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ABSTRACT

Gene expression measurements allow determining sets of up- or down-regulated, or un-
changed genes in a particular experimental condition. Additional biological knowledge can
suggest examples of genes from one of these sets. For instance, known target genes of a
transcriptional activator are expected, but are not certain to go down after this activator is
knocked out. Available differential expression analysis tools do not take such imprecise
examples into account. Here we put forward a novel partially supervised mixture modeling
methodology for differential expression analysis. Our approach, guided by imprecise ex-
amples, clusters expression data into differentially expressed and unchanged genes. The
partially supervised methodology is implemented by two methods: a newly introduced
belief-based mixture modeling, and soft-label mixture modeling, a method proved efficient in
other applications. We investigate on synthetic data the input example settings favorable for
each method. In our tests, both belief-based and soft-label methods prove their advantage
over semi-supervised mixture modeling in correcting for erroneous examples. We also
compare them to alternative differential expression analysis approaches, showing that in-
corporation of knowledge yields better performance. We present a broad range of know-
ledge sources and data to which our partially supervised methodology can be applied. First,
we determine targets of Ste12 based on yeast knockout data, guided by a Ste12 DNA-binding
experiment. Second, we distinguish miR-1 from miR-124 targets in human by clustering
expression data under transfection experiments of both microRNAs, using their computa-
tionally predicted targets as examples. Finally, we utilize literature knowledge to improve
clustering of time-course expression profiles.

Key words: differential expression analysis, partially supervised mixture modeling.

1. INTRODUCTION

H igh-throughput gene expression measurements provide for a comparison between two experi-

mental conditions. After proper normalization, sets of up- or down-regulated genes (together: differ-

entially expressed) can be determined. Established differential expression analysis tools are based on
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examining the fold-change of gene expression level and/or performing a t-test (Cui and Churchill, 2003;

Slonim and Yanai, 2002, 2009). Typically, a threshold cutting off the differentially expressed genes in the

resulting ranked gene list is determined based on the false discovery rate (FDR; Tusher et al., 2001).

However, the researcher can often provide examples from the sets of up-/down-regulated, or unchanged

genes in the analyzed experiment. The knowledge about the examples is rarely certain and can rather be

quantified in distributions over those sets. Given such imprecise information, the problem is to find the

threshold that is both stringent enough to select only the significantly changed genes, and permissive enough

to include the known examples.

In this work, we propose a novel methodology that systematically incorporates imprecise

knowledge into differential expression analysis. We use partially supervised mixture modeling that

separates one-dimensional expression data into clusters of differentially expressed and unchanged

genes, and profits from imprecise examples to find these clusters. Our partially supervised method-

ology brings two important benefits to differential expression analysis: First, the use of mixture

modeling avoids setting ad-hoc thresholds; the clusters are defined by the model that is most likely,

given the data and the examples. Second, partially supervised modeling handles even erroneous

examples; such examples may not fit with the rest of the data in their believed cluster and can get ‘‘re-

clustered’’ in the output. In this way, modeling tells which of the examples were incorrect according

to the data.

The proposed partially supervised approach is implemented using two complementary methods. One

extant method, referred to as the soft-label mixture modeling, was recently introduced in machine learning

(Côme et al., 2009) and shown to improve model-based clustering of general benchmark datasets. We

contribute a partially supervised method that we call belief-based mixture modeling. In the more practical

cases when the known examples constitute only a small fraction of all elements in each cluster, the newly

introduced method proves to be less susceptible to disproportional representation of examples per cluster

than soft-label modeling. If the number of examples is large, the soft-label method better estimates the

model parameters. Both methods, as well as other mixture modeling approaches considered in this work,

are implemented in an R package bgmm, freely available from http://bgmm.molgen.mpg.de,

together with the data used for the analysis presented in this article. The package provides practical support

in the application of our methodology to differential data analysis.

Unsupervised mixture modeling was applied to define clusters of differentially expressed and unchanged

genes previously (Pan et al., 2002; Garrett and Parmigiani, 2003; Newton et al., 2004; Do et al., 2005). In

particular, it is used to define ‘‘states’’ (e.g., up, down or unchanged) of variables in graphical models of

biological pathways (Pe’er et al., 2001; Ko et al., 2007). Moreover, numerous applications of multidi-

mensional mixture modeling to clustering of gene expression profiles (Yeung et al., 2001; McLachlan et al.,

2002; Ghosh and Chinnaiyan, 2002; Dortet-Bernadet and Wicker, 2008) prove that it is well suited for

expression data. In this field, several approaches extend mixture modeling to include prior knowledge.

Costa et al. (2007, 2009) and Pan et al. (2006) incorporate pairwise constraints known for a subset of the

observations and perform penalized mixture modeling ensuring that the constraints are not violated. Pan

(2006) takes into account a grouping of genes, defined by functional relations on top of the clustering.

Alexandridis et al. (2004) perform clustering and tumor sample classification using samples whose classes

are known precisely. None of these methods, however, can easily be adapted to utilize imprecise examples

in differential expression analysis.

Our tests on synthetic data characterize the differences as well as the common features of the

belief-based and the soft-label mixture modeling methods. We simulate expression data in two

conditions to rigoriously compare our partially supervised methodology to standard differential

analysis methods. We show three applications of both partially supervised methods to real gene

expression data: first, we identify targets of Ste12 from knockout data in yeast, given knowledge from

a Ste12 DNA-binding experiment; second, we distinguish miR-1 from miR-124 human target genes

based on expression data from transfection experiments of either microRNAs, with the use of their

computationally predicted targets; third, by applying our methodology in the pre-processing step, we

improve the clustering of cell cycle genes based on their time-course expression profiles. Our tests

show the power of the novel application of the partially supervised methods to differential expression

analysis, by comparing to unsupervised and semi-supervised (using precise examples) mixture

modeling, the standard p-value threshold-based methods, as well as an extant algorithm called NorDi

(Martinez et al., 2007).
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2. METHODS

In the problem of clustering, a dataset of observations X¼fx1, . . . , xNg is given, and one looks for an

assignment of the observations to clusters in Y ¼f1, . . . , Kg. In this article, we assume that the number of

clusters K is known, and that the data is one-dimensional. In our application, the clusters correspond to

differentially expressed (shortly, differential) or unchanged genes, and data consists of expression ratios

comparing two condition measurements. To find the clusters, mixture modeling is applied. Mixture

modeling associates each cluster with a model component, which is defined by an underlying distribution

estimated from the data.

Mixture modeling variants differ in the way they utilize additional knowledge. We assume the knowl-

edge is available for a subset of first M observations fx1, . . . , xMg, called examples. The knowledge about

an example can either be precise and give exactly one cluster the example belongs to, or can be imprecise

and described by a probability distribution over the clusters in Y. The precisely assigned cluster or the most

probable cluster for an example is also called a label, and the examples are also referred to as labeled data.

In the following section, we shortly cover known variants of mixture modeling methods. Sections 2.2 and

2.3 describe the principles of two partially supervised mixture modeling methods: our own, introduced in

this article, and one proposed by Côme et al. (2009).

2.1. Mixture modeling

Mixture modeling assumes that the cluster labels are realizations of random variables Y1, . . . , YN that take

values in Y and follow a multinomial distribution M(1, p1, . . . , pK), so pk¼P(Yi¼ k), for i 2 f1, . . . , Ng
and k 2 Y. The pks are called mixing proportions, or priors, and of course satisfy RK

k¼1pk ¼ 1. The ob-

servations in X are assumed to be generated by continuous random variables X1, . . . , XN with values in R
and a conditional density function f (xijYi¼ k)¼ f (xi; hk), where i 2 f1, . . . , Ng, k 2 Y, while yk denotes the

parameters of the density function. We are concerned with Gaussian mixtures, where hk ¼ (lk, r2
k). The

model parameters, denoted W¼fp1, . . . , pK , h1, . . . , hKg, are usually estimated from the data.

In unsupervised mixture modeling, the input is only the data X and no cluster labels are known. In this

case, we use the Expectation Maximization (EM) (Dempster et al. (1977) algorithm for parameter esti-

mation. In the semi-supervised mixture modeling case, we know the precise cluster labels for a number of

examples, constituting a small subset of all observations. Parameter estimation is obtained via an EM

algorithm, where the labels for the examples remain fixed. For more details on these two classical methods,

see McLachlan and Peel (2000) and Zhu and Goldberg (2009).

2.2. Belief-based mixture modeling

We propose a partially supervised mixture modeling method that handles imprecise knowledge about the

examples. The idea of the method is to set an equivalent of the prior pk differently for each example xi

(i�M) to the value of our belief, or certainty, about the example belonging to a particular cluster k. The

belief is defined as a probability distribution over the clusters in Y, given by a vector bi, where

bik¼P(yi¼ k), satisfying RK
k¼1bik¼ 1. The input set to our method is Xb¼f(x1, b1), . . . , (xM , bM),

xMþ 1, . . . , xNg. Accordingly, the log likelihood for this dataset reads:

l(W, Xb)¼
XM

i¼1

log
XK

k¼1

bik f (xi; hk)

 !

þ
XN

i¼Mþ 1

log
XK

k¼1

pk f (xi; hk)

 !
:

(1)

The maximum likelihood estimate of the parameters C is obtained using the EM algorithm. In the E step

of the (qþ 1)-th iteration, we compute the posterior probabilities:

t
(qþ 1)
ik ¼

bik f
�
xi; h

(q)
k

�
=
PK

k0¼1 bik0 f
�
xi; h

(q)
k0

�
, i � M

pik f
�
xi; h

(q)
k

�
=
PK

k0 ¼1 pik0 f
�
xi; h

(q)
k0

�
, i4M:

8<
: (2)
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Therefore, in the M step, the update equation for the mixing proportions becomes:

p(qþ 1)
k ¼

XN

i¼Mþ 1

t
(qþ 1)
ik =(N�M), (3)

i.e., the examples do not contribute to this estimation. The Gaussian parameters yk are updated using the

equations:

l(qþ 1)
k ¼

XN

i¼1

xit
(qþ 1)
ik

 !� XN

i¼1

t
(qþ 1)
ik

 !
, (4)

(r2
k)(qþ 1)¼

XN

i¼1

t
(qþ 1)
ik xi� l(qþ 1)

k

� �2

 !� XN

i¼1

t
(qþ 1)
ik

 !
: (5)

2.3. Soft-label mixture modeling

Soft-label mixture modeling, introduced by Côme et al. (2009), formulates the given imprecise

knowledge with belief functions (Shafer, 1976). In our application, each observation is labeled with a single

cluster. In general, the soft-label method allows labels defined as subsets of clusters. Therefore, we consider

only a particular case in their approach. In this case, the input dataset is defined as Xp¼
fx1, p1), . . . , (xN , pN)g, where for an example xi (i�M), a plausibility pik for each cluster k is given,

satisfying RK
k¼1pik¼ 1. For the remaining observations (i>M), it is assumed that this distribution is uni-

form, i.e., pik¼ 1/K. Côme et al. (2009) weight the prior for the examples with the plausibilities, obtaining a

log likelihood for the input dataset:

l(W, Xp)¼
XN

i¼1

log
XK

k¼1

pikpk f (xi; hk)

 !
: (6)

Therefore, in the E step of the EM algorithm, we compute:

t
(qþ 1)
ik ¼ pikp

(q)
k f (xi; h

(q)
k )PK

k0¼1 pik0p
(q)
k0 f (xi; h

(q)
k0 ):

(7)

In contrast to belief-based modeling, here the update equation for the mixing proportion in the M step does

utilize examples, and reads:

p(qþ 1)
k ¼

XN

i¼1

t
(qþ 1)
ik =N: (8)

The Gaussian parameters are updated as in Eq. (4) and Eq. (5).

2.4. Key differences

The belief-based and soft-label methods differ in the way they incorporate imprecise knowledge. Belief

values should be interpreted as the actual certainties with which the examples belong to each particular

cluster. The plausabilities weight the mixing proportions, giving higher weights to more likely clusters.

Consider a model with two components of equal proportions and variances, and different means (Fig. 1A).

A belief value 0.5 for an example indicates that in the data this example lies exactly in the middle between

the two means. The plausability value 0.5 states that there is no certainty about the cluster which the

example belongs to, and does not suggest any likely position for the corresponding data point.

The differences in mixing proportion estimation between the belief-based and soft-label modeling (Eq. 3

versus Eq. 8) have a crucial practical consequence. In the case of soft-label modeling, examples with high

plausabilities have higher influence on the mixing proportion estimation than the remaining observations.

In the case of belief-based modeling, only the remaining observations are used to estimate the mixing

proportions. This implies that the soft-label method is susceptible to bias in the proportion of given

examples, whereas belief-based modeling is susceptible to bias in the remaining observations’ proportions.

Consider a dataset with two clusters of 1000 elements each (cluster size proportion 1:1, mixing proportion
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0.5). For very low example numbers, it is easy to give biased example proportions affecting the soft-label

model estimation. For instance, 10 examples for one and and 100 for the other cluster gives a 1:10 example

proportion (and a 99:90 proportion between the remaining observations, close to the desired 1:1). On the

other extreme, taking 990 and 900 known examples for the two clusters respectively, hampers the belief-

based model estimation in two ways. First, the small number of observations affects proper estimation of

the mixing proportion, and in turn, other model parameters in the EM iterations. Second, the remaining

observations’ proportion 10:1 is biased. Note here that when all examples for a given cluster are known, the

belief-based method is not even applicable. To summarize, in comparison to soft-label modeling, belief-

based modeling is tailored for the more realistic input sets where the number of examples is small,

compared to the amount of unlabeled data required for robust estimation of mixing proportions. However,

for high example numbers soft-label modeling should be applied.

2.5. Partially supervised model-based clustering

Once the model is estimated, each observation is assigned to its most probable cluster (from

equally probable, one is chosen at random). Note that, by this maximum a posteriori (MAP) criterion,

FIG. 1. (A) Model 1 assumed in the first test, with two well-separated components (drawn in black and gray),

Gaussian parameters as indicated on the plot, and separated sets of 14 examples per component (marked below). (B) y-

axis: average accuracy of belief-based, soft-label and semi-supervised methods in putting data into the same clusters as

the true model in A. x-axis: different accuracy bar plots for increasing number of examples that are mislabeled (out of

the pool of 14 per component). Both partially supervised methods deal significantly better with mislabeled examples

than the semi-supervised method. (C) Model 2 assumed in the second test, with overlapping components and small

example sets (14 per component), plotted as in A. (D) The plot as in B, but the x-axis shows the numbers of examples,

correctly labeled, used per component (from those indicated in C). The example numbers proportions (from left to right

1:1, 1:2, 1:3, and 1:4) are increasingly biased with respect to the model mixing proportions (1:1). Applied to cluster the

data from the model in C, belief-based modeling is more resistant to such bias than both soft-label and semi-supervised

modeling. (E) Model 2 with a large number of 450 examples per component assumed in the third test, ploted as in C.

(F) The plot as in D, but here the increasing bias is introduced in the proportions of observations that are not used as

examples (from left to right 1:1, 2:3, 1:2, and 2:5). Applied to cluster the data from the model in E and given large

example numbers, belief-based modeling less acurately estimates the model and is less resistant to such bias than both

soft-label and semi-supervised modeling.
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semi-supervised modeling clusters the examples always in the same way as they are labeled in the input

(see Section 2.1). In contrast, the partially supervised methods are able to ‘‘re-cluster’’ the examples: an

example, although assigned with the highest certainty to a particular cluster k, can have as a result of the

EM algorithm the highest posterior probability to belong to a cluster k0= k. In the case of soft-label

modeling, the posterior probability to belong to cluster k can be low for an example xi if the mixing

proportion pk or the density function f (xijyk) are small, even if the plausibility pik is high (see Eq. 7). Belief-

based modeling does not take into account the mixing proportions when deciding the cluster label for a

given example. Here the belief about the example ‘‘competes’’ only with the value of the density function

(see Eq. 2). In summary, semi-supervised model estimation is most strongly influenced by the examples

and, unlike the partially supervised methods, cannot correct for mislabeled examples. Thus, if the data

groups into clear clusters, the given examples are in ideal proportions and constitute a representative

sample from each component, then the semi-supervised method is expected to perform best in estimating

the true model. In the more realistic case, the knowledge is imprecise and uncertain, and both belief-based

and soft-label methods are applicable instead.

Note finally, that after assigning to most probable clusters, the clustering is no longer probabilistic but

partitional. Thus, when true clustering is available, we evaluate the model-based clustering using standard

accuracy (number of correctly labeled observations over the number of all observations) or adjusted Rand

index (Hubert and Arabie, 1985). The latter measure takes values in the (0, 1) interval, and for random

clusterings gives values close to 0. High values of the Rand index indicate significant agreement of two

clusterings.

2.6. The partially supervised methodology applied to differential expression analysis

The methodology takes as input data and imprecise examples of differential and unchanged genes. The

data are log expression ratios computed for two conditions, refered to as treatment and control, respec-

tively. When replicate experiments are available, log mean ratios, or t-statistic should be analyzed. Ne-

gative observations refer to lower, while positive observations refer to higher expression values in

treatment versus control. The differential genes comprise a small fraction of all genes and their observa-

tions are expected to lie on the extremes of the data range.

There are two analysis scenarios supported: first, clustering into two clusters of differential and of

unchanged genes, and second, clustering into three clusters of down-regulated, up-regulated, and un-

changed genes. Practically, in the first scenario, the differential cluster is defined as the one with the higher

variance. In the second scenario, we sort the three estimated model components increasingly by their

means. The down- and up-regulated clusters have the lowest and the highest mean, respectively. Our

implementation provides support for fitting a mixture modeling method of choice in both scenarios. As a

result the estimated model parameters, probabilities of belonging to each cluster, and a label of the

differential cluster are returned. Additionally, the user can plot the obtained models to verify whether the

data clusters as expected. We use the first scenario of two clusters throughout this article.

2.7. Parameter initialization

Both the semi-supervised and partially supervised methods take as input examples with cluster labels.

Implicitly, they require that the user assumes an order on the clusters to be found in the data. Each example

obtains a label, which is the number of its believed cluster in the assumed order. On the other hand, the EM

algorithm estimates the model components (i.e., clusters) in the order of their initial parameters. Conse-

quently, for the EM algorithm to utilize the examples properly, the initial parameters of each component k

should correspond to the cluster labeled k by the user, k 2 Y. There are various ways of defining the initial

parameters. We describe two of them.

One way is to compute the initial parameters from the examples. For a Gaussian mixture model com-

ponent k one can compute the mean, variance, and proportion of the examples labeled k. Automatically, the

initial parameters of component k will correspond to examples from cluster k. However, initialization from

examples is not always the best choice, especially when there are only a few of them. Also, for some

clusters there might be no example available.

Another common way (used for unsupervised mixture modeling of univariate data by Yeung et al., 2001)

is to divide the data into quantiles, returning clusters in an order not necessairly the same as the one

assumed by the user. Next, initial parameters for the EM algorithm are obtained from this clustering. Given
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any such initialization procedure, we run the EM algorithm for all possible permutations of initial pa-

rameters, and the estimated model with the highest likelihood is returned.

3. RESULTS

3.1. Validation on synthetic data

We first validate the performance of the belief-based and soft-label mixture modeling methods on

synthetic data, where the true labels for all observations are known.

3.1.1. Partially supervised model-based clustering. We first investigate the performance of three

methods that utilize knowledge in the general task of model-based clustering. We compare the partially

supervised belief-based and soft-label, as well as semi-supervised modeling. We consider two different

Gaussian mixture models (Models 1 and 2), with two components each (Fig. 1A, C). In both models the

mixing proportions are equal, p¼ p1¼ p2¼ 0.5. The Gaussian model parameters are denoted

h¼ (l1, l2, r2
1, r2

2). We run three tests on 1000 random samples of 1000 observations each: first, assuming

Model 1 and choosing a pool of 14 examples per component; second, Model 2 and 14 examples per

component; and third, Model 2 and 450 examples per component. The examples are given belief/plausi-

bility of belonging to their cluster equal to 0.95, and of belonging to the other cluster equal to 0.05. In each

test, to generate one sample from the assumed model, we draw the number of observations in the first

component from the binomial distribution N1*B(1000, p), and set the number in the second component to

N2¼ 1000�N1. Next, we draw N1 observations from the normal distribution N (l1, r2
1) and N2 from

N (l2, r2
2). For every observation in the sample a true label is derived: observations are assigned to the most

probable cluster under the assumed model (either Model 1 or 2). The compared methods make their

predictions of the true labels by first estimating the model of the data sample, given the examples, and next

model-based clustering of the data. In each test, the accuracy of assigning true labels to observations that

are not used as examples is averaged over the 1000 samples.

The first test (Fig. 1A, B) shows advantage of considering imprecise knowledge. Model 1 (Fig. 1A), with

well separated components and sets of examples per component, is easy to estimate. Using all given

examples correctly labeled, all methods find true cluster labels accurately (first three bars in Fig. 1B). In

contrast to semi-supervised modeling, both partially supervised methods, belief-based and soft-label

modeling are highly accurate even when examples are mislabeled by switching their labels to other clusters

(remaining bars in Fig. 1B).

Figure 1C–F shows on Model 2 the differences in performance between the belief-based and soft-label

modeling (see Section 2.4). The components of Model 2 largely overlap, and we use overlapping subsets of

examples per component. In the second test, for small example numbers (Fig. 1C) and equal example

proportions the model is well estimated by all methods (first three bars in Fig. 1D). However, when the

example number proportions disagree with the assumed model mixing proportions, only belief-based

modeling achieves high clustering accuracy (remaining bars in Fig. 1D). In the third test, with large

example numbers (Fig. 1E) and equal example proportions, the belief-based method lacks enough obser-

vations to estimate the model as good as the soft-label and semi-supervised methods (first three bars in Fig.

1F). Additionally, the larger the bias in representation of observations not used as examples, the poorer the

accuracy of the belief-based method (remaining bars in Fig. 1F). In both cases soft-label modeling behaves

similarly to semi-supervised modeling.

3.1.2. Partially supervised differential expression analysis. Next, we show the improvement

obtained by using our partially supervised approach in differential expression analysis. On synthetic da-

tasets, we compare the partially supervised methods and semi-supervised modeling with standard differ-

ential analysis methods: t-test, SAM (Tusher et al., 2001), Cyber-T (Baldi and Long, 2001), and LIMMA

(Smyth, 2005). Additionally, we run unsupervised mixture model-based clustering of t-statistic (proposed

in a more general setting for differential analysis by Pan et al., 2002).

We generated 100 datasets, each simulating expression of 200 differential and 1800 unchanged genes in

the control and treatment conditions. Each dataset consists of two data matrices, control and treatment, with

three columns (experimental repeats) and 2000 rows (genes). The basal gene log intensity values in the

control matrix are drawn from a normal distribution N (10, 1). The values in the treatment matrix for the

KNOWLEDGE IN DIFFERENTIAL EXPRESSION ANALYSIS 959



unchanged genes come from the same basal distribution, whereas for the differential genes are drawn from

N (10, 16). This reflects the biological reality where the differentially expressed genes change their ex-

pression between the control and treatment condition, but each to a different extent.

We evaluate the compared methods by their accuracy (measured with the adjusted Rand index; see

Section 2.5) of identifying the true differential and unchanged genes. The standard differential analysis

aproaches are applied directly to the simulated control and treatment matrices and return p-values of

differential expression. Next, we use common p-value thresholds of 0.01 and 0.05 to define the differen-

tially expressed genes. The unsupervised clustering is applied to the t-statistic computed using LIMMA.

The partially supervised and semi-supervised methods are applied to log mean treatment versus control

intensity ratios (see Section 2.6). Application of those methods to the t-statistic yielded the same results and

is thus not reported. Examples for the supervised methods are uniformly drawn at random from the set of

differential and unchanged genes and assigned belief/plausability values of belonging to their true clusters

equal 0.95.

Figure 2 shows the adjusted Rand index distributions obtained over the 100 synthetic datasets. Given

correct examples in true proportions, the partially supervised and semi-supervised methods most accurately

classify the differential and unchanged genes by their simulated expression values. Proportional increase in

the number of given examples did not change the results; we show performance with 0.04 (eight for the

differential and 72 for the unchanged genes) and 0.25 (50 and 450) of all elements in a cluster used as

examples. The unsupervised clustering of the t-statistic performs worse, showing the improvement gained

with incorporating knowledge in the analysis. Recall that the model-based methods perform MAP clus-

tering (see Section 2.5) and do not require setting cut-off thresholds. In contrast, the accuracy of the

standard methods depends on p-value cut-off used. For example, the accuracy obtained by SAM with a

p-value cut-off of 0.01 is the highest among standard approaches, but it drops dramatically for the p-value

of 0.05. Finally, we show two extreme cases of misleading input example settings that hamper the accuracy

of the soft-label, and to a higher extent, the semi-supervised methods (see Section 2.4). First, we give the

examples in proportion 9:1, inverted with respect to the actual proportion of cluster sizes. Second, we again

give 50 and 450 examples for the differential and unchanged genes (a 0.25 fraction), but we mislabel 25 of

them by switching their labels to the other clusters. The belief-based method proves robust to both

misleading input settings.

FIG. 2. Partially supervised differential expression analysis on synthetic data. Given 8 examples of differential and 72

examples of unchanged genes (a 0.04 fraction of all elements in each cluster), the partially supervised belief-based and

soft-label methods, as well as semi-supervised modeling achieve superior accuracy (red boxplots) over the standard

differential analysis approaches (light blue for the 0.01 p-value cut-off and dark blue for the 0.05 cut-off ). Increasing

the number of examples used by the supervised methods to 50 and 450 (a 0.25 fraction; brown boxplots) yields similar

results. Belief-based method maintains high performance also when the known examples are given in reversed pro-

portion 9:1 (orange boxplots) or are mislabeled (25 examples switched between the 50 differential and 450 unchanged

genes, respectively; violet boxplots).
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3.2. Finding Ste12 target genes

Next, we apply the partially supervised methodology to identify pheromone environment-specific target

genes of the Ste12 transcription factor (TF) in yeast. We use expression data from four types of cells:

untreated wild-type and Ste12 mutants, as well as wild-type and Ste12 mutants treated with 50 nM of

a-factor treatment for 30min (Roberts et al., 2000). To focus on transcriptional changes triggered by

pheromone stimulation, we limit the analysis to 602 genes that show a 1.5-fold up- or down-regulation

upon pheromone treatment of wild-type cells. The analyzed data consists of log2 expression ratios, pher-

omone-treated Ste12 mutants versus prehomone-treated wild-type cells. In this dataset, we seek to dis-

tinguish the set of differential genes from a set of genes that remain unchanged.

We utilize high-throughput experiments to define examples from the first set of differential genes: we

take 42 genes that have their promoter bound by Ste12 in pheromone environment with a p-value <0.0001

(Harbison et al., 2004), and that are at least two-fold up-regulated upon pheromone treatment as compared

to wild type (Roberts et al., 2000). We further use the significance of Ste12-DNA binding to reflect the level

of certainty about those examples in the belief/plausability values. The Ste12-DNA binding p-values of the

example genes correlate with the logarithm of the changes in expression upon Ste12 knockout in phero-

mone environment (Pearson correlation coefficient 0.42, p-value of 0.0045). We set the belief/plausability

of belonging to the set of differential genes accordingly: the belief values lie in the (0.5, 0.95) interval and

are proportional to the log binding p-values. We do not use any examples for the second cluster of

unchanged genes. All mixture modeling methods are initialized using quantiles (see Section 2.7).

For comparison to the partially supervised belief-based and soft-label modeling, we test also the semi-

supervised and unsupervised mixture modeling. All these methods are applied to find two clusters: one for

the differential genes and one for the unchanged. Additionally, we compare our methods to the NorDi

algorithm (Martinez et al., 2007), which identifies differential genes by normalizing and discretizing gene

expression measures. This algorithm first fits the data to a single Gaussian component, removing outliers,

and next calculates the up- and down-regulated cut-off thresholds using the z-score methodology (Yang

et al., 2002). To compare to the traditional differential expression analysis, we use the p-values for the

genes provided by Roberts et al. (2000). We define two sets of differential genes, first with the common

p-value threshold 0.01, and second with the threshold 0.05. Using each threshold, we first select only genes

that are differential under pheromone treatment in wild-type cells. Next, from those, we select genes that

are differential under Ste12 knockout in pheromone-treated cells.

We define the set of Ste12 targets identified by each method as those genes from the obtained set of

differential genes, which are down-regulated in the Ste12 mutants (Ste12 is a transcriptional activator;

Kirkman-Correia et al., 1993). We evaluate the identified sets of Ste12 targets by testing whether the

proteins encoded by the targets take part in Ste12-dependent processes induced by pheromone (Figure 3).

To this end, for each target set we computed the p-values for its enrichment in Gene Ontology annotations

(GO; Ashburner et al., 2000), using the TermFinder tool by Boyle et al. (2004).

The set of Ste12 targets identified by the belief-based modeling method has the highest enrichment in the

GO annotations related to Ste12 activity upon pheromone stimulation (Herskowitz, 1995): mating and

conjugation with cellular fusion. Similarly, strong evidence for the same functionality is shown for the set

of Ste12 targets of comparable size, identified by the soft label modeling method.

Unsupervised mixture modeling and the NorDi algorithm identify Ste12 target sets that are smaller than

the sets identified by the two partially supervised methods, leaving out many genes that are functionally

related to the pheromone-triggered and Ste12-dependent processes (Fig. 3).

Semi-supervised modeling, in contrast, includes all given examples in the cluster of differential genes.

As opposed to belief-based modeling, the semi-supervised method shifts this cluster toward low change in

expression upon Ste12 knockout (Fig. 4). Therefore, its set of identified Ste12 targets contains half of all

analyzed genes, and incorporates most superfluous genes, for example, genes taking part in the transpo-

sition process. Also relatively big, the sets of Ste12 targets identified using the two p-value cut-offs have

better enrichment scores than the set identified by semi-supervised modeling, but worse than the sets

identified by the partially supervised methods (Fig. 3).

3.3. Distinguishing miR-1 from miR-124 targets

To further evaluate the performance of the partially supervised mixture modeling methods, we check

their accuracy of distinguishing miR-1 from miR-124 target genes in human, based on two expression
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datasets from transfections of these microRNAs (shortly, miRNAs; Lim et al., 2005) and knowledge from

computational miRNA target predictions. We use the subset of the genes measured by Lim et al. (2005),

which can be divided into two distinct clusters with rigorous experimental verification: 90 miR-1 targets

(Selbach et al., 2008; Zhao et al., 2005) and 35 miR-124 targets (Wang and Wang, 2006; Krek et al., 2005;

Karginov et al., 2007). Among them, we use as examples 16 miR-1 and 11 miR-124 target genes that have

computationally predicted binding sites of miR-1 and miR-124, respectively. We take only the examples

that are predicted as respective targets by both computational methods that we used: MirTarget2 (Wang and

El, 2007; Wang, 2008) and miRanda (Betel et al., 2008). The belief/plausibility values for examples to

belong to their clusters are set to 0.95.

In both transfection datasets, we expect to see down-regulation of one miRNA’s target genes (e.g., miR-1

targets upon miR-1 transfection) and the other target genes unchanged by the transfection. Therefore, for

FIG. 3. Biological validation of identified Ste12 targets. Enrichment p-values (shades of gray) of the sets of Ste12

targets identified by the compared methods (matrix rows; 0.01 and 0.05 denote cut-offs applied to differential ex-

pression p-values provided by Roberts et al. [2000]; set sizes are given in brackets) in Gene Ontology (GO) biological

process terms (columns). Each presented term is enriched in at least one Ste12 target gene set with a p-value of <0.01

and FDR of <0.01. Significant enrichment represents distinct behavior of the target genes compared with the rest of all

genes. The belief mixture modeling identified a set of Ste12 target genes with the lowest product of all p-values. Un,

unsupervised; CF, cellular fusion; M-ORG, multi-organism; Res., response; PH, pheromone; MG, morphogenesis;

Reg., regulation; CRP, coupled receptor protein; Sig. trans., signal transduction; w., with; d., during.

FIG. 4. Different impact of examples on the models estimated by different supervised methods. Model estimated by the

partially supervised belief-based (A) and by the semi-supervised mixture modeling (B). The plots are as in Figure 1A.
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each dataset, we apply the partially supervised modeling methods and, for comparison, the remaining

mixture modeling methods to find two clusters. The obtained clusterings are validated with the two true

clusters of miR-1 and miR-124 target genes using the adjusted Rand index (see Section 2.5). The examples

are not included in computing the index.

The data from the miR-124 transfection is easier to cluster than the data from the miR-1 transfection (for

miR-124 the clusters are more separated; data not shown). Accordingly, the estimations of the model are

less accurate for the miR-1 transfection data (Fig. 5A, B). As expected (see Section 2.5), in the easier case

of miR-124 transfection, the semi-supervised modeling achieves better results than others. On the contrary,

in the more difficult case of the miR-1 transfection, the semi-supervised method performs worst, and the

partially supervised methods achieve the highest accuracy. The same is observed when randomly chosen

sets of examples are used instead of the computationally predicted ones (Fig. 5C, D).

3.4. Clustering cell cycle gene profiles

Finally, we make use of partially supervised mixture modeling in the task of clustering cell cycle gene

expression profiles (Cho et al., 1998). Based on expression measurements over 17 time points, which cover

two cell cycles, 384 genes fall into five disjoint clusters. Each cluster contains genes peaking at a particular

cell cycle phase: early G1, late G1, S, G2, or M (Cho et al., 1998). Following Yeung et al. (2001), we take

this five-phase criterion as the true clustering of genes in this dataset. For each phase cluster, we take seven

examples of genes known to be active in this phase (first seven listed for that cluster in Table 1 of Cho et al.

[1998], excluding genes active in more than one phase), i.e., all together, 35 examples.

The partially supervised modeling methods, as well as the unsupervised, semi-supervised, and NorDi

(Martinez et al. (2007; see Section 3.2) methods are applied to cluster the 384 genes in a two-step

procedure:

1. Clustering of data from each time point into two clusters. In the data from each time point

t separately, find two clusters, one of which corresponds to the up-regulated genes. Use seven genes

known to be active in the phase corresponding to this time point as examples for the up-regulated

cluster, with belief/plausibility values of 0.95. Similarly, use the remaining 28 examples for the

second cluster of genes that are unchanged or down-regulated. Output the probability pt
g of each gene

g to belong to the cluster of up-regulated genes (the posterior probability for the mixture modeling

methods, and one minus the p-value of differential expression for the NorDi algorithm).

FIG. 5. Improved accuracy of distinguishing miR-1 from miR-124 targets. (A) The adjusted Rand index (x-axis)

indicates whether the different mixture modeling methods (y-axis) clustered the data correctly into true groups of

known miR-1 and miR-124 targets. Analyzed expression data comes from the miR-1 transfection experiment. The

semi-supervised and partially supervised methods utilized 16 computationally predicted examples of miR-1, and 11 of

miR-124 targets. (B) Plot as in A, but for the data obtained under the miR-124 transfection. (C) Box-plots show the

adjusted Rand index distribution (x-axis), obtained by the methods (y-axis) in 1000 tests, where 16 examples were

drawn from all miR-1 targets, and 11 drawn from all miR-124 targets at random, and the data came from miR-1

transfection. (D) Plot as in C, but for the data from miR-124 transfection.
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2. Clustering of genes into five clusters. For each cell cycle phase cluster, construct a binary profile

reflecting the default ‘‘activity’’ of genes from this cluster over the 17 time points. The activity profile

~vvc of a phase cluster c has a value 1 in entry t if genes from this cluster peak in the time point t.

Otherwise, the entries are 0. For each gene g, take the vector of its estimated up-regulation proba-

bilities~ppg¼ (p1
g, . . . , p17

g ) from step 1, and assign g to the cluster with the most similar activity profile.

Formally, we assign gene g to cluster

c� ¼ arg max
c

(~vvT
c ~pgpgþ (1�~vvc)T (1� ~pgpg)),

where 1 denotes a vector of length 17 filled with 1s.

Figure 6 compares the clusterings obtained in the first step by the unsupervised algorithms, to the

clusterings obtained by the belief-based method. The examples help to clearly distinguish patterns of genes

from each phase cycle peaking at their characteristic time points.

Figure 7 shows that all supervised modeling methods, regardless of the parameter initialization, out-

perform the unsupervised methods in clustering the cell cycle gene profiles using the two-step procedure.

For comparison, we applied also a one-step analysis with multidimensional Gaussian mixture modeling

(Yeung et al. (2001), denoted Un(nD)) to separate the entire dataset at once into five clusters. Interestingly,

multidimensional clustering obtained the least accuracy, measured with the adjusted Rand index (see

Section 3.3). Best results are obtained for the two-step procedure, using either belief-based or soft-label

modeling in the first step.

4. DISCUSSION

Mixture modeling is an established technique in machine learning and has proved successful in the field of

gene expression analysis. The two partially supervised methods presented in this article extend mixture

model-based clustering, adding the ability to utilize imprecise examples. In contrast to other mixture mod-

eling methods that incorporate knowledge, both belief-based and soft-label modeling can be customized for

differential expression analysis guided by examples of genes that are believed to be up, down, or unchanged.

The known examples usually constitute only a small subset of all genes and are themselves not 100% certain.

The presented applications show a rich variety of possible knowledge sources for examples: high-throughput

TF-DNA binding experiments, computational predictions of miRNA targets, and literature knowledge of

genes active in different cell cycle phases. The known examples are traditionally used to verify experimental

outcome after it is defined by differential expression analysis. Our methodology incorporates such prior

biological knowledge into the analysis itself, making the outcome more reliable.

FIG. 6. Cell cycle gene clustering. The probability of up-regulation estimated for each cell cycle gene (rows; ordered

by their true cluster labels), in each time-point (columns) by three methods: NorDi, as well as unsupervised and belief-

based mixture modeling, applied to each time point data separately. Belief-based mixture modeling, which uses

examples of up-regulated and of unchanged genes in each time-point (marked in pink and green), achieves most clearly

visible distinct gene expression profiles, characteristic for the five cell cycle phase clusters.
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Our methodology enables confronting available uncertain knowledge with the data. On the one hand, the

partially supervised methods profit from the examples to better cluster the remaining data. On the other

hand, they use the entire data to verify the knowledge about the examples. For instance, the signal in the

data may contradict the prior belief about a gene to be up-regulated in a knockout experiment. Both

partially supervised methods may ‘‘re-cluster’’ the examples with such improbable initial cluster labels. In

this way, they are more flexible than semi-supervised mixture modeling, which assumes that the example

labels are fixed.

The application of the proposed methodology to the problem of differential analysis imposes two natural

restrictions, which could easily be abandoned for the needs of different applications. First, here we analyze

only one-dimensional data, but in general the approach can as well be extended to multidimensional

clustering given examples with imprecise cluster labels. Similarily, we restrict ourselves only to consider

two- or three-component models, although it is common to use tools of model selection to choose out of

models with arbitrary numbers of clusters. Here it is also dictated by the nature of the problem: we assume

the clusters to be interpreted and the known examples to be assigned to each of the clusters. Intuitively, we

expect examples of differential or unchanged genes (two clusters), alternatively, of up-regulated, down-

regulated, or unchanged genes (three clusters). It would be difficult to assign those examples to clusters in a

model with more than three components.
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