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Abstract

Narrowing is a universal unification procedure for equational theories defined
by a canonical term rewriting system. In its original form it is extremely
inefficient. Therefore, many optimizations have been proposed during the last
years. In this paper, we present the narrowing strategies for arbitrary canonical
systems in a uniform framework and introduce the new narrowing strategy LSE
narrowing. LSE narrowing is complete and improves all other strategies which
are complete for arbitrary canonical systems. It is optimal in the sense that
two different LSE narrowing derivations cannot generate the same narrowing
substitution. Moreover, LSE narrowing computes only normalized narrowing
substitutions.
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1 Introduction

Narrowing is known as a complete unification procedure for any equational the-
ory that can be defined by a canonical term rewriting system [Fay79, Hul80].
It is also the operational semantics of various logic and functional program-
ming languages. In its original form, narrowing is extremely inefficient [Boc86].
Therefore, many optimizations have been proposed during the last years
[Hul80, RKKL85, Fri85, Her86, Rét87, NRS89, BGMS&S8, Ech88, Rét88, Boc8s,
You88, Pad88, Ho6189, DG&9, You9l].

In this paper, we present the narrowing strategies for arbitrary canonical
term rewrite systems in a uniform framework and introduce the new narrow-
ing strategy LSE narrowing together with its normalizing variant normalizing
LSE narrowing. LSE narrowing is complete and improves all previously known
strategies which are complete for arbitrary canonical systems, such as left-to-
right basic narrowing and the sufficient largeness condition of [Rét87]. It is
optimal in the sense that two different LSE narrowing derivations cannot gen-
erate the same narrowing substitution. Moreover, there is a one-to-one corre-
spondence between LSE narrowing derivations and a special form of leftmost-
innermost rewriting derivations. Finally, LSE narrowing computes only nor-
malized narrowing substitutions.

We are interested in arbitrary canonical term rewriting systems that do not
have to satisfy additional properties such as constructor discipline [Fri85], left-
linearity or non-overlapping left-hand sides [You88, You91, DG89]. For special
classes of term rewrite systems, narrowing strategies which are not complete in
the general case may be more efficient than LSE narrowing.

For arbitrary canonical systems, the most efficient complete narrowing strat-
egy known before was normalizing SL left-to-right basic narrowing [Rét87]. An
analysis of Réty’s approach shows that it can be considerably improved if the
term rewriting system has non-regular rules and overlapping left-hand sides. In
this case various redundancies in the narrowing process can be avoided. LSE
narrowing uses three reducibility tests to detect redundant narrowing deriva-
tions. The three tests are more powerful than Réty’s test for sufficient largeness.
Moreover, they imply that any LSE narrowing derivation is also a SL left-to-
right basic narrowing derivation. The converse, however, is not true.

The organization of the paper is as follows. After some preliminaries in Sec-
tion 2, we recall in Section 3 the basic idea of narrowing and give a detailed proof
of the well-known lifting lemma of Hullot [Hul80] which establishes a fundamen-
tal relationship between rewriting and narrowing derivations. In Section 4, we
discuss basic narrowing, left-to-right basic narrowing, and SL left-to-right basic
narrowing. While a leftmost-innermost rewriting derivation always generates a
SL left-to-right basic narrowing derivation, the converse is not true. In Section
5, we introduce the narrowing strategy LSE narrowing and show that there is
a one-to-one correspondence between LSE narrowing derivations and left re-
ductions, which are a special form of leftmost-innermost rewriting derivations.
Using this correspondence, we can give very simple proofs of the completeness
of LSE narrowing and the optimality property that no narrowing substitution
can be generated twice. Moreover, we show that LSE narrowing generates only



normalized narrowing substitutions. In Section 6, we present the normalizing
form of LSE narrowing. The same results hold as in the non-normalizing case.
The proofs, however, are more complicated. Finally, in Section 7, we present
some empirical results which illustrate the various strategies.

This paper is the full version of [BKW92]. It unifies and simplifies our
previous results in [KB91] and [Wer91].

2 Preliminaries

We recall briefly some basic notions that are needed in the sequel. More details
can be found in the survey of [HOS80].

Y = (S, F) denotes a signature with a set S of sort symbols and a set F' of
function symbols together with an arity function.

A Y-algebra A consists of a family of non-empty sets (As)ses and a family of
functions (f4) jer such that if f:s1 x...x s, — sthen f4: Ay x...x A5, —
As.

X represents a family (X;)ses of countably infinite sets X, of variables of
sort s. T'(F,X) is the X-algebra of terms with variables over X.

For a term ¢t € T(F, X), Var(t), Oce(t), and FuOcc(t) denote the set of
variables, occurrences and non-variable occurrences in t respectively. The root
of a term is denoted by the empty occurrence e. An occurence w is a prefix
of an occurrence w’, w < /', iff there exists v € N* such that o’ = w.v. We
denote by t/w the subterm of t at position w € Oce(t) and by t[w < s] the term
obtained from t by replacing the subterm ¢/w with the term s € T'(F, X).

A substitution o : X — T(F,X) is a family of mappings o5 : X5 —
T(F,X)s,s € S, which are different from the identity id only for a finite subset

Dom/(c) of X. We do not distinguish o from its canonical extension to T'(F, X).

Im(o) o UzeDom(o) Var(o(x)) is the set of variables introduced by o. 1f o is

a substitution and V' is a set of variables then the restriction ol|y of o to V is
o(x) if . € Dom(o)NV
defined by o|y(z) = . olse :

A syntactic unifier of two terms s,t is a substitution o such that o(s) =
o(t). A most general syntactic unifier of s and ¢ is a unifier o of s and ¢ with
Dom(c) N Im(o) = 0 such that for any other unifier 7 of s and ¢ there exists a
substitution A with Aoo = 7.

A binary relation = (—;)ses on a X-algebra A is X-compatible iff t; —
UL, ...ty — v, implies fA(t1, ... 1) — fA(vl, ..., uy) for all t;,v; € A, and
all f:s1x...xs, = sin F. By 5 we denote the reflexive-transitive closure
of —. A congruence is a Y-compatible equivalence relation.

An equation is an expression of the form s = ¢ where s and ¢ are terms of
T(F, X) belonging to the same sort. A system of equations G is an expression
of the form s; =t1 A ... A s, = t,,n > 1 with equations s; =t;,i =1,...,n.

Let E be a set of equations. The equational theory =g associated with E is
the smallest congruence = on T'(F, X) such that o(l) = o(r) for all equations
[ =rin E and all substitutions o. Given two substitutions o,7 : X — T'(F, X)
and a set of variables V' we write 0 = 7 [V] iff o(x) = 7(z), for all x € V, and



o=p7[V]iff o(z) =g 7(z), for all z € V. E-subsumption of substitutions is
defined by o <g 7 [V] iff there is a substitution A with 7(z) =g A(o(z)) for all
zeV.

A rewriting rule w is an expression of the form [ — r with terms [,r €
T(F,X) of the same sort such that Var(r) C Var(l) and I ¢ X. The rule is
regular iff Var(l) = Var(r). The rule is left-linear iff no variable occurs twice in
I. A term rewriting system R is a set of rewriting rules. The equational theory
=g generated by R is obtained by considering for every rule [ — r in R the
corresponding equation [ = r.

The reduction relation — r associated with R is defined as follows: s —p ¢,
more precisely s —(, ;- t, iff there is an occurrence v € Occ(s) and a
rule [ — 7 in R such that there exists a substitution 7 : X — T'(F, X) with
7(l) = s/v and t = s[v < 7(r)]. R is confluent iff for any terms s,%;,t2 with
s Spt1 and s g to there exists a term u with t; =g u and to g u. R is
noetherian iff there exists no infinite chain t; wg to w>r ... > r ty, >p .... R
is canonical iff R is confluent and noetherian.

A term t is irreducible or normalized iff there exists no term u such that
t —r u. Otherwise t is called reducible. A substitution o is normalized iff for
any x € X the term o(z) is irreducible. If R is canonical then there exists
for any term ¢ a unique irreducible term ¢} such that t - t]. ¢ is called the
normal form of t. For any two terms s,t, we have s = t iff s|] = t].

3 Narrowing: The Basic Idea

Narrowing provides a complete E-unification procedure for any equational the-
ory F that can be defined by a canonical term rewrite system.

Definition 3.1 Let E be a set of equations. A system of equations G
S1=tAN...AN8, =1tp,n>1,
is called E-unifiable iff there exists a substitution o : X — T'(F, X) such that
o(s1) =g o(t1),...,0(sn) =g o(ts).

The substitution o is called an E-unifier of G.
A set cUg(G) of substitutions is called a complete set of E-unifiers of G iff

e every o € cUg(G) is an E-unifier of G
e for any E-unifier 7 of G there is 0 € cUg(G) such that o <g 7 [Var(G)]
e for all o € cUE(G) : Dom(o) C Var(G).

cUg(G) is called minimal iff it satisfies further the condition

e for all 0,0’ € cUg(Q) : 0 <g ¢’ [Var(G)] implies 0 = o’.



Narrowing allows to find complete sets of F-unifiers for equational theories
E that can be defined by a canonical term rewrite system R by associating with
every rule [ — r in R the equation [ = r in E. The basic idea is as follows.
Suppose we want to R-unify a system of equations s; =1 A...As, =t,. This
means that we have to find a substitution o such that

o(s1) =g o(t1),...,0(sn) =r o(tn). (1)

Since R is a canonical term rewriting system this is equivalent to

o(si)d=oa(ti)d,...,o(sn)d =0(tn)l. (2)

If the problem has a solution o, then either o is a syntactic unifier of G, which
can be computed by standard unification, or ¢ does not syntactically unify G. In
this case the system of equations o(G) must be reducible by R since otherwise it
would be impossible to have (2). The idea is now to lift the rewriting derivation
o(G) — ... = o(GQ)] on the unknown instance o(G) of G to a narrowing
derivation G J\/—> PR J\/—> 5 G, on the given system G such that the last
system of equations G, is syntactically unifiable with most general unifier 7 and
Todpo...001 <g o [Var(G)]. This lifting is done by constructing substitutions
01, ...,0p such that §1(G),...,d,(Gpr—1) become reducible.

Definition 3.2 (Narrowing) Let R be a term rewriting system. A system of
equations G is narrowable to a system of equations G’ with narrowing substi-

tution 0,
G Vo u,l—r,6] G/’

iff there exist a non-variable occurrence v € Occ(G) and a rule I — 7 in R
such that G/v and [ are syntactically unifiable with most general unifier § and
G’ =6(G)[v + 4(r)]. We always assume that Var(l) N Var(G) = 0.

A narrowing derivation Gg J\/—>:_ G, with narrowing substitution o is a
sequence of narrowing steps G J\/—>51 G J\/—>52...J\/—>6n Gp, n > 0,
where 0 = (0, 0...061) |var(@)- The narrowing substitution leading from G; to
Gj, for 0 < ¢ < j < n, will be denoted by

def
)‘i,j = (5]‘ o... O(Si+1.

In particular, A\;; = id, for t =0,...,n.

A narrowing strategy S is a property of narrowing derivations. We say that
S-narrowing is complete iff for any canonical term rewriting system R and any
system of equations G the set of all substitutions ¢ such that there exists a
S-narrowing derivation G = GOJ\/—>61 ... J\/—>5nGn,n > 0, such that G, is
syntactically unifiable by a most general unifier 7 and o = 700,,0...001 |var(c),
is a complete set of R-unifiers of G.

In order to treat syntactical unification as a narrowing step, we introduce a
new rule
r =z — true,



where = denotes a variable. Then t = ¢/ J\/—> s true holds if and only if ¢
and t' are syntactically unifiable with most general unifier §. This additional
rule is called e-rule (since it can be applied only at occurrence €) and affects
neither confluence nor termination. Obviously, o is a solution of G if and only
if o(G) can be reduced by the rules in R and the e—rule to the trivial system
true A\ ... Ntrue.

Now we are able to formulate the fundamental relationship between rewrit-
ing and narrowing derivations that will provide the basis for most of the proofs
in this paper.

Proposition 3.3 (Hullot 80) Let R be a term rewriting system and let G be
a system of equations. If p is a normalized substitution and V' a set of variables
such that Var(G) U Dom(u) C V., then for every rewriting derivation

def
Hy = /*L(G> o, li—r1,71) Hy ... 7 [Onyln—Tn,Tn) Hy (3)

there exist a normalized substitution A and a narrowing derivation

def
GO = G V [U17l1~>7’1,61} Gl e V [’L}n,ln%Tn,(sn] Gn (4)

using the same rewrite rules at the same occurrences such that
p=Aod,o...001 [V] and (5)

Hi=(Aodpo...00i41)(G;), for alli=0,...,n. (6)

Conversely, if u def Aodpo...001 then there exists for any narrowing derivation

(4) and any substitution \ a rewriting derivation (3) such that (6) holds.

Proof: The proof is similar to [Hul80] and uses induction on n. The technical
details, however, are different.

First assume that we are given the rewriting derivation (3) of length n.

If n = 0, we can choose A = p.

So suppose n > 0 and u(G) =, —m,m) H1 — ... — Hpyo Then
w(G)/vr = 1(ly) and Hi = p(G)[vr < 71(r1)]. Since p(z) is irreducible
for all x € V we get v;1 € FuOcc(G) and u(G)/vr = p(G/v1). Since we
may assume that V' and [; have no variables in common and that Dom(11) C

Var(ly), the substitution ¢ © o o 51((:2)’7 g; E gzzgiﬁ)) is well-
defined and ¢(G/vi) = ¢(l1). This means that ¢ is a syntactic unifier
of G/u; and l3. Let 61 be a most general syntactic unifier of G/v; and
I with Dom(d1) C Var(G/vi) U Var(ly). Then there exists a substitution
p with Dom(p) C (((Dom(m) U Dom(u))\ Dom(d1)) U Im(dy) such that

¢ =pod [VU Var(ly)]. It follows
G V [Ul,l1—>7"1,51] Gl

with G def 51(G[U1 — 7"1]).



Next we show that the substitution p is normalized. Suppose there exists
a variable x € Dom(p) such that p(z) is reducible. Since p is normalized
we get © € (Dom(m)\ Dom(61)) U Im(d1). If x € Dom(r1)\Dom(d1) then
x € Var(ly) and since 61 (x) = x, we get € §1(l1). If x € Im(d1), then it follows
from Dom(d1) C Var(G/v1) U Var(ly) that x occurs in 01(l1) or 61(G/v1). But
since 61(l1) = 61(G/v1), in both cases z must occur in 61(G/v1). So there
exists a variable y € G such that x occurs in d1(y). Then p(x) is a subterm of
(pod1)(y). This implies that (po d1)(y) = u(y) is reducible in contradiction to
the fact that p is normalized.

Now p(G1) = p(61(G[v1 <= 11])) = (p © 01)(Glovr = r1]) = G(Glv1 = 11]) =
$(@)[v1 = o(r1)] = p(@)[vr = 71(r1)] = Hi =g iprym) Hz = Hy, with p

normalized. Let V! & v ur m(01). Then by induction hypothesis there exists
a substitution A and a narrowing derivation

Gl V [’U27l2—>1”2,(52] e V [vn,ln—>7‘n,5n] Gn
such that p=Xod,0...002 [V'] and
Hi = ()\ o) 5n o0...0 51+1)(G¢),

for 1 < i < n. By the variable disjointness of V and [; we get pu = pod; [V].
From V' = V.U Im(6) and p = Ao d,0...0d02 [V'] we conclude po d§; =
Aodpo...0d; [V]. Together this implies

w=Aodpo...00 [V]
and in particular
Ho == M(Go) == ()\ o 571 o...0 (51)(G0)

The reverse direction is again proved by induction.
The case n = 0 is trivial. Assume therefore n > 0. Let A be a substitution
and

G V [’Ul,l1~>7‘1,51] Gl V [Ug,lzﬁﬂ‘z,ég] T V [vn,lnarn,én] Gn

a narrowing derivation. Consider the substitution v ef \o 0p 0...009. Then
it follows from the induction hypothesis that v(G,) = Hy — ... — H, with
H; =MXodpo0...00i41(Gy), for i = 1,...,n. From G J\/—>[U17ll_m?51] G1
we get 51(G/U1) = 51([1) and Gl = 51(G[U1 — 7’1]) = 51(G)[U1 < 51(7“1)]. This
means 01(G) o1, 7101 [varqy)] (1. Since — is stable under substitutions we
obtain p(G) = (v061)(G) — v(Gy) = H; > H,. This proves the proposition.
O

Proposition 3.4 A narrowing strategy S is complete if for any canonical term
rewriting system R, any system of equations G, and any normalized R-unifier
w of G there exists a rewriting derivation u(G) = true A ... A true such that
the corresponding narrowing derivation (according to Proposition 3.3) is a S-
derivation.



Proof: Given R and G let U denote the set of all substitutions o such that
there exists a S-narrowing derivation G = GOJ\/—>61 . J\/—>5nGn,n > 0,
such that G, is of the form true A ... Atrue and o = (dp ... 0 81) |var(@)-

We will show that I/ is a complete set of R-unifiers of G.

By definition, we have Dom(o) C Var(G). Suppose that o € U. Then
there exists a narrowing derivation G = Gy J\/—>51 J\/—>5n Gp,n >
0, such that G, is of the form true A ... A true and ¢ = (§, o ... 0
01) |var(e)- By Proposition 3.3, there exists a rewriting derivation o(G) =
Hy i —r1,01] H, ... onln—3n] H,, such that H; = (5n o...0 6i+1)(Gi)7 for
i =0,...,n. In particular, we get H, = G,, = true A ... A true which implies
that ¢ is a R-unifier of G.

Now let p be an arbitrary R-unifier of G and p' its normal form, that is
pH() e p(x)], for all z € X. Then there exists a rewriting derivation u*(G) =
Hy = H, =trueA...Atrue such that the corresponding narrowing derivation
(according to Proposition 3.3) G = GOJ\/—>61 . J\/ﬁén G, is a S-derivation.

Furthermore, there is a substitution A such that ut = Ao, 0...06; [Var(G)).

By definition, the substitution o def (0p0...061) lvar(e) belongs to the set of

substitutions U and o < p* =g u [Var(G)). ]

Putting the two preceding propositions together, we get immediately the
completeness of naive narrowing.

Theorem 3.5 Narrowing is complete.
We close this section with a technical lemma that we will need in the sequel.

Definition 3.6 Two systems of equations G,G’ are identical up to variable
renaming iff there exist substitutions 7, 7" such that 7(G) = G’ and 7/(G’) = G.

Lemma 3.7 Let Gy and G{, be two systems of equations which are identical up
to variable renaming. If GOJ\/—>[UJ_>T75}G1 and G6J\/—>[U7l_>r75,]G’1, then G4

and G, are also identical up to variable renaming.

Proof: Suppose that 70(Go) = G, and 74(Gf) = G, for some substitutions
70, Ty With Dom(7y) C Var(Go) and Dom(r)) C Var(Gy).

By definition, G1 = §(Go[v + 7]) and G} = 0'(G{[v « r]) with a most
general unifier § of Gop/v and [ and a most general unifier ¢’ of G{/v and I.
Since Go/v = 7)(G}) /v and Gy /v = 10(Go) /v we can conclude from Dom(rp)N
Var(l) = Dom(7}) N Var(l) = 0 that §(7)(1)) = 6(1) = 6(Go/v) = (74(Gy/v))
and similarly ¢’'(7o(1)) = 0’'(l) = §'(Gy/v) = §'(170(Go/v)). Hence § o 7} unifies
G{/v and [ and ¢’ o7 unifies Gy /v and I. Since ¢ and ¢’ are most general unifiers,
there exist substitutions 71 and 71 with 7100 =6’ o7p and 710’ =do 7). It
follows 7’1(G1) = 7’1((5(G0[U — 7“])) = (5’(7‘0(G0[U — 7“])) = (SI(TO(GO)['U —
70(r)]) = 0'(Ghlv + r]) = G} and similarly 7{(G’) = G1. This shows that G,
and G are identical up to variable renaming. O



q(x)=s(0)

z/5(y)
z/0
0=s(0)
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Figure 1: Narrowing tree for g(z) = s(0)

4 Left-to-Right Basic Narrowing
Narrowing in its original form is extremely inefficient [Boc86].

Example 4.1 Consider the canonical rewrite system

R ={ z+0—2z z+s(y) — s(x+y),
q(0) =0, q(s(z)) = s((q(z) +z) + z)}

for adding and squaring natural numbers and suppose we want to solve the
query g(z) = s(0). The corresponding narrowing tree is given in Fig. 1.

The example shows that on different pathes in the search tree the same
narrowing substitution is generated again and again. The narrowing substi-
tution, however, is the only interesting information obtained in a narrowing
derivation. If there are two derivations GJ\/—>;G1 and GJ\/—>;G2 such
that o1 = o9 [Var(G)], then G; =g G2 independently of the narrowing oc-
currences and the rules that have been selected. In this case, one of the two
derivations is redundant.

If 1 is a normalized R-unifier of the system of equations G, then any rewrit-
ing derivation u(G) > trueA...Atrue can be lifted to a narrowing derivation
G J\/—>Z true A ... Atrue such that the narrowing substitution o subsumes pu.
It follows that there are as many narrowing derivations generating (a general-
ization of) the same solution u as there are different normalizations of u(G).
This is one of the main reasons for the inefficiency of narrowing.

The natural solution to this problem is

e to introduce a normalization strategy for u(G) and

e to consider only those narrowing derivations which correspond to rewrit-
ing derivations following this strategy.

7

z/s(u)

z/s(u)

S(5(a(2)+5(2) +2)=5(0) s(5(a(2))+2+5(2))=5(0) S(OL0+0)=0 s(s(q(=)+2-+2)+s()+5())=5(0)
\\\Z/O
z/s(u

/5(
)



4.1 Basic Narrowing

A first step in this direction was Hullot’s basic narrowing [Hul80]. A basic
narrowing derivation is obtained, when an innermost rewriting derivation on
u(G), where p denotes a normalized substitution, is lifted to the narrowing
level.

Definition 4.2 (Basic Narrowing) The sets B;,i = 0,...,n, of basic occur-
rences in a narrowing derivation

Go V' ur,li—r1,61] Gi V' Tug,la—re,d2] T V' o, ln—1n,0n) Gn

are inductively defined as follows

o By ™ FuOcc(Gy)

o B Y (Bi—1 \{v € Bi—1|v>=wv})U{vi.v|v € FuOce(r;)},i > 0.

For a basic narrowing derivation we require that v; € B;_1, foralli =1,...,n.

While original narrowing considers any non-variable occurrence in the goal,
basic narrowing discards those occurrences which have been introduced by the
narrowing substitution of a previous narrowing step.

Since, in canonical systems, an innermost normalization of u(G) always
exists, Proposition 3.4 implies that basic narrowing is complete. A formal
proof will be given in Corollary 5.13. Note that naive innermost narrowing is
not complete.

4.2 Left-to-Right Basic Narrowing

In 1986, Herold showed that it is possible to restrict the set of narrowing
occurrences further without loosing completeness. After a narrowing step
G J\/—>[U7l ro] G’, we may discard also those narrowing occurrences which
are strictly left of v [Her86].

Definition 4.3 An occurrence w is strictly left of an occurrence w', w <1 W’
(resp. w' > w) iff there exist occurrences o, v, v’ and natural numbers ¢, such
that i < ¢/,w = 0.4.v and W' = 0.7'.0V'.

Definition 4.4 (Left-to-Right Basic Narrowing) The sets LRB;,i =
0,...,n, of left-to-right basic occurrences in a narrowing derivation

Go V' ol —r1,01] Gi V' v la—ra,62] T V' nyln—Tn,0n] Gy

are inductively defined as follows
o IRB, ¥ FuOce(Gy)

e LRB; def (LRB;—1 \ {v € LRB;_1 | v = viorv d v})U{v;v | v €
FuOcc(r;)},i > 0.

10



For a left-to-right basic narrowing derivation we require that v; € LRB;_1, for
all i = 1,...,n. Sometimes, we will use the abbreviation LRB(U,v,l — r) for
the set of occurrences (U\{w €U |w > vorw<v})U{vw |w e FuOce(r)}.

We could also define a right-to-left basic narrowing derivation. If we al-
low arbitrary selection strategies we obtain the basic selection narrowing of
[BGMS8S8], which includes left-to-right and right-to-left basic narrowing as spe-
cial cases.

Herold showed that narrowing derivations corresponding to leftmost-
innermost normalizations of u(G), for a normalized substitution p, are left-
to-right basic. This implies immediately the completeness of left-to-right basic
narrowing (see Corollary 5.14 for a formal proof).

4.3 SL Left-to-Right Basic Narrowing

To further improve left-to-right-basic narrowing, Réty introduced the notion of
sufficient largeness [Rét87, Rét88].

Definition 4.5 (Sufficient Largeness) A set U of occurrences of a term ¢ is
said to be sufficiently large on t, iff t/w is in normal form for all w € Occe(t) \ U.

Réty noticed that sufficient largeness is preserved by leftmost-innermost
rewriting derivations.

Lemma 4.6 Let Hy= H, be a leftmost-innermost rewriting derivation, Uy a

sufficiently large set of occurrences of Hg, and U;iq def LRB(U;, Vig1, Tig1)-

Then U; is sufficiently large on H;, for all i =0,...,n.

Proof: By induction on the length of the derivation. For n = 0 the lemma
is trivial. If U, is sufficiently large on H,, then the step Hp =, r 7] Hnt1
satisfies v € U,,. Since the strategy is innermost, the matching substitution 7
is normalized. This holds because [ cannot be a variable and therefore 7(z) is
a proper subterm of 7(). Since the strategy is leftmost, the part of H,, strictly
left of v is normalized. This shows that U, is sufficiently large on H, 1. O

Lifting this property to the narrowing level yields SL left-to-right basic
narrowing.

Definition 4.7 (SL Left-to-Right Basic Narrowing) A SL left-to-right
basic narrowing derivation is a left-to-right basic narrowing derivation

Go V' ol —r,01] Gy V' Tug,la—ra,62] T V' nyln—Tn,0n] G

such that the set of left-to-right basic occurrences LRB; is sufficiently large on
Gi, fori=1,...,n.

By Proposition 3.4, we can conclude that SL left-to-right basic narrowing
is complete (see also Corollary 5.15).

While lifting a leftmost-innermost rewriting derivation to the narrowing
level always yields a SL left-to-right basic narrowing derivation, the converse is
not true.

11



A SL left-to-right basic narrowing derivation need not generate a
leftmost-innermost rewriting derivation.

Example 4.8 Consider the rule

Tm: zx0 — 0.

Starting with the term (y * z) * x there are two SL left-to-right basic narrowing
derivations

(y * ‘/L‘) *T J\/_>[1,7r,{a:<—07z<—y}] 00 V' e 0
(y * .Z‘) *T J\/%[e,ﬂ,{xeo,z%y*[)}} 0

There is an obvious redundancy. In both derivations, the narrowing substitution
{z < 0} and the derived term 0 are the same.
The reduction
(yx0)x0 —=pq O

corresponding to the second narrowing derivation is not leftmost-innermost,
since y * 0 can be reduced.

5 LSE Narrowing

Our aim is now to introduce a new narrowing strategy which has the property
that the corresponding rewriting derivations are always leftmost-innermost.

We start by refining the notion of a leftmost-innermost rewriting derivation.
Leftmost-innermost derivations are not unique. If the rewrite system has unifi-
able left-hand sides, then it may happen that two different rules are applicable
at the same occurrence. In order to eliminate this indeterminism we assume
that the rules are ordered by a total well-founded ordering <. If several rules
can be applied at the same occurrence, we require that the minimal rule is
chosen.

Definition 5.1 (Left Reduction) A reduction step t —, r , 1’ is called a left
reduction step iff

e all subterms ¢/w with w strictly left of v are in normal form (“leftmost”)
e all proper subterms of ¢/v are in normal form (“innermost”)
e t/v cannot be reduced by a rule 7’ smaller than 7 (“minimal rule”).

A rewriting derivation is a left reduction iff all steps are left reduction steps.

While leftmost-innermost derivations are not unique due to the indetermin-
ism in the selection of the rule, left reductions are unique.

Proposition 5.2 For all terms t there exists a unique left reduction to the
normal form of t.

12



Proof: We prove the proposition by noetherian induction. If ¢ is in normal
form, then the theorem holds trivially. If ¢ can be reduced, then there exists
a unique first left reduction step ¢t — t/, since the ordering <t U < on Occ(t)
and the ordering on rules are total and well-founded. By induction hypothesis,
there is a unique left derivation ¢ = '}.. If we join the two derivations together,
we get the unique left reduction t — ¢ = ¢/| = t]. |

Now we will show how reducibility tests which are performed after a narrow-
ing step can be used to obtain a one-to-one correspondence between narrowing
derivations and left reductions.

Definition 5.3 (LSE Narrowing) In a narrowing derivation

Go V' "ur,m1,01] Gy V' "ug,me,02] "7 Gn-1 V' un,mn,0n] Gy,

the step G,,—1 J\/—>[Un sl G, is called LSF iff the following three conditions
are satisfied:

(Left-Test) Foralli € {0,...,n—1} the subterms of \; ,(G;) which lie strictly
left of v;y1 are in normal form.

(Sub-Test) For all i € {0,...,n— 1} the proper subterms of \; ,(G;/vit+1) are
in normal form.

(Epsilon-Test) For all i € {0,...,n — 1} the term \;,(Gi/viy1) is not re-
ducible at occurrence € with a rule smaller than ;1.

A narrowing derivation is LSE iff any single narrowing step is LSE.

In [KB91], LSE narrowing was introduced as a refinement of SL left-to-right
basic narrowing [Rét87]. A LSE-SL left-to-right basic narrowing derivation was
defined as a left-to-right basic narrowing derivation for which the SL-Test, the
Sub-Test, and the Epsilon-Test detect no redundancy. By introducing the Left-
Test, this definition and the subsequent proofs could be considerably simplified.
The Left-Test replaces the SL-Test and implies together with the Sub-Test that
a LSE narrowing derivation is also left-to-right basic. However, while the notion
of left-to-right basic occurrences is not needed anymore in the definition of LSE
narrowing, it is still very useful in a practical implementation. We do not have
to perform the Left- or Sub-Test at a non-left-to-right-basic occurrence because
we know in advance that a redundancy will be detected.

Proposition 5.4 Consider a system of equations G and a normalized substi-
tution p. If

def
Hy = 1(Go) 7 [v1,m1] Hi vz e T [l Hy

s a left reduction, then the corresponding narrowing derivation

GO Vo ur,m1,61] Gl V' " uz,m2,02] anl V' un,mn,0n] Gn

is a LSE narrowing derivation.

13



Proof: By Proposition 3.3 there exists a substitution A such that H; = (Ao
Xin)(G;), for i =0,...,n. We have to show that none of the reducibility tests
detects a redundancy.

Suppose that the step Gin—1 J\/—>[Um’7rm76m} G, is not LSE, for some
m € {1,...,n}. Then there exists ¢ € {0,...,m — 1} such that either

1. Xim(Gi) is reducible at an occurrence v strictly left of v;41 or
2. Aim(G;) is reducible at an occurrence v strictly below v;11 or
3. X\im(G;) is reducible at occurrence v;41 with a rule smaller than ;1.

Since H; = (Ao A 0Nim)(Gi) and — is stable under substitutions this implies
that one of the properties (1) to (3) must hold with H; in place of A, (Gj).
But this means that H; —[,., ;] Hit+1 is not a left reduction step in
contradiction to our assumption. O

As an immediate consequence, we get by Proposition 5.2 and Proposition 3.4
the following theorem.

Theorem 5.5 LSE narrowing is complete.
Next we consider the converse of Proposition 5.4.

Proposition 5.6 If

GO \% [U1,7T1,51] Gl \% [’UQ,TI’Q,(SQ] e anl \Y% [Un,ﬂn,5n] Gn

is a LSE narrowing derivation and H; def Xin(Gi), fori=0,...,n, then the

rewriting derivation
HO _>[Ul,7Tﬂ Hl —>[U277r2] . _>[vn,7rn} Hn
is a left reduction.

Proof: Suppose that the derivation is not a left reduction. Then there exists
i € {0,...,n — 1} and a rewriting step A;,(Gi) —[u,x] Ait1,n(Git1) such that
either

1. v lies strictly left of v;41 or
2. v lies strictly below v;41 or
3. the rule 7 is smaller than ;1

But this implies that the narrowing step G,,—1 J\/—>[vn 6] G, is not LSE in
contradiction to our assumption. O

This proposition has a number of important consequences. First of all, we
can easily prove the following minimality property of LSE narrowing which first
appeared in [Wer91].

14



Theorem 5.7 Consider two LSE narrowing derivations

G =Go J\/_>[1)177r1,51] G J\/_)[U2Jr2,§2] o G Jw[vﬂ/’ﬂnv5ﬂ/} G,
/ / / /

G=Go N\ Ppma 1 N Pupma 0 Gmer PNV G

If the narrowing substitutions o e Sno.. 08 and o & o, .00}, where
n < m, coincide on Var(G) up to variable renaming, that is if there exist
substitutions X and X' such that o = X o o' [Var(G)] and o' = X o o [Var(G)],
then

o T, =, and v; =} for 1 <i<n,
e the narrowing derivation

V. ! n+1 . \/ >[Um,7r’ 00

is a left reduction (up to variable renaming).

n+1’7rn+1’ n+1

Proof: By Proposition 5.6 the rewriting derivations
O'(G) = )\O,n(GO) _>[U177T1] )\l,n(Gl) —>[U277r2} - —>[Un,7rn} )\n,n(Gn)

are both left reductions. Since o and o’ coincide on Var(G) up to variable
renaming, the systems o(G) and o/(G) are identical up to variable renaming,.
By the unicity of left reductions, this implies 7; = 7} and v; = v} for 1 < i < n.

Using Lemma 3.7 we can conclude by induction that G; and G/, resp. \; »(G;)
and )\;m(G;) are identical up to variable renaming, for ¢ = 1,...,n. Since
Ann(Gn) = Gy, this implies that G}, and A], ,,(G7,) are identical up to variable
renaming. Therefore, again by Lemma 3.7, the narrowing derivation starting
from Gj, and the left reduction starting from A, ,.(G},) are the same up to
variable renaming. O

A (VA

If we assume that narrowing derivations starting from the same goal and
using the same rules at the same occurrences produce the same narrowing sub-
stitution (in any practical implementation, this will be the case), we get the
following corollary.

Corollary 5.8 If LSE narrowing enumerates two solutions o and o' which
coincide up to variable renaming, then o = o' holds and the two derivations
coincide.

Proof: We use the same notation as in Theorem 5.7. Then G, = G}, =
true A ... Atrue implies n = m. a

Another important property of LSE narrowing is that it generates only
normalized substitutions. The other narrowing strategies produce also non-
normalized substitutions, which blow up the narrowing search space. If one
wants to eliminate them one has to perform an additional normalization test,
which is not necessary for LSE narrowing.
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Proposition 5.9 For any LSE narrowing derivation

G= GO V' vi,m,601] Gl V' " va,ma,02] G2 T V' [un,mn,0n] G”

the narrowing substitution 0y o ... 0 01|y () is normalized.

Proof: Let x be a variable of G such that Ao, (z) is reducible. Suppose z
is instantiated for the first time in the i-th narrowing step. Then there must
be an occurrence of z in G;_; which lies below the narrowing occurrence v;.
More formally, there exists an occurrence v # € such that G;_; /v;.v = z. Then
Xic1n(Gi—1/viv) = Ni—1p(x) = Aon(z) is reducible in contradiction to the
Sub-Test. |

Corollary 5.10 LSFE narrowing enumerates only normalized substitutions.

Note that the last two corollaries no longer hold if we replace the last narrow-
ing step, which uses the e-rule, by a simple unification of the left and the right
hand side of GG,,. Using the e-rule requires not only that the left and the right
hand side are unifiable but also that none of the tests detects a redundancy.

Unfortunately, even if there exists a minimal set of solutions for a given
equation, LSE narrowing enumerates not necessarily such kind of set.

Example 5.11 Consider the rules

T - f(Z,C) —  a,
o g(c) — c

where x, y and z are variables and a, ¢ are constants. Starting with the equation
f(g(x),y) = a there are two LSE narrowing derivations:

f(g(a:), y) J\/_>[1,7r2,{$<—c}] f(c,y) =a V' lem,{y<—c}] a=a

a
flg@)y) =a N e @=a

{{y < c¢}} is a minimal set of solutions for the given equation, but LSE nar-
rowing computes the non minimal set of solutions {{x < ¢,y < ¢}, {y < c}}.

Finally, let us mention how LSE narrowing is related to SL left-to-right
basic narrowing.

Proposition 5.12 Any LSE narrowing derivation is SL left-to-right basic.

Proof: Let

Go V' vi,m1,01] Gi V' ug,me,d2] T Ghn-1 V"7 [V, T, 0n) Gn

be a LSE narrowing derivation and

HO _>[U177F1] H1 _>[v2,7r2] e —)[ Hn

Un 77rn]

with H; def Xin(Gi), for i =0,...,n, the corresponding rewriting derivation.
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By Proposition 5.9, 6, o ... 0 61|yar(g,) 18 normalized. Thus, Up def

FuOcc(Gp) is sufficiently large on Hy = Ao n(Go). By Proposition 5.6, the

rewriting derivation is a left reduction. By Lemma 4.6, U; < 1RB (Ui—1,vi, ;)

is sufficiently large on H; for 1 < i <mn. Thus, v; € U;_q, fori =1,...,n.

By induction we get LRB; = U; for 0 < i < n. Hence, v; € LRB; for
i=1,...,n. Furthermore, since H; = \; ,,(G;), LRB; is sufficiently large on G;
fori=1,...,n. O

From Theorem 5.5 we get immediately the following corollaries.
Corollary 5.13 (Hullot 80) Basic narrowing is complete
Corollary 5.14 (Herold 86) Left-to-right basic narrowing is complete.

Corollary 5.15 (Réty 87) SL left-to-right basic narrowing is complete.

6 Normalizing LSE Narrowing

One of the most important optimizations of naive narrowing is normalizing
narrowing: after every narrowing step the goal is normalized with respect to
the given canonical term rewriting system. This allows us to take advantage of
the special properties of rewriting steps compared to narrowing steps. Rewriting
steps are special narrowing steps which leave invariant the solution space of the
current system of equations and thus do not contribute to the construction of a
solution. Naive narrowing does not distinguish rewriting and narrowing steps.
Every rewriting step leads to a new path in the search space (“don’t know
indeterminism”), whereas in a canonical term rewriting system the rewriting
steps may be executed in an arbitrary ordering (“don’t care indeterminism”).

6.1 Normalizing Narrowing

Definition 6.1 (Normalizing Narrowing) Let G be a normalized system of
equations. A normalizing narrowing step

1
G Vo v,l—=r,d] G/\L

is given by a narrowing step G J\/—>[U I=sr,3] G’ followed by a normalization

*

G' =g G'] with G'| normalized.

Since G and G| have the same R-unifiers we may assume that G is already
in normal from. Note that J\/ﬁi C J\/—>* but in general J\ﬁi g J\/ﬁ

It is not possible to associate with each rewriting derivation a corresponding
normalizing narrowing derivation where the same rules are applied at the same
occurrences. However, for any rewriting derivation o(G) = o(G)J, where o is
normalized and ¢(G)/ is in normal form, there exists another rewriting deriva-
tion o(G) = o(G){ which has a corresponding normalizing narrowing deriva-
tion. Moreover, we can assume that the rewriting steps on o(G) corresponding
to narrowing steps on G are left reduction steps. This will be used in the proof
of the completeness and minimality of normalizing LSE narrowing.
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Theorem 6.2 Consider a normalized system of equations G, a normalized sub-
stitution p and a set of variables V' such that Var(G)U Dom(u) C V. Then

there exists a normalization of H def w(@)

_ ! '
H = H, oy, li—r1] H; ool T oy ik =71k ) Hy

! !
H’nfl _>['Un7ln_”"n] Hn _>['Un17ln1_)7"nl] e —>['Unknvlnk:n_>rnkn} Hn = H\l”

with left reduction steps H] =1, .\ 1, -] Hiv1, @ = 0,...,n — 1, such that
there exists a normalizing narrowing derivation

G = Gol J\/ﬁ[vl,ll_wl,gl] Gl o] - T [W1ky kg =71k, Gil

GTL—].\L v [’Un,ln—)’/‘n,&n] Gn _>[v7117l"1 —>r’ﬂ1] e _>[U’ﬂkn7l’"«kn _>T”kn] GTL\L

which uses the same rules at the same occurrences. Moreover, there exists a
normalized substitution A\ such that

o \odyo...00, =plV]

o Hi=(Nobpo...08111)(Gs)i=1,....n
o H =(X\od,0...0811)(Gil),i=0,....n
o A\(Gynl) = HJ.

Proof: By noetherian induction on the rewriting relation —.

If H = pu(G) is in normal form, then G is also in normal from and the
proposition holds trivially with A = pu.

If H is not in normal form, then there exists a left reduction step
H —, 1,—r) Hi1 which by Proposition 3.3 can be lifted to a narrowing step
G o1l —71.61] G1. Moreover, there exists a normalized substitution ¢ with
n = ¢ o (51 [V] and Hy = ¢(G1) If G1 _>[U117111H7”11] . _>['U1k1’llk1‘”"1k1] GI\L
is a normalization of G, then by the stability of the rewriting relation under
substitutions ¥(G1) = H1 =y, 11, —r1y] - - “wrrg bk —r1ey »(G1l) = Hj.

Let V¥ vur m(d1). By applying the induction hypothesis, we obtain a
normalization

! !/
H; 7 v2,l2—>72] Hy o lar—rar]l T [Vaky laky — Tk, Hy
/ I
H’nfl _>['Un7ln_>rn] Hn —>['Un17ln1_>7"n1} e _>['Unkn7lnkn _"’nk:n] Hn - H\L’
with left reduction steps H/ o digr o] Hiv1, ©=1,...,n — 1, and a cor-
responding narrowing derivation
Gl‘L V' uz,la—r2,02] G2 _>[U217121%T21] T —>[U2k27l2k2‘>r2k2] GN’
Gn—l\l« \/ [Unyln_”’nyén} Gn —>[U'n1,ln1‘>7’nl} U ﬁ[vnknvlnknﬁrnkn} Gn\l/

Moreover, there is a substitution A such that
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¢ Nodyo...08 =1 [V]

o Hi=(\odyo...08011)(Gi)i=2,....n
o H = (\odyo0...080:1)(Gil)i=1,....n
o \Gnl) =HJ.

From =061 [V]and ) = Aod,o0...0082 [V'], we get Aodp0...08 = pu [V]
and the proposition follows. O

Since J\/—>i - J\/—>*, Proposition 3.4 holds also for normalizing narrowing
strategies. It follows:

Corollary 6.3 (Réty et al. 85) Normalizing narrowing is complete.

6.2 Normalizing LSE Narrowing

Our aim is now to extend the idea of LSE narrowing to the case of normalizing
narrowing. We can use essentially the same definition as before. Again, the
tests have to be applied to the goals where a narrowing step has taken place.
These are the goals G;|,1=0,...,n— 1.

Definition 6.4 (Normalizing LSE Narrowing) In a normalizing narrow-

ing derivation
GOi/ \/ >[v1,7r1,51} Gl — Gle

Gn—le \/ >[Un,7rn,5n} Gn i> Gni/

the step G—1l J\/—> G, > Gl is called a LSE step iff the following three
conditions are satisfied

(Left-Test) For all i € {0,...,n — 1} the subterms of \;,(G;|) which lie
strictly left of v;11 are in normal form.

(Sub-Test) For all i € {0,...,n — 1} the proper subterms of \; ,(Gil/vit1)
are in normal form.

(Epsilon-Test) For all i € {0,...,n — 1} the term \; ,(Gil/vi+1) is not re-
ducible at occurrence € with a rule smaller than ;.

A normalizing narrowing derivation is called a normalizing LSE narrowing
derivation iff all steps are LSE steps.

The following proposition extends Proposition 5.4 to the case of normalizing
narrowing.

Proposition 6.5 The normalizing narrowing derivation constructed in Theo-
rem 6.2 is a normalizing LSE derivation.

Proof: Analogous to the proof of Proposition 5.4 with G;| instead of G;. O
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As an immediate consequence we get:
Theorem 6.6 Normalizing LSE narrowing is complete.
Next we extend Proposition 5.6 to the normalizing case.
Proposition 6.7 Let

G =Gol J\ﬁ[?ﬂ,ﬂj,(ﬁ] G1 = Gil J\/_>[U2,7T2:52] V' onsmn,6 ”] = Gol

be a normalizing LSE narrowing derivation.
Then in the corresponding rewriting derivation

H=H) = H = Hl Sopms] - onm] Hn = Hy, = HL,
def . / def .
where Hy = X\ n(G;), fori=1,...,n and H] = X\ n(Gil), fori=0,...,n, the
steps H| rip1vis] Hiv1 are left reduction steps, for alli=0,...,n — 1.

Proof: Analogous to the proof of Proposition 5.6 with H] instead of H; and
Gl instead of Gj;. O

Using this proposition we are now able to prove the minimality result for
normalizing LSE narrowing.

Theorem 6.8 Consider two normalizing LSE narrowing derivations

1 A 4
Go [v1,71,61] Gl [vz,mﬁz ) [Vn, T, 0n] Gnl
G/ 4 \l/ J\/_> 4 Gl \L
0 [v],7m],01] [vh,m5,05]  ° [l 00 my:
Let X\ip dofé 0...00841, fori =0,...,n and >\;-7 def d/,o0...0 ;4_1 for

Jj=0,...,m, where \, , = Xm,m = id. Suppose that Gy and G}, respectively Aon
and )\67m are identical up to variable renaming, that is there exist substitutions
T0, Ths Py P such that

e 70(Go) =Gi, TH(G) = Go and
® Mo =p oAy, 070 [Var(Go)l,  Aom = po Aon oy [Var(Gp)]

Then the two derivations are identical up to variable renaming, that is

en=m
o v, =0, fori=1,...,n
o m=m, fori=1,...,n

e there exist substitutions ;, 7] such that

7i(Gil) = Gil,  7/(G) = Gil,
— Aim =p' 0N, 07 [Var(Gi)], N, = poAin o [Var(GY)],
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fori=1,...,n.

Proof: Without loss of generality we assume n < m. First we show by in-
duction on n that the first n steps of the two derivations are identical up to
variable renaming. For n = 0 nothing has to be shown. Assume therefore n > 1
and consider the associated rewriting derivations

AO,n(GO) —>[U177r1] Al,n(Gl) —*> /\Ln(Gli) —>[U277r2] i) )\nm(GnJ/)
and
A(),m(G{)) _>[v’1,7r’1] All,m(Gll) i> ,1,m(G,1¢) _>[v’2,7r§] i> )‘;n,m(Glmi)

By Proposition 6.7, the rewriting steps Aon(Go) —p;m] Ara(G1) and

0,m(Go) =[] Al (GY) are both left reduction steps. From Aq,,(Gj) = (po
A0,n 0 70)(Go) = p(Ao.n(Go)) and Aon(Go) = (p'0 XG0 70)(Go)) = ' (A0, (GD))
we deduce that A\on(Go) and A ,,(Gp) are identical up to variable renaming.
By the unicity of left reductions, this implies v; = v} and m = 7.

From Lemma 3.7 and its proof we get the existence of substitutions 7|
and 71 with 71 081 = &} o719 and 7] 0 &} = 01 o 7} such that 7(G1) = G}
and 7{(G}) = G;. Since 7 and 71 are renaming substitutions, we get even
m(G1l) = 1(G1)d = Gl and 7{(G1]) = 7{(G)) = G1l.

From A1, 001 = Mo = p/ oA, 070 = poN 001010 = p o)y, o
m 001 [Var(Go)] we deduce A1, = p' o N|,, o7 [(Var(Go) \ Dom(d1)) U
Im(81]var(Go))]- Since (Var(Go) \ Dom(é1)) U Im(d1lvar(cy)) = Var(01(Go)) =
Var(61(Golvr « 11])) 2 Var(61(Golvr < m])) = Var(Gy) 2 Var(Gil), this
implies A1, = p' 0o A}, o 71 [Var(G1l)]. In the same way, we can show that

= PO AL o] [Var(GhD).

Now we can apply the induction hypothesis and we get

e v;=v;, fori=2,....n
o, =m, fori=2...,n
e there exist substitutions 7;, 7/ such that

— Ain=p0 /\;m o1 [Var(Gy)], /\é’m =poXinor [Var(G)),

fori=2,...,n.

Finally, let us show that n = m. Assume n < m holds and consider

the derivation G/, | J\/—>[U, Gl =Gl J\/—>i e J\ﬁi Gl

n+1’7741+1’5%+1]
Then X}, ,,,(G7,1) is reducible at occurrence vy, ; with rule 7, ;. Since G| =

A (Grd) = (0 0 Ny 0 ) (Gd) = p' (N, m(G1)) and — is stable under sub-
stitutions, this would imply that G,J is reducible in contradiction to the fact
that G,J is the normal form of z,,. This shows that n = m and the theorem is
proved. O
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Assuming again that narrowing derivations starting from the same goal
and using the same rules at the same occurrences produce the same narrowing
substitution we get:

Corollary 6.9 If normalizing LSE narrowing enumerates two solutions o and
o' which coincide up to variable renaming, then o = o' holds and the two
derivations coincide.

Theorem 6.10 For any normalizing LSE narrowing derivation

* *
Gob N G177 GNP 6 0 TV e On 7 Gl
the narrowing substitution d, o ... o 51|VQT(GO¢) 18 normalized.
Proof: Analogous to the proof of Proposition 5.9 with G;| instead of G;. O

Corollary 6.11 Normalizing LSE narrowing enumerates only normalized sub-
stitutions.

Example 5.11 is still valid if we use normalizing LSE narrowing instead of
LSE narrowing.

6.3 Normalizing LSE and SL Left-to-Right Basic Narrowing

Finally, we want to investigate the relationship of normalizing LSE narrowing
to normalizing left-to-right basic narrowing as studied in [Rét87, Rét88]. It
is well-known that a naive combination of (left-to-right) basic narrowing and
normalizing narrowing is not complete.

For rewriting derivations the computation of the sets of basic occurrences is
more complicated than for narrowing derivations. We need the notion of weakly
basic rewriting derivation [Rét87].

Definition 6.12 (Antecedent) Let t —, ;. t' be a rewriting step. We say
that the occurrence w in t is an antecedent of the occurrence «’ in ¢’ iff

e w = and neither w < v nor v < w or

e there exists an occurrence p’ of a variable x in r such that w’ = v.p’.0 and
w = v.p.o where p is an occurrence of the same variable x in [.

See Fig. 2 for illustration.
Definition 6.13 (Weakly Basic Rewriting) Given a rewriting derivation

G1 o1l 1] G2 oada—=ra] o T [vn—1,ln1—=Tn_1] Gn

and a set WB; C Occ(Gh) of occurrences in G the corresponding sets of weakly
basic occurrences are inductively defined by

def

WBit1 = (WBi\{veWB;|v>=uv})U{vi.o|oe€ FuOcc(r;)} U{v € Occ(Git+1) |
v = v;.0,0 € FuOcc(r;) and all antecedents of v in G; are in WB;},
for ¢ = 1,...,n — 1. The rewriting derivation is weakly based on WBy iff

vi € WB;, for all ¢ = 1,...,n — 1. Instead of WB, we will also write
WB(WBy,G1 5 Gy,).
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Figure 2: Illustration of antecedents: the occurrence v.p.o is an antecedent of
/
v.p'.0.

The main difference compared to the computation of the set B;;1 of ba-
sic occurrences is that occurrences under v; which do not correspond to non-
variable occurrences in r; may belong to WB; 1. Note that different reductions
G 5 G’ can lead to different sets WB(U, G = G'). But this does not affect the
completeness of the narrowing strategies introduced below (see [Wer91}).

The notion of weakly basic occurrences is closely related to the notion of
sufficient largeness as is illustrated by the following lemma [Rét87].

Lemma 6.14 Let U be sufficiently large on G1. Then any rewriting derivation
G155 G, is weakly based on U, and WB(U,G1 = Gy,) is sufficiently large on
Gp.

Proof: By induction on the length of the derivation. In the case n = 1 nothing
has to be shown. Assume therefore that Gy = Gpn-1,n > 1, is weakly based on
U = WB; and that WB,,_; is sufficiently large on G,,_1. Then the occurrence
Un—1 in Gp-1 =y, x,_y) Gn must belong to WB,,—1. If wy, € Oce(Gr) \ WB,
then at least one antecedent w,_1 of w, in G,,_1 does not belong to WB,,_1.
Since WB,,_1 is sufficiently large on G,,—1, we deduce that G, /w, = Gp—1/wp—-1
is irreducible. This shows that WB,, is sufficiently large on G,,. O

Definition 6.15 (Normalizing SL Left-to-Right Basic Narrowing) Let
Gyl be a normalized system of equations. A derivation

(God, Uod) N s ] (G1,Un) = (Gil,Uh)

(Gn—lJa Un—lxl/) J\/_>[vn,7rn,5n] (Gnv Un) i> (Gn\l,, Uni):

. def def def
with Upl = FuOcc(Gol), U; = LRB(U;—1l},v;,m) and Ul =
WB(U;, G; = Gyl) is called a normalizing left-to-right basic narrowing deriva-
tioniffori=1,...,n

o v; € Ui_1l,
e G; 5 Gl is weakly based on U;, and

e (5;] is normalized.
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The derivation is called a normalizing SL left-to-right basic narrowing derivation
if moreover U/, is sufficiently large on G, for alli =1,...,n.

Theorem 6.16 Any normalizing LSE narrowing derivation is also a mormal-
izing SL left-to-right basic narrowing derivation.

Proof: Consider a normalizing LSE narrowing derivation
*x *,
Gob N G177 G N6 0 TV s On 7 Gl
and the corresponding rewriting derivation

H = Hjy =0 H 5 H] -1 —unmn] Hn 5 H, = H,

vg,ma] e
. def . ; def .
with H; = X\n(Gi), for i = 1,...,n, and H, = X ,(Gl), for i = 0,...,n.
Define the sets of occurrences Upl def FuOcc(Gol), Us; def LRB(U;_1l,vi,m;)
and Ul ¥ WB(U;, G; 5 Gil), for i =1,...,n.
By induction on j =0,...,n, we prove for all ¢ = 1,...,j that
o v; € U1,

e G S Gl is weakly based on U;
and for all  =0,...,j that
e U;] is sufficiently large on G;| and H..

Since Ao.n|var(coy) i normalized by Theorem 6.10, Upl = FuOcc(Gol) is
sufficiently large on both Gyl and H) = Ao, (Gol).

Suppose the statement is true for 0 < j — 1 < n. By the induction hy-
pothesis the statement holds for all ¢+ < j. Hence, U;_1| is sufficently large
on Hj’»_l. Consider the rewriting step H]'~_1 —u;,m;) Hj- Since Uj_q] is suffi-
ciently large on Hj_;, we get v; € Uj_1]. By Proposition 6.7, H] 1 =y, r,] Hi
is a left reduction step. Using Lemma 4.6, we can conclude that the set
Uj = LRB(Uj_1],vj, ;) is sufficiently large on H;. Since H; = \;,(G}), this
shows that Uj is also sufficiently large on ;. By Lemma 6.14, this implies that
the rewriting derivations G 5 G;l and H; 5 H J/ are weakly based on U; and
that U;| = WB(U;, G; = G;l) = WB(U;, H; = H}) is sufficiently large on G,
and H J’ Therefore, the statement is true for j.

O

Corollary 6.17 Normalizing SL left-to-right basic narrowing is complete.

7 Empirical Results

In this last section, we give a number of empirical results to illustrate the various
narrowing strategies. In particular we show how the narrowing search space can
be reduced using the LSE strategy.
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Our computations have been done in the KArlsruhe NArrowing Labor
KANAL [Kri90] which is implemented in the Prolog dialect KA-Prolog on a
SUN SPARC 10/41.

We will proceed in two steps. First we give for a very simple example the size
of the narrowing tree for all strategies which have been discussed in this paper.
In this example, LSE narrowing yields the same results as SL left-to-right basic
narrowing.

Then we focus on the most efficient strategies for arbitrary canonical sys-
tems, namely normalizing left-to-right basic narrowing, normalizing SL left-
to-right basic narrowing and normalizing LSE narrowing and show on some
larger examples how the narrowing search space can be reduced by the various
reducibility tests.

7.1 Comparing all narrowing strategies for a functional term
rewrite system

Consider the canonical term rewriting system

R = { 0+z—z s(@)+y—sx+y),
Oxx—0, s(x)xy—y+axxy }

for the addition and multiplication of natural numbers. This term rewrite
system is functional in the sense of [DG89]: the rules are constructor-based,
left-linear and non-overlapping.

We would like to answer the query

7— zxzx+yxy=s(0)
which has two solutions
o1 ={z < 0,y < s(0)} and o3 = {x < s(0),y « 0}.

First we consider the narrowing strategies without normalization. The solution
o1 is found in depth 6, the solution o9 in depth 7 of the narrowing tree.

The number of nodes in the narrowing tree is given in Fig. 3. The numbers
for LSE narrowing are the same as for SL left-to-right basic narrowing.

If we do narrowing with normalization both solutions are found in depth 3
and many fewer narrowing steps are needed. The naive narrowing tree contains
51372 nodes at depth 7 whereas in the normal tree at depth 3 there are only 72.
Although normalizing narrowing steps are more costly than naive narrowing
steps, this is an enormous gain of efficiency (see Fig. 4). Again there is no
difference between normalizing SL left-to-right basic narrowing and normalizing
LSE narrowing.

7.2 Comparing the best narrowing strategies for a arbitrary
canonical system

For simple term rewrite systems, LSE narrowing does not improve the perfor-
mance of narrowing compared to other strategies. However, with increasing
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Figure 4: Normalizing strategies
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complexity of the rewrite systems and queries, the LSE strategy becomes more
and more important. In particular, the following properties of rewriting systems
and goals are relevant for LSE narrowing:

e overlapping left-hand sides

e non-regular rules [ — r

e left-hand sides with several defined function symbols
e non-linear rule sides and non-linear goals

To illustrate these points, consider a family R, of canonical rewriting sys-
tems for arithmetic modulo an integer number n > 1.

R, ={ 0O+z — =
s(x)+y — s(z+y)
r+sy) — s(x+y)

Oxz — O

s(z)xy — zxy-+y

s(s(...s(x)...) — =
n-times

(..((z+y)+y)+...y) — =z

n-times
(..((z+z)+2)+...+2) — 0 }

n-times

With increasing n, the last three rules generate more and more redundancies in
the normalizing SL left-to-right basic narrowing tree which can be eliminated
by the LSE-Tests.

We solve the goal

— xxy+x=s(0).

for the systems Rg3, Rs5, R7, Rg, R11, R13. For the system R,, the narrowing tree
has depth 2n+ 1, then no more derivations are possible. If we compare the run-
ning time (in seconds) needed by normalizing SL left-to-right basic narrowing
and LSE narrowing in order to compute the narrowing tree of depth 2n + 1 for
the system R,,, we get the following results.

System | Depth | Time: SL | Time: LSE | Time: Factor
R3 7 0 0 1
Rs 11 4 3 1,3
Ry 15 43 15 2,8
Ry 19 383 49 7,8
Ry 23 3366 142 23,7
Ris 27 23387 307 76,1

Note that in this example the performance of LSE narrowing increases al-
though the derivations get longer and longer.
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Figure 5: Best narrowing strategies for arbitrary systems (only normalized
substitutions)

We finish this section with a large practical example where the three tests
work together in a very nice way. We consider the canonical term rewriting
system for the integer arithmetic given in [RKKLS85]

Int={ s(p(x)) -,
p(s(z)) -,
0+ — T, z+0 — x,
s(x) +y - s(z+y), z + s(y) - s(z+y),
p(x) +y - plr+y), z +p(y) — plz+y),
—0 — 0,
—s(z) - p(-z),
—p() - s(—z),
0x*x — 0, z*0 — 0,
s(z) xy - Y+ (T *xy), z * s(y) - (rxy) +u,
p(x) *xy = (=y)+(z*xy), z*py) = (z*xy)+ (~2),
_(_:E) — T,
(—z) +x — 0, z+ (—x) — 0,
x4+ ((—z)+2) — 2z (—x)+(z+2) — 2z,
—(z+y) = (=y)+(-2),
(z+y)+z — z+(y+z) }

and take the goal 7— x*xz +yx*y = s5(0).

The number of nodes in the narrowing tree is given in Fig. 5.

To compute the narrowing tree of depth 5, we needed 381 sec. for ordinary
normalizing left-to-right basic narrowing, 74 sec. for SL normalizing left-to-
right basic narrowing, and 19 sec. for normalizing LSE narrowing.
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Figure 6: Best narrowing strategies for arbitrary systems (all substitutions)

In all the previous examples, we computed for normalizing left-to-right ba-
sic narrowing and normalizing SL left-to-right basic narrowing only narrowing
derivations that generate normalized narrowing substitutions. For LSE narrow-
ing, this is automatically the case. For the other strategies, however, this makes
a big difference: If we admit also non-normalized narrowing substitutions, we
get the numbers given in Fig. 6.

These examples illustrate that the reducibility tests done after a narrowing
step are just as important for the efficiency of the narrowing procedure as is
the choice of the right narrowing strategy.

8 Conclusion

In this paper, we have introduced a new narrowing strategy LSFE narrowing and
its normalizing variant. The main features of LSE narrowing are the following

e there is a one-to-one correspondence between LSE narrowing derivations
and left reductions.

e LSE narrowing is complete for arbitrary canonical systems.

e two different LSE narrowing derivations cannot generate the same nar-
rowing substitution.

e LSE narrowing generates only normalized narrowing substitutions.

In a subsequent paper, we will show how LSE narrowing can be realized very
efficiently by a slight modification of a WAM-based implementation of left-to-
right basic narrowing [WBK93|. According to their definition, LSE narrowing
steps seem to be very expensive, because a large number of subterms has to be
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considered. However, using left-to-right basic occurrences this number can be
reduced in a drastic way.
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