula_list(sos).

all w exists x (R(x,w,w)& (all u v (R(x,u,v)->u=v))).

all w a b c d (R(w,a,b)&R(b,c,d)->

(exists u v (R(w,u,v)&R(a,v,d)& (all x y (R(u,x,y)->x=d))))).

% equality axioms

all x (x=x).

all x y z u v w (x=y&z=u&v=w&R(x,z,v)->R(y,u,w)).

all x R(x,x,x).

all w u v (R(w,u,v)->w=u).

%negated theorem

-(all w u v (R(w,u,v)->u=v)).

end_of_list.

-------> sos clausifies to:

1 R(f(w),w,w).

2 -R(f(w),u,v)|u=v.

3 -R(w,x1,x2)| -R(x2,x3,x4)|R(w,h(w,x1,x2,x3,x4),g(w,x1,x2,x3,x4)).

45

4 -R(w,x1,x2)| -R(x2,x3,x4)|R(x1,g(w,x1,x2,x3,x4),x4).

5 -R(w,x1,x2)| -R(x2,x3,x4)| -R(h(w,x1,x2,x3,x4),x,y)|x=x4.

6 x=x.

7 x!=y|z!=u|v!=w| -R(x,z,v)|R(y,u,w).

8 R(x,x,x).

9 -R(w,u,v)|w=u.

10 R(e,d,c).

11 d!=c.

----> UNIT CONFLICT at 555.50 sec ----> 9689 [9688,8630] F.

---------------- PROOF ----------------

14 [9,1] f(x)=x.

15 [2,11] -R(f(x),d,c).

21 [4,1,8] R(x,g(f(x),x,x,x,x),x).

66 [21,2] g(f(f(x)),f(x),f(x),f(x),f(x))=f(x).

275 [7,6,6,10,15] e!=f(x).

8630 [7,14,66,6,21] R(x,f(x),f(x)).

9688 [275,9] -R(e,f(x),y).

9689 [9688,8630] F.

<

���
�

�� k

I N F O R M A T I K

Below you find a list of the most recent technical reports of the research group Logic of Programming
at the Max-Planck-Institut für Informatik. They are available by anonymous ftp from our ftp server
ftp.mpi-sb.mpg.de under the directory pub/papers/reports. If you have any questions concerning ftp
access, please contact reports@mpi-sb.mpg.de. Paper copies (which are not necessarily free of charge)
can be ordered either by regular mail or by e-mail at the address below.

Max-Planck-Institut für Informatik
Library
attn. Regina Kraemer
Im Stadtwald
D-66123 Saarbrücken
GERMANY
e-mail: kraemer@mpi-sb.mpg.de

MPI-I-94-216 P. Barth Linear 0-1 Inequalities and Extended Clauses

MPI-I-94-209 D. A. Basin, T. Walsh Termination Orderings for Rippling

MPI-I-94-208 M. Jäger A probabilistic extension of terminological logics

MPI-I-94-207 A. Bockmayr Cutting planes in constraint logic programming

MPI-I-94-201 M. Hanus The Integration of Functions into Logic
Programming: A Survey

MPI-I-93-267 L. Bachmair, H. Ganzinger Associative-Commutative Superposition

MPI-I-93-265 W. Charatonik, L. Pacholski Negativ set constraints: an easy proof of decidability

MPI-I-93-264 Y. Dimopoulos, A. Torres Graph theoretical structures in logic programs and
default theories

MPI-I-93-260 D. Cvetković The logic of preference and decision supporting
systems

MPI-I-93-257 J. Stuber Computing Stable Models by Program
Transformation

MPI-I-93-256 P. Johann, R. Socher Solving simplifications ordering constraints

MPI-I-93-250 L. Bachmair, H. Ganzinger Ordered Chaining for Total Orderings

MPI-I-93-249 L. Bachmair, H. Ganzinger Rewrite Techniques for Transitive Relations

MPI-I-93-243 S. Antoy, R. Echahed, M. Hanus A needed narrowing strategy

MPI-I-93-237 R. Socher-Ambrosius A Refined Version of General E-Unification

MPI-I-93-236 L. Bachmair, H. Ganzinger, C. Lynch,
W. Snyder

Basic Paramodulation

MPI-I-93-235 D. Basin, S. Matthews A Conservative Extension of First-order Logic and
its Application to Theorem Proving

MPI-I-93-234 A. Bockmayr, F. J. Radermacher Künstliche Intelligenz und Operations Research

MPI-I-93-233 A. Bockmayr, S. Krischer, A. Werner Narrowing Strategies for Arbitrary Canonical
Rewrite Systems

MPI-I-93-231 D. Basin, A. Bundy, I. Kraan,
S. Matthews

A Framework for Program Development Based on
Schematic Proof

