
Class. Quantum Grav. 12 (1995) 1517-1533. Printed in the UK 

Crushing singularities in spacetimes with spherical, plane and 
hyperbolic symmetry 

Alan D Rendallt 
Max-Planck-InstiNt fiir Asuophysik, Karl-Schwamchildstr. I ,  Poafach 15'23. 85740 
Garching, Germany 

Received 14 November 1994. in final form 14 March 1995 

Abstract. It is shown thal the initial singularides in spatially compact spacetimes with 
spherical, plane or hyperbolic symmeoy admitting a symmevic compact constant mean curvature 
hypersurface are crushing singularities when the mafter content of spacetime is described by the 
Vlasov equation (collisionless matter) or the wave equation (massless scalar held). In the 
spherically symmelric case it is further shown thal if the spacetime admits a maximal slice then 
there are mushing singularities both in the past and in the future The essential properties of the 
matter models chosen are that their energy-momentum tensors satisfy cenain inequalities and 
thal they do nof develop singularities in a given regular background spacetime. 

PACS numbers: W O D ,  0440 

1. Introduction 

The nature of singularities in general solutions of Einstein's equations is still a matter about 
which very little is known. Up to now the best information obtained on this subject concems 
the singularities in special classes of solutions defined by symmetry assumptions. The hope 
is that the insights obtained in solving these restricted problems will allow the symmetry 
assumptions to be progressively relaxed and so the study of singularities in solutions of the 
Einstein equations with various symmetries can be seen as a systematic approach to the 
general problem of understanding spacetime singularities. The following is intended as a 
contribution in this direction. 

At the moment the study of singularities in solutions of the vacuum Einstein equations 
is significantly further advanced than in the case of the Einstein equations coupled to matter. 
This paper is mainly concerned with non-vacuum spacetimes and helps to redress the balance 
a little. The spacetimes treated have spherical, plane or hyperbolic symmetry and a compact 
Cauchy hypersurface. (The reader wishing to gain some insight into this class of spacetimes 
is referred to appendix B, where the vacuum solutions are determined explicitly.) Some 
of the results are for general matter models which are only restricted by some inequalities 
on the components of the energy-momentum tensor. However, the main results require a 
matter model which is well behaved in a certain sense. Roughly speaking, the matter fields 
should not develop singularities in a given regular spacetime. These results are worked out 
for two particular matter models, namely collisionless matter and the massless scalar field 
(theorems 3.2 and 3.3, respectively). 
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There are some differences between the results for the different symmetry classes. Por 
plane symmetry it is shown that, if the spacetime is the maximal globally hyperbolic 
development of constant mean curvature (cMC) initial data on a compact spacelike 
hypersurface, there exists a foliation of compact hypersurfaces of constant mean curvature 
which covers either the past or the future of the initial hypersurface. If the mean curvature 
of the initial hypersurface is HO then the range of the mean curvature of this foliation 
contains the interval (-CO, Ho] or [Ho, bo), respectively. The analogous result in the case 
of hyperbolic symmetry is proved under the additional assumption that the mass function, 
defined by (2.15), is positive on the initial hypersurface. In the spherically symmetric case 
the results are as follows, If the initial hypersurface is maximal (i.e. its mean curvature 
is zero) then it is shown that the spacetime can be covered by a CMC foliation where this 
time the range of the mean curvature is the whole real line. This should probably be true 
whatever the mean curvature of the initial hypersurface but all that could be shown is that 
there is a foliation by compact CMC hypersurfaces whose range includes all positive real 
numbers or all negative real numbers and this foliation will, in general, not cover the whole 
spacetime. It does, however, cover the part of the spacetime either to the past or to the 
future of the initial hypersurface. All these results are dependent on the choice of a well 
behaved matter model, as indicated above. In the spherically symmetric case they are also 
dependent on the assumption that the topology of the Cauchy hypersurface is Sz x S’ so 
that there is no centre of symmetry. The differences between the various cases are related 
to the fact that while an initially expanding solution with plane or hyperbolic symmetry 
can be expected to expand for ever a spherically symmetric solution can be expected to 
recollapse. 

In [6,7] conjectures were formulated concerning the existence of CMC foliations. The 
results just discussed are closely related to conjecture 2.3 of [7] and conjecture C2 of [6] for 
the class of spacetimes considered here. They show in pariicular that any of these spacetimes 
has a crushing singularity in at least one time direction (and in both time directions if it 
contains a maximal hypersurface). Recall that a crushing singularity is one where there exists 
a foliation on a neighbourhood of the singularity whose mean curvature tends uniformly to 
infinity as the singularity is approached [7]. A difficulty in studying spacetime singularities 
which may exist at the boundary of the maximal Cauchy development is that the definition of 
the maximal Cauchy development is so abstract (Zorn’s lemma is used to show its existence). 
Having a geometrically defined global time coordinate helps to make it more concrete. It 
allows the strong cosmic censorship hypothesis to be reformulated as a question on the 
global existence and asymptotic behaviour of solutions of a system of partial differential 
equations 161. In this sense proving the existence of global CMC foliations in a given class 
of spacetimes is a first step towards proving strong cosmic censorship in this class. It also 
guarantees that a numerical calculation done using a CMC slicing is, in principle, capable of 
covering the whole spacetime. (The possibility of using a CMC slicing for numerical studies 
of cosmological spacetimes has been discussed in [91.) 

The most general results on the existence of CMC foliations in any class of spacetimes 
with compact Cauchy hypersurfaces are due to Isenberg and Moncrief [lo]. They showed 
that Gowdy spacetimes (which are vacuum spacetimes with U(1) x U(1) symmetry) on 
the toms can be foliated globally by constant mean curvature slices. For spacetimes with 
matter less is known. In [13] it was shown that spatially homogeneous spacetimes with 
matter described by the Vlasov equation can be foliated by CMC hypersurfaces with the 
mean curvature ranging either over the whole interval (-w,O) or the whole real line, 
depending on the symmetry type. In [lS] a similar result was obtained for perfect fluids 
and for non-interacting mixtures of perfect fluids. 
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There is another motivation for the work reported in this paper which has not yet 
been mentioned. When investigating the global structure of spacetimes it seems essential 
to introduce some auxiliary elements such as coordinates in order to ‘find one’s way in 
spacetime’. If the spacetimes being studied have symmetry properties then it may be 
advantageous to use elements which exist due to the symmetry. The problem with this, 
from the point of view of the general programme outlined above, is that this approach is 
less likely to produce techniques which can be used beyond the given symmetry type. The 
definition of a CMC hypersurface does not depend on any symmetry assumptions and there 
is at least a chance that global CMC foliations will exist in rather general spacetimes. One 
aim of this work was to see whether it was possible to prove something about the properties 
of singularities working with a CMC foliation from the beginning. This turned out to be the 
case. 

It is plausible that using coordinates adapted to a special symmetry type could be more 
efficient for proving sharper results than CMC slicing. This is confirmed by the fact that 
more precise information about the nature of the singularities in the spacetimes considered 
in this paper has been obtained in certain cases using other coordinate systems. In [ 141 the 
case of a plane symmetric scalar field was studied. It was shown that the initial singularity 
is a curvature singularity and a velocity-dominated singularity in that case. These results 
provide a model for what one would like to do more generally. For the case of collisionless 
matter Rein [I21 has shown that under certain assumptions on the initial data the initial 
singularity is a curvature singularity and possesses some attributes of a velocity-dominated 
singularity. 

2. Analysis of the field equations 

The spacetimes of interest here are defined on manifolds of the form M = Rx SI x F, where 
F is a compact orientable surface. Let p denote the projection of the universal cover onto 
F. Let gmp be a globally hyperbolic metric on M for which each submanifold ( t )  x SI x F is 
a Cauchy hypersurface. The spacetime (M, go#) is called spherically symmetric if F = S2 
and the transformations of M induced by the standard action of SO(3)  on Sz are isometries 
which leave any matter fields invariant. In the case F = T2 the projection p induces a 
projection $ of & = R x S’ x R2 onto M. Let & be the pull-back of gap by $. The 
spacetime is called plane symmetric if F = TZ and if the tranfonnations of A? induced 
by the standard action of the Euclidean group E2 on R2 are isometries which leave (the 
pull-backs of) any matter fields invariant. In the case where the genus of F is greater than 
one can be identified with the hyperbolic plane H2. A projection $ can be defined as in 
the plane symmetric case. The spacetime is said to have hyperbolic symmetry if the genus 
of F is greater than one and the transformations of & = R x SI x HZ induced by the 
action of the connected component of the identity of the isometry group of the hyperbolic 
plane are isometries which leave any matter fields invariant. In the spherically symmetric 
case SO(3) acts on S’ x Sz without fixed points. In other words there are no centres. 
The group SO(3)  also acts on S3 with fixed points and this leads to a different class of 
spherically symmetric spacetimes. This other class will not be considered in this paper and 
so for clarity the spherically symmetric spacetimes considered here will be referred to as 
spherically symmetric spacetimes without centre. It will be convenient to refer to spherically 
symmetric spacetimes without centre and spacetimes with plane and hyperbolic symmetry 
collectively as surface symmetric spacetimes. The surfaces diffeomotphic to F which are 
defined by the product decomposition will be referred to as surfaces of symmetry. 
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Now the Einstein equations for surface symmetric spacetimes will be analysed in a 
certain coordinate system. In order to ensure the existence of such a coordinate system 
it will be assumed that the spacetime possesses a Cauchy hypersurface of constant mean 
curvature which is symmetric, in the sense that it is a union of surfaces of symmetry. 

Lemma 2.1. Let (M,g) be a non-flat surface symmetric spacetime having a symmetric 
constant mean curvature Cauchy hypersurface and satisfying the dominant energy and non- 
negative pressures conditions. Then in a neighbourhood of any point there exist local 
coordinates adapted to the product decomposition R x S' x F such that the metric takes 
the form 

- aZd? + AZ[(dx + Bdt)' + a2dC2].  (2.1 ) 

The functions a, ,9 and A depend on f and x ,  a depends only on f and the metric d E Z  has 
constant curvature E. It may be. assumed without loss of generality that E = 1 for spherical 
symmetry, 6 = 0 for plane symmetry and E = -1 for hyperbolic symmetry. The time 
Coordinate f may be chosen so that the hypersurface where f has a given value has constant 
mean curvature equal to that value. 

Proof See appendix A. 

Remark. As mentioned in appendix A, a CMC hypersurface is automatically symmetric if 
e = 1 or 0. Hence the word 'symmetric' in the statement of this lemma and those of a 
number of other results in this paper is only necessary in the case E = -1. 

The neighbourhood in this lemma may be chosen to be the product /I x 12 x U, where 
I1 and 12 are intervals and U is an open subset of F .  The interval 1, will be denoted by 
(t1, t z )  in the following. By a slight extension of the usual notion of coordinates 12 can 
be taken to be the closed interval [0, Z H ] ,  where it is understood that x = 0 and x = ZH 
are to be identified. The functions a, and A are assumed to be functions which have 
Cm extensions to functions which are 2~-periodic in x .  The coordinates can be chosen 
so that j," p(t ,  x)dx = 0 for each t. The second fundamental form of each hypersurface 
t =constant can be written as 

A2(Kdr2- '(K 2 - f )a2dC2) (2.2) 

for a function K ( t ,  x )  which has the same regularity properties as those demanded of 01, p 
and A above. The Einstein equations will now be written out for the metric (Z.l), making 
use of the variable K defined by (2.2): 

(A'/2)" = -#3//'[3K - $)z - $2 + 16np] + a~A-'/2a-2 

K'+ 3A-'A'K - A-'A't = 8njA 
p = -  a - latu + 4 0 1 ( 3 ~  - t )  

a,a = a[-B' + $ Y ( ~ K  - t ) ]  
a,A = - a K A  + (BA)' 

(2.3) 

(2.5) 
(2.6) 
(2.7) 
(2.8) 

(2.9) 

a"+ A - ~ A ' ~ '  = ~ A ~ [ ; ( K  - ;r)'+ + r a + 4 H ( p  + trs)] - A ~  (2.4) 

a,K = BK'-A-2a"+A-3A'a'+(u[-2A-3A" + 2A-4A'2 + K t  - 8 H S ;  + 4 H t r s  - 4 H p ] .  
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The primes here denote derivatives with respect to x .  Equation (2.3) is the Hamiltonian 
constraint while (2.5) is the momentum constraint. The constant mean curvature condition 
leads to the lapse equation (2.4). Equation (2.6) is a consequence of the choice of spatial 
coordinate condition. Equations (2.7) and (2.8) come from the definition of the second 
fundamental form and (2.9) is the one independent Einstein evolution equation which exists 
in this situation. To give the definition of the matter quantities occurring in (2.9) it is 
convenient to introduce a (locally defined) orthonormal frame. Let eo he the future-pointing 
unit normal to the hypersurfaces of constant t .  Let el be a unit vector tangent to these 
hypersurfaces which is normal to the surfaces of constant f and x .  Com lete eo and e ,  to 
an orthonormal frame by adding vectors e2 and e3. Then p = T.gege{ j = -Ta&e~. 
S! = Tapyef and trS = T&=pef + + eye!). 

Malec and Murchadha [ l l ]  have written the constraints in an altemative form which 
tums out to be very useful in certain circumstances. (In fact they only consider 
the spherically symmetric case but the extension to plane and hyperbolic symmetry is 
straightforward.) They use as fundamental variables the expansions 0 and 6" of the families 
of null geodesics orthogonal to the orbits. F e  prime in 6" is not a derivative.) In terms 
of the above coordinates these are given explicitly by 

0 = 2A-'A'+ K - t 0"= 2A-'A' - K + t . (2.10) 

The sign conventions for e and 8' are those of [ l l ]  but the sign convention for the second 
fundamental form is the opposite of that used in [ l l ] .  The normalization of 0 and 0' 
depends on a choice of Cauchy hypersurface. Equation (2.10) applies to the case where 
the hypersurface chosen is a level surface of the coordinate t .  However, the analysis of 
[ l l ]  applies to any Cauchy hypersurface S compatible with the product decompostion of 
A4 in the sense that it is a union of surfaces of symmetry. The mean curvature of a Cauchy 
hypersurface of this kind will be denoted by H and is in general not constant. Let I be a 
proper length parameter along a curve in S orthogonal to the surfaces of symmetry. When 
expressed in terms of 8 ,  8' and 1 the constraints (2.3) and (2.5) become 

(2.11) 

For the following discussion it is useful to introduce the area radius r = aA. The idea of 
[ l l ]  is to use (2.11) to obtain bounds for the quantities r e  and re'. It is assumed that the 
dominant energy condition holds so that I j l  < p. From equation (2.1 1) 

&(re )  = -8nr(p - j )  - -(BZrZ - 4~ +48Hr2 + er(& - e ? ) )  

af(re') = -8nr(p + j )  - - (e 'ZrZ - 4c - M'Hr' + e'r(e'r - e r ) ) .  

1 
4r 

1 
4r 

(2.12) 

Now consider one particular Cauchy hypersurface S which is a union of surfaces of 
symmetry. Denote the maximum value attained by r0 and re' on this hypersurface by 
M+ and the minimum by M-. Let xo be a point where M+ is attained and suppose without 
loss of generality that B(x0)  > O'(x0). Since x g  is a critical point of re it follows from 
(2.12) that at that point 

@r2 + (4Hr)(@r) - 4~ < 0. (2.13) 
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Working out the roots of the corresponding quadratic equation then shows that 

(2.14) 

The same inequality holds for M-. For each symmetry type this implies that r0 and r6" 
can be bounded in terms of H and r. An important quantity in the following is the mass 
function m which is defined by 

6 - Zm/r = ir200'.  (2.15) 

The boundedness result just obtained shows that the following holds: 

Lemma 2.2. Let (M, g) be a surface symmetric spacetime which is foliated by symmetric 
compact CMC hypersurfaces with the mean curvature varying in a finite interval (t,, t ~ ) .  If 
the dominant energy condition holds and r is bounded then 2 m l r  is bounded. 

There is another formulation of the equations which is also useful. This is based on the 
fact that the field equations can be written as equations on the two-dimensional manifold 
of symmetry orbits. In the following lower case Latin indices take the values 0 and 1 and 
are used to express tensor equations on this quotient manifold. In particular, gob and Tab 
denote the tensors on the quotient manifold naturally related to the spacetime metric and 
the energy-momentum tensor. The equations of importance in the following ate 

(2.16) 

(2.17) 

Note that these equations do not contain 6 explicitly. 
formulation is 

The expression for m in this 

(2.18) 1 m = I r ( ~  - V'rV,r). 

The following is a generalization of an argument of Bumett [2]. 

Lemma 2.3. Let (M, g) be a surface symmetric spacetime and let S be a compact Cauchy 
hypersurface of the form .? x F for a curve 9 in R x S'. Let rdn and r,, denote the 
minimum and maximum values of r on S, respectively. Define R, to be r,,,in, 0 or -r,, 
for E equal to 1, 0 or -1, respectively. Then 2m > R, on S. 
Proof: Let U be the set of x E S where 2m e Re. Then V"r is spacelike on U .  Let s. be 
the projection of the gradient of r onto S. Then 

3'V.m = (Tab - trTg,a)snVbr. (2.19) 

If the dominant energy condition holds then the right-hand side of (2.19) is non-negative. 
Thus on U the mass m increases in the direction in which r increases. Now the restriction 
of r to S cannot have a stationary point in U. This means, in particular, that S\U is non- 
empty. If xo is a point of U then moving from xo in the direction of increasing r leads to 
an increase in m. Eventually a point of the boundary of U must be reached. At that point 
m = Rc/2 .  Thus 2m(xo) < R,. Moving away from xg in the opposite direction gives the 
reverse inequality. Hence 2m = R6 on U .  However, this contradicts the definition of U 
unless U is empty. 
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In the spherical case lemma 2.3 implies that the minimum of 2m on S is greater than 
or equal to the minimum of r there. For plane symmetry it implies that the mass is non- 
negative. The latter conclusion can be strengthened using (2.11) to get a kind of positive 
mass theorem. 

Lemma 2.4. Let ( M ,  g) be a plane symmetric spacetime which satisfies the dominant energy 
condition. Then if m = 0 at any point the spacetime is flat. 

ProoJ Consider any compact Cauchy hypersurface S of the form 3 x F .  If m vanishes at 
some point xg of S then (for E = 0) either 0 or 8' must vanish there. Suppose without loss 
of generality that it is 8. Equation (2.1 1) gives 

ale = - ( H  + - sa(p - j ) .  (2.20) 

This equation is similar to one which l i s e s  in a similar context for Gowdy spacetimes [SI 
and can be treated in exactly the same way. In fact if I is an arc length parameter which is 
zero at xg  then the solution of (2.20) is 

e(l)  = -8n (p  - j)(u)exp ( -H - @)(u)dv du.  (2.21) l [l I 
From this formula it is clear that 8 is everywhere non-positive and that it can only become 
zero for some positive I if p - j vanishes identically on the interval [0, I ] .  In that case 0 
also vanishes on that interval. Since 0(f) is a periodic function it follows that it must be 
identically zero and that p = j everywhere on S. The mass is also zero on S. When 8 is 
zero the rate of change of r along 3 is given by 8'. Since the restriction of r to 3 must 
have a critical point somewhere, 0' must vanish somewhere. Applying to 0' the argument 
previously applied to 0 shows that 0' = 0 and that p = j = 0. By the dominant energy 
condition p = 0 implies the vanishing of the whole energy-momentum tensor on S. When 
the dominant energy condition holds the vanishing of the energy-momentum tensor on a 
Cauchy hypersurface implies that it vanishes everywhere. Thus the spacetime is a vacuum. 
This in turn implies that m is zero on the whole spacetime. It follows that 0 and 8' are 
identically zero and that r is constant. In vacuum the Gaussian curvature of the metric gab 
is K = r-' Ar and so in the present case K = 0 and gob is flat. It is easily seen that this 
and the constancy of r imply that the spacetime is flat. 

In the case of hyperbolic symmetry the following analogue of lemma 2.4 holds. 

Lemma 2.5. Let (M,g) be a spacetime with hyperbolic symmetry which satisfies the 
dominant energy condition. Then V"r is timelike. 

Proof: V'r must be timelike somewhere on a symmetric Cauchy surface, as shown in the 
proof of lemma 2.3. Hence it suffices to show that VarVnr never vanishes. This follows 
immediately from the analogue of (2.21). 

Non-flat spacetimes with plane symmetry and all spacetimes with hyperbolic symmetry 
have the property that the gradient of r is either everywhere past-pointing timelike or 
everywhere future-pointing timelike. Spacetimes where the first possibility is realized may 
be called 'expanding' models those where the second is realized 'contracting' models. This 
terminology is justified by the following considerations. If the gradient of r is past-pointing 
then 8 is positive and 6" is negative. From equation (2.10) it then follows that t < K 
everywhere. I f f  were non-negative then this would mean that li(l was everywhere greater 
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than 1 1 1 .  However, this is inconsistent with the existence of a compact CMC hypersurface, 
as can be seen by integrating the Hamiltonian constraint (2.3). Thus if the gradient of r is 
past-pointing in a region foliated by compact CMC hypersurfaces then r must be negative. 
Similarly, if the gradient of r is future-pointing, t must be positive. By possibly replacing r 
by -f it can be assumed without loss of generality that the model is expanding, i.e. that the 
r increases monotonically with r along any causal curve. In that case r < 0 in the whole 
spacetime so that fl < 0. In this case it will be assumed that in fact tz < 0. 

The information obtained so far in this section implies bounds for various geometrical 
quantities in a surface symmebic spacetime without centre defined on a finite time interval 
( 1 1 ,  t z ) .  Now as many other quantities as possible will be bounded. Suppose that the 
energy-momentum tensor satisfies the non-negative pressures condition. Then equation 
(2.17) implies that when V.r is timelike the rates of change of r and m along an integral 
curve of Var have opposite signs. It follows that in the cases E = 0 and E = -1 the radius r 
is bounded below by a positive constant and the mass bounded above on the interval ( f 3 , f 2 )  
while the radius is bounded above and the mass bounded below on the interval (rl, f 3 ) ,  

where 13 is any time with f l  < t3 < 12. If E = 0 or if E = -1 and it  is assumed that m 
is positive for t = r3 then the mass is bounded below by a positive constant on ( t l , f 3 ) .  In 
the case E = 1 results of Burnett [Z] show that the radius is bounded above and the mass 
bounded below by a positive constant on both these intervals. Using the upper bound for 
2mlr obtained earlier it can be seen that on an interval where the radius is bounded above 
and the mass bounded below by a positive constant the mass is bounded above and the 
radius is bounded away from zero. 

An estimate for the lapse function a can be obtained from (2.4). Considering a point 
where (I attains its maximum and using the fact that p +US 2 0 shows that CY < 3/t2. 
Hence if f l  # 0 and t2 # 0 it  follows that a is bounded on (21, fz). An interval which 
satisfies fI # 0 and fz # 0 and where r is bounded above and m is bounded below by 
a positive constant will be called admissible. The volume of the slice f = constant is 
V ( r )  = C i F  a Z A 3  and its time evolution is given by 

w 
dV/dr = -Ct 1 a a Z A 3 ,  (2.22) 

In the case of an admissible interval this shows that V ( f )  and its inverse are bounded. Now 
V = a-ls,” r3  and so if f l  # 0, f2 # 0 there are positive constants CI and CZ such that 
C ,  < a < Cz and Cl < A < C,. Now integrate (2.3) from 0 to 2 ~ .  This results in the 
inequality 

(2.23) 

which implies that on an admissible interval S F p  is bounded. The dominant energy 
condition then gives bounds for J j and / t r S  The bounds for re  and re‘ now show that 
A‘ and K are bounded on any admissible time interval. Integrating (2.6) over the circle 
allows a, to be bounded and then (2.6) itself gives a bound for 8’. A bound for ,3 can be 
deduced using the condition /,3 = 0. Equation (2.8) gives a bound for A , .  Integrating 
equation (2.4) from a point where a‘ = 0 and using (2.23) provides a bound for a‘. 

Theorem 2.1. Let a solution of the Einstein equations with surface symmetry be given and 
suppose that when coordinates are chosen which cast the metric into the form (2.1) with 
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constant mean curvature time slices the time coordinate takes all values in the finite interval 
( t l ,  f 2 ) .  Further suppose that: 

(i) the dominant energy and non-negative pressures conditions hold 
(ii) neither tl or t~ is zero 
(iii)if E is 0 or 1 then f l  c 0 
(iv)if E = -1 then the mass function is positive on the initial hypersurface. 

Let fs satisfy f l  < t 3  c tz. Then the following quantities are bounded on ( f l ,  t3): 

(2.24) 
(2.25) 

3. The matter fields 

Theorem 2.1 provides some information on the boundedness of certain geometrical quantities 
in a spacetime with spherical, plane or hyperbolic symmetry without any assumptions on the 
matter content except the dominant energy and non-negative pressures conditions. To get 
further bounds and hence to proceed towards showing that the spacetime can be extended 
it is necessaq to use the matter field equations. In the following, two examples will be 
treated, namely the collisionless gas and the massless scalar field. 

The collisionless gas is described by a distribution function f which is a non-negative 
real-valued function on the mass shell. It is supposed to satisfy the Vlasov equation which 
in the class of spacetimes considered here takes the form 

Here the mass shell has been coordinatized using components in an orthonormal kame, 
where the first vector in the spatial frame is proportional to a/ax. The component uo is 
then given by the expression dl + (U')* + (U')' + ( ~ 9 2 .  The upper case Latin indices take 
the values 2 and 3. The distribution function depends on f, x ,  U', u2 and U). In fact the 
symmetry requires that its dependence on the last two quantities is only a dependence on 
the combination (U')' + (us ) * .  This will be assumed for the initial data and is then also 
satisfied by the solution. The initial data is assumed to be compactly supported and then 
the solution has compact support at each fixed time. That the initial value problem for 
the Vlasov-Einstein system is well posed was shown by Choquet-Bruhat [3]. The matter 
quantities occurring in the field equations are given by 

p =  fu'du j =  fu 'du  

Si =/ f(u')'/v0du t r S = s  f[(uo)Z-l]/uodu. 
(3.2) 

s s 
For a solution which evolves from initial data given at t = to let 

P(r) = sup([ul : f ( s , x ,  U) # 0 for some (s,x, U) with s E I )  (3.3) 
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where 1 is the interval [ to,  f ]  if t > to and the interval [ t .  to] if f < to. The maximum of 
f is time independent and so all the matter quantites defined in (3.2) can be bounded by 
C(1 + P(f))4. The quantity P ( r )  itself can be controlled by studying the characteristics of 
(3.1) since this equation says that f is constant along these characteristics. It follows that 
P ( f )  will be bounded on a given interval provided the coefficients in (3.1) are bounded. The 
geometrical quantities which occur in these coefficients are a, A- ' ,  p ,  K and f .  Theorem 
2.1 shows that all of these are bounded on an admissible time interval. Considering a point 
where cr attains its minimum on a given hypersurface t = constant leads to a bound for 
U-', Hence the following is obtained. 

Theorem 3.1. Let a solution of the Vlasov-Einstein system with surface symmehy be given 
and suppose that when coordinates are chosen which cast the metric into the form (2.1) 
with constant mean curvature time slices the time coordinate takes all values in the finite 
interval ( t j ,  t2 ) .  Suppose further that conditions (ii)-(iv) of theorem 2.1 are satisfied, Then 
all the quantities in (2.23) and (2.25) are bounded on ( t l ,  t ~ ) ,  as are P, a-' and 

Notice that while theorem 2.1 is to a large extent independent of the matter model used 
this is not the case for theorem 3.1. It is probable that the analogous statement would be 
false if the collisionless matter was replaced by dust since shell-crossing singularities would 
presumably provide counterexamples. It will now be shown by induction that under the 
hypotheses of theorem 3.1 all derivatives of the solution are bounded. 

Lemma 3.1. If the hypotheses of theorem 2.1 are satisfied and if all derivatives with respect 
to x of order U,: to n of the quantities in (2.24) and (3.4) are bounded then all derivatives 
with respect to x of order up to n + 1 of the quantities in (2.24) are bounded. 

Proofi In the following D, denotes a derivative with respect to x .  Note first that the 
boundedness of the derivatives with respect to x up to order n + 1 of the quantities 01, 

A ,  A - ' ,  a and a-' follows immediately from the hypotheses of the lemma. Equations 
(2.3)-(2.6) can be solved for the quantities A", a", K' and p'. Differentiating the resulting 
equations n times with respect to x allows R + ' ( A ' ) ,  D:+'(a'), D:+'K and D:+'@ to be 
bounded. 

Lemma 3.2. If the hypotheses of lemma 3.1 are satisfied by a solution of the Vlasov-Einstein 
system then all derivatives with respect to x of order up to n + 1 of the quantities in (3.4) 
are bounded. Moreover all derivatives of f of order up to n + 1 with respect to x and U 
are bounded. 

Pro08 The hypotheses imply that the coefficients of the characteristic system are bounded 
together with their derivatives with respect to x up to order n + 1. Differentiating this 
system n + 1 times with respect to x and v gives an inhomogeneous linear system of 
ordinary differential equations for the derivatives of order n t 1 of the unknowns. The 
coefficients of this system are bounded, as long as attention is confined to the support of 
f. Hence these derivatives are bounded on the support of f. It follows from this that the 
derivatives of f up to order n + 1 are bounded. Differentiating (3.2) then gives the desired 
conclusion for the quantities in (3.4). 

Lemma 3.3. If the hypotheses of theorem 2.1 are satisfied by a solution of the Vlasov- 
Einstein system and if all derivatives of the quantities in (2.24) and (3.4) of the form DfD; 
with n arbitrary and k < m are bounded and if all higher derivatives of f with at most m 
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time derivatives are bounded then the derivatives of the form DT+'D: of the quantities in 
(3.4) are bounded. Moreover the higher derivatives o f f  with at most m + 1 time derivatives 
are bounded. 

Proof: Use the Vlasov equation to bound an extra time derivative of f and substitute the 
result into (3.2). 
Lemma 3.4. If the hypotheses of lemma 3.1 are satisfied and if: 

(i) all derivatives of the quantities in (2.24) and (3.4) of the form DfD: with n arbitrary 

(ii) all derivatives of the quantities in (3.4) of the form T + ' D :  are bounded then the 

Proof: The conclusion for a and a-' follows immediately from the assumptions. The 
conclusion for A, A-', A' and K follows from (2.8) and (2.9). Now differentiate (2.4) n 
times with respect to x and m t 1 times with respect to r .  The result is an equation of the 
form 

(D?+'D:(r)" + A-'A'(D;"+'D:rr)' 

and k < m are bounded 

derivatives of the quantities in (2.24) of the form DT+'D: are bounded. 

= A 2 [ 3 ( K  - 4 f ) ' +  ~t2+4?r(P+VS)]D;"+'D:(U+B 

where the remainder term B is bounded. Examining the points where D:*'D:@ has 
maximum modulus gives ID?+'D",(rI < 3A-'B/t2. Next, the equation (2.7), integrated 
with respect to x ,  allows the conclusion to be obtained for a,a. Finally, the conclusion for 
,3 follows from (2.6). 

Putting together the conclusions of theorem 3.1 and lemmas 3.1-3.4 we see that under the 
hypotheses of theorem 3.1 all derivatives of all metric coefficients and of the distribution 
function are bounded. 

When all the derivatives of the solution are bounded on a given interval, it can be 
extended smoothly to the closure of that interval. This results in a new initial data set 
and applying the local existence and uniqueness result discussed in appendix A gives an 
extension of the solution to an interval which strictly contains the original one. Thus we 
have the following theorem. 
Theorem 3.2. Let (M,  g, f )  be a Cm solution of the Vlasov-Einstein system with surface 
symmetry which is the maximal globally hyperbolic development of data given on a 
symmetric hypersurface of constant mean curvature Ho. Then: 
(i) If t = 1 and Ho = 0 then the whole spacetime can be covered by a foliation of CMC 

hypersurfaces where the mean curvature takes all real values. 
(ii) If 6 = 1 or 6 = 0 and HO c 0 then the part of the spacetime to the past of the 

initial hypersurface can be covered by a foliation of CMC hypersurfaces where the mean 
curvature takes all values in the interval (-CO, Ha]. 

(iii)If 6 = -1, Ho < 0 and the mass function is positive on the initial hypersurface then 
the part of the spacetime to the past of the initial hypersurface can be covered by a 
foliation of CMC hypersurfaces where the mean curvature takes all values in the interval 
(-CO, Hol. 
Now another example, the massless scalar field, will be discussed. The massless scalar 

field is described by a real-valued function $ satisfying V,Va$ = 0. The energy-momentum 
tensor is 

Tap = V,$Vp$ - ;(vYw$)g,p. (3.5) 
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The dominant energy condition is satisfied but the non-negative pressures condition does 
not hold for a general 4. Hence theorem 2.1 does not apply to this case. However, as 
has been remarked by Bumett [Z], it is true that Tapxuxfi > 0 for spacelike vectors xu 
orthogonal to the surfaces of symmetry and it turns out that this fact and the condition that 
p + tr S > 0 are the only ones which are needed in the proof of the theorem. They are 
satisfied by the scalar field (see below). There is also a potential problem with applying the 
analysis of appendix A in this case, since there the non-negative pressures condition was 
also used. It was needed for the argument using the implicit function theorem but only in 
the case that the initial hypersurface is maximal. Hence the analogue of theorem 2.1 holds 
for the scalar field under the extra hypothesis that the interval ( f l ,  fz) does not contain zero. 

To proceed further it is useful to introduce the null vectors 

Let @+ = e+@ and @- = e - @ .  Then the wave equation for @ can be written as 

rue+(@-) = at(@+ + @-) + ( A ' d  + 2aA-'A')(@+ - @-) + d e - ,  e+]@ (3.7) 
rue-(@+) = at(@+ + @-) + (A'a' + &A-'A')(@+ - @-) +.[e+, e-]@. (3.8) 

Now a[e+, e - ]  = b+e+ + b-e-, where the coefficients b+ and b- are polynomials in the 
quantities (2.24) and (2.25). In addition, the definitions of et and e- imply that 

(3.9) 1 a@jat - ga@jax = p ( e +  + e - ) .  

The matter quantities occurring in the field equations are given by 

2 2  2 2  s' 1 - - I +(@: + 6 3  P = $(@+ +@-) j = :(-@+ + @-) 
(3.10) 

trs=$(@++@-)Z+;$J+@- P + t r s = ; ( @ + + @ - ) z .  

Let 

00) = Il@(t)Ilm + l l@+~~~l loa+ II@-(t)Ilm. (3.11) 

The equations (3.7)-(3.9) and the boundedness of the quantities (2.24) and (2.25) imply that 

(3.12) 

Hence @,4+ and @- are bounded on an admissible interval. It then follows from (3.10) that 
the matter quantities in the field equations are bounded. Hence the analogue of Theorem 
3.1 with the Vlasov-Einstein system replaced by the Einstein-scalar system and P replaced 
by Q, holds provided the interval ( t l ,  fz) does not contain zero. 

Lemma 3.5. If the hypotheses of lemma 3.1 are satisfied by a solution of the Einstein-scalar 
system then all derivatives with respect to x of order up to n + 1 of the quantities in (3.4) 
are bounded. Moreover all derivatives of @ of order up to n + 1 and of a,@ up to order n 
with respect to x are bounded. 

0 ( t )  < Q(0) + C[ +(s)ds .  
0 
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Pmof: Note first that the results of lemma 3.1 can be improved slightly by using (2.6) and 
(2.8) to bound the spatid derivatives of order up to order n+ I of the quantities fl’ and &A.  
Next, differentiating the equations (3.7)-(3.9) gives an inhomogeneous linear hyperbolic 
system for D:+l@+, D:+’c$- and D:+’c$ with a bounded right-hand side. This gives the 
desired bounds for derivatives of @. Putting these into (3.10) gives the bounds for the 
components of the energy-momentum tensor. 

Lemma 3.6. If the hypotheses of theorem 2.1 are satisfied by a solution of the Einstein-scalar 
system and if all derivatives of the quantities in (2.24) and (3.4) of the form DfD; with n 
arbitrary and k -$ m are bounded and if all higher derivatives of c$ with at most m + 1 time 
derivatives are bounded then the derivatives of the form Dr+’D: of the quantities in (3.4) 
are bounded. Moreover, the higher derivatives of $ with at most m 4- 2 time derivatives 
are bounded. 

Pmof: This result follows immediately from (3.7H3.9) and (3.10). 

Putting together the analogue of theorem 3.1 for the scalar field and the lemmas 3.1, 3.4, 
3.5 and 3.6, we see that under the hypotheses of the analogue of theorem 3.1 and assuming 
that HO # 0 all derivatives of all metric coefficients and of the scalar field are bounded. 
If HO = 0 then we still get a neighbourhood of the initial hypersurface foliated by CMC 
hypersurfaces, If there exists a hypersurface belonging to this foliation with non-zero mean 
curvature both to the past and to the future of the initial hypersurface then the problem 
of getting bounds is reduced to the case HO # 0. If all the CMC hypersurfaces belonging 
to the foliation which are to the past, say, of the initial hypersurface are maximal then 
the second fundamental form and the Ricci tensor contracted twice with the normal vector 
are both zero on that region. The latter implies that the gradient of c$ is tangent to the 
CMC hypersurfaces. Under these circumstances the wave equation reduces to the Laplace 
equation and 4 must be spatially constant. If @ varied from one spacelike hypersurface to 
the next then Vu# would be timelike, contradicting what has been said already. Hence @ 
is constant, the energy-momentum tensor is zero and the vacuum Einstein equations are 
satisfied. These considerations show that the following analogue of theorem 3.2 holds for 
the scalar field: 

Theorem 3.3. Let (M, g, $) be a Cm solution with surface symmetry of the Einstein 
equations coupled to a massless scalar field which is the maximal globally hyperbolic 
development of data given on a symmebic hypersurface of constant mean curvature Ho. 
Then: 

(i) If 6 = 1 and Ho = 0 then the whole spacetime can be covered by a foliation of CMc 
hypersurfaces where the mean curvature takes all real values. 

(ii) If E = 1 or E = 0 and HO e 0 then the part of the spacetime to the past of the 
initial hypersurface can be covered by a foliation of CMC hypersurfaces where the mean 
curvature takes all values in the interval (-ea, Ho]. 

(iii)If E = -1, If0 e 0 and the mass function is positive on the initial hypersurface then 
the part of the spacetime to the past of the initial hypersurface can be covered by a 
foliation of CMC hypersurfaces where the mean curvature takes all values in the interval 
(--03, Hol. 

Appendix A 

The purpose of this appendix is to prove lemma 2.1 and a local existence and uniqueness 
theorem for (2.3H2.9). Let (M, g,p) be a surface symmetric spacetime, as defined in 
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section 2. Thus, in particular M is of the form R x SI x F. Let M be the universal cover 
of M and let ga@ the pull-back of gap to M. Suppose that (M ,  gap) contains a CMC Cauchy 
hypersurface S. It follows from the fact [IO] that all globally defined Killing vectors must 
be tangential to a compact ChlC hypersurface that a compact CMC Cauchy hypersurface 
S in a spacetime with spherical or plane symmetry is of the form 3 x F. For in that 
case there are enough global Killing vectors to generate the surfaces of symmetry. This 
is not Vue in the case of hyperbolic symmetry. It is a standard fact that a neighbourhood 
of a compact cMC hypersurface can be foliated by compact CMC hypersurfaces unless the 
original hypersurface is such that its second fundamental form vanishes and the Ricci tensor 
contracted twice with the normal vector is zero. Furthermore, the mean curvature of these 
hypersurfaces can be used as a time coordinate in this neighbourhood. Even if this condition 
fails there is still a neighbourhood of the initial hypersurface foliated by CMC hypersurfaces, 
although in that case the mean curvature cannot be used as a time coordinate [I] .  When the 
dominant energy and non-nsgative pressures conditions are satisfied the condition can only 
fail if the spacetime is a vacuum on S. From what was said earlier the CMC hypersurfaces 
must be symmetric in the cases of spherical and plane symmetry. In fact they must also be 
symmetric in the hyperbolic case. To see this note that the existence of these hypersurfaces 
is proved by using the inverse function theorem. However, it is possible to apply the inverse 
function theorem in the class of symmetric deformations of the initial hypersurface (provided 
this initial hypersurface is itself symmetric) and then the CMC hypersurfaces obtained are 
by construction symmetric. Consider now the exceptional case where the spacetime is a 
vacuum and the second fundamental form of the initial hypersurface vanishes. In the cases 
of spherical and hyperbolic symmetry integrating (2.3) from 0 to 271 gives a contradiction. 
In the plane symmetric case the vanishing of the second fundamental form implies that 
spacetime is flat. Hence unless the spacetime is flat the mean curvature can be used as a 
time coordinate f in a neighbourhood of S. The inverse image of I under the projection 
p : fi + M will also be denoted by r ,  

It is elementary to see that the metric gob of the hypersurface r = constant in M can be 
written locally in the form 

A 2 d x 2  + B2 dCZ (A.1) 

where dC2 is a metric of constant curvature. What is less clear is that that this can be done 
globally in such a way that x E [O, 2x1 and the functions A and B are 271-periodic, Consider 
one of the hypersurfaces t = constant in M. Let y be a geodesic in this hypersurface which 
starts orthogonal to one of the group orbits U1 at a point p .  It continues to be orthogonal to 
the orbits. After a finite time it must hit an orbit 0 2  which projects to the same orbit in M 
as 01. Suppose it  meets 0 2  at a point q. Let q‘ be the unique point of 01 which projects 
to the same point of M as q. Any isometry which fixes p must fix q’. It follows in the 
plane and hyperbolic cases that p = q’ and in the spherical case that either p = q’ or p and 
q’ are antipodal points on the sphere. If p = q’ then A and B can be made 2n-pericdic, 
as desired. In the case where the antipodal map occurs the same thing can be arranged by 
allowing x to go twice around the circle. 

Let 
r ”237 7-1 

a = 271 B / A ]  

Then the new coordinate x’ defined by 

XI = a 1% B / A  (A.3) 
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satisfies x(0) = 0 and x ( 2 r r )  = 27r. Define A’ by the relation A’(x’)$(x) = A(x). After 
transforming to the new coordinate and dropping the primes the metric takes the form 

AZ(dxZ +a2 dXz) (A.4) 

where A is a positive function of x with A(0) = A(2ir) and a is a constant. Doing 
this construction on each hypersurface of constant time gives the coordinate system whose 
existence is asserted by lemma 2.1. 

Consider now the question of local existence and uniqueness of solutions of equations 
(2.3)-(2.9) with given initial data on a hypersurface t = constant. In order to have a well- 
posed initial value problem it is necessary to have some matter equations such that the 
resulting Einstein-matter system has a well-posed Cauchy problem in the context of C”’ 
data and solutions. More precisely we assume that the solution of the initial value problem 
for the reduced equations in harmonic coordinates exists and is unique so that the general 
theory of the maximal Cauchy development [41 can be applied. (If it were desired to consider 
gauge theories, where solutions are only unique up to gauge transformations, then some more 
work would be required.) It is not obvious that this theory applies to kinetic theory models, 
where the matter fields are defined on the mass shell rather than on spacetime. However, the 
analogous results do hold in that case 131. An initial data set consists of periodic functions 
A and K, a constant a and matter data which satisfy the constraint equations (2.3) and (2.5). 
The matter data are assumed to have the necessary symmetry properties. These properties 
are most easily expressed on the covering manifold. The data set on the covering manifold 
has a maximal Cauchy development on the manifold M. The maximal Cauchy development 
inherits the symmetries of the data and so the original initial data set has a surface symmetric 
Cauchy development. In this surface symmetric spacetime coordinates can be introduced 
as above. Thus a solution of (2.3H2.9) (and the matter equations) on some interval (fl, f2) 
is obtained. It remains to show that solutions of these equations are uniquely deterkined 
by initial data. Suppose there exist two solutions with the same initial data on the interval 
( t l ,  t z ) .  Then by the general theory of the Cauchy problem there must exist embeddings 

and $2 of M into the maximal Cauchy development of the given initial data set such 
that $1 is a matter-preserving isomehy for the first solution and $z a matter-preserving 
isometry for the second. The uniqueness of compact constant mean curvature hypersurfaces 
implies that the images of any hypersurface of constant t under and $2 are identical. 
In particular, this means that the images of M under and $2 are identical, so that there 
exists a diffeomorphism $12 : M + M such that $1 = $12 o 4. The diffeomorphism 
$12 maps the one solution into the other and preserves the hypersurfaces of constant time. 
Suppose temporarily that the initial data do not have Robertson-Walker symmetry. Then a 
unique two-plane is defined by the isotropy group of the universal cover. This plane must 
be preserved by $12 as must its orthogonal complement. Thus, if $12 is written in terms 
of coordinates adapted to the first metric in the form ( t ,  x ,  y) H (t‘, x’, y’ ) .  Then t‘ = r 
and y’ depends only on t and y .  By composing with an isometry it  can be reduced to the 
identity on the initial hypersurface. The form of the shift vector then implies that it is the 
identity everywhere. In a given spacetime the coordinate x is defined up to a translation. 
Hence x’ = x t c and since $12 is the identity on the initial hypersurface it follows that the 
two solutions are identical. In the case where the data have Robertson-Walker symmetry 
the solutions must have Robertson-Walker symmetry and in that case uniqueness for the 
reduced equations is obvious. 
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Appendix B 

In this appendix the vacuum solutions with the symmeay properties considered in this paper 
will be determined. This is done using the following lemma: 

Lemma B.Z. Consider the ordinary differential equation d2u/d.r2 = f(u). where f : 
(0, CO) + R is Lipschitz. Suppose that f(u0) = 0 for some UO, f (u)  < 0 for 0 < U < uo 
and f (u)  > 0 for U > UO. Then any periodic solution is constant. 

Proof: Let U be a periodic solution. By periodicity there exists a point xo where d2u/dx2 
vanishes. At that point U = ug.  If du/dr(xo) is positive then it is easy to show that 
du/dx remains positive for x > xo, contradicting periodicity. Similarly the assumption 
du/dx(xo) < 0 leads to a contradiction. Hence, in fact, du/dx(xo) = 0. By uniqueness for 
solutions of the ordinary differential equation it follows that U is constant. 

Now consider vacuum solutions of (2.3H2.9). The momentum constraint can be 
solved explicitly, giving K - f t  = CA-3 for some constant C. Substituting this into 
the Hamiltonian constraint gives 

( A  112 1 11 - - -AC2A-l/2 16 + & , 2 ~ 5 / 2  + 16,-2,4-112, 4 (B.1) 

It can be checked straightforwardly that this ordinary differential equation for A’ /2  satifies 
the hypotheses of the lemma and so A is constant. Then the same lemma may be applied to 
the lapse equation to show that ci is constant. The constancy of A implies that of K and the 
equation for p then gives p = 0. Hence every vacuum solution of (2.3)-(2.9) is spatially 
homogeneous. These solutions will now be identified with known exact solutions. This 
will be done by examining the Cauchy data on one spacelike hypersuface. Suppose that 
constants f ,  a and K are given and satisfy the following sign condition, which is necessary 
for *e constraints to have a solution: 

(i) if e = 1 then $ ( K  - it)’- j t’  > 0; 
(ii) if 6 = o then Y ( K  - it)* - $9 = 0; 
(iiilif c = -1  then $(K - 

Suppose that f = 0. Then the sign condition is incompatible with E = -1. It is only 
compatible with E = 0 if K = 0. In that case the data give rise to flat space, identified in 
a simple way. If e = 1 then the Hamiltonian constraint can be solved for A in terms of a 
and K .  For t # 0 the sign condition can readily be analysed by dividing the expression of 
interest by t 2  and studying the resulting quadratic expression in K / t .  

The case E = 0 is the simplest. There are two possible values for K / t ,  namely -+ and 
1. These solutions of the constraints can be realized by the r = constant hypersurfaces in 
the Kasner solution 

3 

- 2 t2  3 < 0. 

- drZ + b2r2p dx2 + r’-p(dy2 + dz2) (B.2) 

where p = -f or p = 1 and b is a positive constant. In the case E = 1 the quantity K / t  
takes all values in the intervals (-CO, - f )  and ( I ,  CO) and these solutions of the constraints 
can be realized by the r = constant hypersurfaces in the following metric, which is obtained 
by identifying the part of the Schwmchild solution inside the horizon: 

- (2m/r - l)-’  dr2  + b2(2m/r - l )dx2 + r 2 d C 2 .  (B.3) 
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Here dC2 is the standard metric on the sphere. Similarly, the solutions with E = -1  
produce all values of K j t  in the interval ( -4.1) and these solutions of the constraints 
can be realized by the 5 = constant hypersurfaces in the following pseudo-Schwarzschild 
metric: 

- (2m/r + I)-' dr2 + b2(2m/r + 1) dr2 + r 2 d C Z .  03.4) 

In this case dC2 is a metric of constant negative curvature on a compact manifold obtained 
by identifying the hyperbolic plane by means of a discrete group of isomenies. The general 
theorems proved in this paper imply, in particular, that for m > 0 the initial singularity in 
this solution, which occurs at t = 0 is a crushing singularity. It is worth remarking that for 
m < 0 the initial singularity, which occurs at I = -2m is also crushing, even through the 
theorems do not apply. 
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