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Abstract

It is shown that the Mott insulating and superfluid phases of bosons in an optical lattice
may be distinguished by a non-local ’parity order parameter’ which is directly accessible
via single site resolution imaging. In one dimension, the lattice Bose model is dual to
a classical interface roughening problem. We use known exact results from the latter to
prove that the parity order parameter exhibits long range order in the Mott insulating
phase, consistent with recent experiments by Endres et al. [Science 334, 200 (2011)]. In
two spatial dimensions, the parity order parameter can be expressed in terms of an equal
time Wilson loop of a non-trivial U(1) gauge theory in 2 + 1 dimensions which exhibits
a transition between a Coulomb and a confining phase. The negative logarithm of the
parity order parameter obeys a perimeter law in the Mott insulator and is enhanced by
a logarithmic factor in the superfluid.
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1. Introduction

A central assumption underlying both classical and quantum physics is that its basic
laws are local, i.e., that the fundamental equations can be expressed in terms of relations
between physical observables at a given point in space and time [1]. Symmetries and
different types of order are thus related to the behavior of correlation functions of local
observables. In particular, a qualitative change in macroscopic properties is typically
associated with the appearance of long range order in some local observable Ô(x). Its
two-point correlation

〈Ô(x)Ô(y)〉 → O2(∞) 6= 0 (1)

thus approaches a finite constant as |x − y| goes to infinity. In recent years, a lot of
interest has focussed on systems where this standard characterization of different phases
of matter by finite values of some local order parameter Ô(x) fails. This is the case, e.g.,
in the Quantum Hall Effect, a paradigmatic example of a topological insulator. It is an
incompressible state described by a Chern-Simons theory which has gapless excitations
associated with chiral edge currents [2, 3].

∗Corresponding author, phone +49 89 289 12365, fax +49 89 289 12638
Email addresses: steffen.rath@ph.tum.de (Steffen Patrick Rath), zwerger@ph.tum.de (Wilhelm

Zwerger)
Preprint submitted to Elsevier June 4, 2018

ar
X

iv
:1

30
2.

06
93

v2
  [

co
nd

-m
at

.q
ua

nt
-g

as
] 

 2
 M

ay
 2

01
3



Our aim in the present paper is to study non-local orders that may be used to char-
acterize Mott insulating phases of lattice bosons. Quite generally, Mott insulators are
defined by their incompressibility κ = ∂n/∂µ ≡ 0, a response function that is not as-
sociated with long range order in any local observable Ô(x). Specifically, we focus on
Mott insulators which do not break any lattice symmetries due to, for instance, the
formation of a commensurate charge density wave [4] or due to Neel order in the spin
degrees of freedom, as happens in Mott-Heisenberg insulators [5] realized in undoped
high-temperature superconductors [6]. To investigate possible non-local orders that may
exist in otherwise featureless Mott insulators, the particular case of bosons in an optical
lattice is of special interest. By a simple change of the lattice depth, they may be tuned
to undergo a superfluid (SF) to Mott insulator (MI) transition [7]. Moreover, thanks
to the direct accessibility of the atomic distribution by optical imaging methods which
allow measuring in situ density distributions [8] and even arbitrary density correlations
at the single-atom level [9, 10], they also provide a new perspective on the microscopic
details of the involved states. The question of whether some non-local order exists in the
MI phase of bosons in an optical lattice has been addressed before by Berg et al. [11]
in the particular case of one dimension. While their main focus has been the study of
hidden ’string-order’ that appears in the presence of repulsive interactions of finite range,
they have shown via Bosonization that even in the much simpler situation of pure on-site
repulsion, there is a non-local observable which takes finite values in the MI and is zero
in the SF. Using single site imaging, the associated ’parity order parameter’ (POP) has
been measured by Endres et al. [12]. For lengths of up to eight lattice spacings their
results were consistent with the theoretical expectation of a non-vanishing parity order
in the MI and an algebraic decay to zero in the superfluid phase.

Our aim in the following is a detailed study of parity order in d = 1 and also in
d = 2 dimensions using duality transformations. Specifically, in d = 1, a number of
exact results for the parity order parameter are obtained from a systematic expansion
around the atomic limit and from analytical results for the roughening transition of the
equivalent classical interface model in two dimensions [13, 14, 15]. In the d = 2 case, the
lattice bosons are dual to a three-dimensional U(1) lattice gauge theory. This mapping
has first been discussed by Peskin [16] starting from the classical three-dimensional XY
model and has been extended to the two-dimensional quantum XY model by Fisher
and Lee [17]. As will be shown here, the parity order parameter is mapped in the dual
model on a quantity which is ’more local by one dimension’: in d = 1, it is mapped on
a two-point correlation function for a local operator of the type in Eq. (1) which shows
an algebraic decay in the SF phase and converges to a constant in the MI. In the d = 2
case, the POP is mapped onto an equal time Wilson loop in the dual gauge theory,
which serves to distinguish the superfluid and Mott insulating phases according to the
dependence on the system size L. In particular, we find a perimeter law dependence in
the MI phase which leads to an exponential decay of the POP while in the SF phase a
logarithmic correction to the perimeter law leads to a super-exponential decay.

2. Bose-Hubbard Model and Parity Order

Ultracold bosons in an optical lattice provide a realization of the Bose-Hubbard model,
as suggested theoretically by Jaksch et al. [18] and first realized experimentally by Greiner
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et al. [7]. The associated many-body Hamiltonian [19]

ĤBH = −J
∑
〈i,j〉

â†i âj +
U

2

∑
i

n̂i (n̂i − 1) , (2)

describes the competition between a kinetic energy which involves hopping to nearest
neighbor lattice sites with amplitude J > 0 and an on-site repulsive interaction U > 0
which leads to an increase in energy if atoms hop to sites which are already occupied.
Specifically, the operator âi destroys a boson in a single particle Wannier state localized
at lattice site i and the associated occupation number operator n̂i = â†i âi has eigenvalues
0, 1, 2, . . . . We consider this model in both one and two spatial dimensions, specializing
to the case of a simple quadratic lattice in the latter case. In either dimension, the ground
state of the Bose Hubbard model exhibits a continuous transition between a superfluid
and a Mott insulating state which may be tuned either by changing the ratio J/U at
fixed density or by changing density at fixed J/U via the dimensionless chemical potential
µ/U [19]. The universality class of this quantum phase transition is different in both
cases. For the density driven Mott transition, the associated dynamical scaling exponent
is z = 2 [20]. By contrast, changing the ratio J/U at fixed integer density n̄ = 1, 2, . . .,
the transition at the tip of the Mott lobes has z = 1, i.e., it is described by an O(2)-model
in D = d + 1 dimensions which possesses a formal relativistic invariance [20]. It is this
type of transition which will be considered in the following.

The superfluid phase of the Bose Hubbard model is characterized by a conventional,
local observable Ô(x) = âi associated with long range order in the one-particle density
matrix, with O2(∞) ≡ n0 as the condensate density1. This order can be observed in
a direct manner in time-of-flight images [7], which measure the momentum distribution
as the Fourier transform of the one particle density matrix [21]. The excellent quantita-
tive agreement between the measured absorption images after time-of-flight and precise
quantum Monte Carlo calculations which include both the effects of finite temperature
and the harmonic trap potential [22], shows that the Bose-Hubbard Hamiltonian (2)
provides a faithful description of cold atoms in an optical lattice. In the Mott insulating
phase, the correlation function of the local bosonic field operator vanishes exponentially
like 〈â†(x)â(0)〉 ∼ exp(−|x|/ξ) with a correlation length ξ ∼ 1/∆ that diverges like the
inverse of the Mott gap ∆. The Mott phase is characterized by its incompressibility
and has no associated order parameter, evolving in a continuous manner from a ther-
mally disordered state as the temperature is lowered below the Mott gap ∆. Note that
the observation of peaks in the noise correlations 〈n̂(x)n̂(x′)〉 in the Mott phase after
time–of–flight by Fölling et al. [23] does not reflect any long range order: they are a con-
sequence of the fact that the Fourier components

∑
R nR exp[i(k−k′) ·R] of the average

density nR = 〈n̂R〉 are of order N at wave vector differences k − k′ = m(x − x′)/~t
which are equal to a reciprocal lattice vector G.

As will be discussed in the following, the fundamental difference between the super-
fluid and Mott insulating phase in terms of their compressibility implies that there is

1This would not be true if the bosons were charged as, e.g., the Cooper pairs of a conventional
superconductor, where the role of Ô(x) is expected to be taken by the bi-Fermion operator ψ̂↑ ψ̂↓ (x).
The associated correlation function 〈Ô†(x)Ô(y)〉, however, is not gauge invariant and therefore does not
constitute a proper order parameter, as noted by Wen [2].
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a non-local observable which behaves in a characteristically different manner in both
phases. By a straightforward generalization of the parity order in 1d introduced by Berg
et al. [11], the non-local order is defined as

〈O2(D)〉 =
〈
eiπ

∑
i∈D(n̂i−n̄)

〉
=

〈∏
i∈D

(−1)n̄p̂i

〉
, (3)

where D is a spatial domain, i.e., an interval in d = 1 and an area in d = 2, and
p̂i = (−1)n̂i is the parity operator on lattice site i. There are two important proper-
ties of this observable which should be noted right away: First of all, the observable is
easily accessible in experiments since, due to light-induced collision losses, quantum gas
microscopes directly measure the on-site parity rather than the actual occupation num-
bers [10, 9]. As a second point, the observable must be calculated and measured in an
open domain D which is part of a larger system, otherwise 〈O2(D)〉 ≡ 1 would trivially
be equal to one due to conservation of particle number. To study the dependence on the
size, we shall characterize the domain D by its linear extension L measured in units of
the lattice spacing. In analogy to the standard definition (1) of long range order, the
parity order parameter (POP) 〈O2(L)〉 exhibits long range order if 〈O2(∞)〉 is finite.

This kind of order parameter is analogous to those studied in Ising models with a
local gauge invariance, which have no conventional phase transitions to states with long
range order, yet may exhibit different phases distinguished by non-local order parameters
[24, 25, 26] (see also section 8). In the context of cold atoms, a more complicated ’string
order’ parameter was introduced, which characterizes a Haldane insulator that can form
in one dimensional systems with longer range interactions [27]. Our focus is on the
behavior of the parity order parameter at the conventional SF–MI transition, not only in
1d [11, 12] but also in 2d. In particular, we will use a duality transformation to show that
in two dimensions parity order is related to an equal time Wilson loop in a non-trivial
U(1) gauge theory which exhibits different behavior as a function of system size L in the
MI and SF phases.

3. Number fluctuations and area law

To obtain a qualitative understanding of the dependence of the non-local order defined
in (3) on the size L of the domain we start by giving some qualitative arguments for the
expected scaling behavior deep in the MI, where J/U � 1. Starting with the atomic
limit, it is obvious that 〈O2(L)〉|J=0 = 1 in any dimension since particle fluctuations
are then completely frozen. For small but finite J/U and for the simple case of a MI
with average density n̄ = 1, particle number fluctuations appear as pairs of empty and
doubly occupied sites. Now, for an arbitrary number of pairs which are completely
inside the domain D, the associated two minus signs in the product in Eq. (3) cancel.
Only those pairs which are separated by the domain boundary lead to a reduction of
〈O2(L)〉 [12]. Intuitively one thus expects the parity order 〈O2(L)〉 ∼ exp(−Ld−1) to
scale exponentially with the area of the domain’s boundary. This intuitive expectation
is supported by a systematic perturbative calculation in an expansion around the atomic
limit J/U = 0 which—as will be shown in section 4 below—yields

〈O2(L)〉 = 1− 8n̄(n̄+ 1)dLd−1

(
J

U

)2

+ · · · (4)
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Figure 1: (Color online) Illustration of how the order parameter is reduced from unity for d = 2. The
grid lines indicate the lattice, bosons are represented by small circles. The domain D, here taken to
be a square, is shaded in gray. The minus signs from pairs which are completely inside or outside the
domain (yellow ellipses) cancel out so that there is no contribution while pairs which are separated by
the domain boundary (red ellipse) contribute a minus sign which leads to a reduction of 〈O2(L)〉.

up to second order in J/U � 1. Clearly the expansion is well defined only in d = 1,
while in higher dimensions the effective expansion parameter (J/U)2 Ld−1 is small only
up to system sizes of order (U/J)2/(d−1).

Further insight into the origin of the perimeter law for the decay of the parity order
can be gained by assuming that the expectation value in (3) may be calculated within a
Gaussian approximation such that

〈O2(L)〉 ≈ e〈(iπ
∑
i∈D δn̂i)

2〉/2 = e−π
2〈δN̂2〉/2 , (5)

where δn̂i = n̂i − n̄. Within this approximation, − ln〈O2(L)〉 is simply a measure of the
total number fluctuations 〈δN̂2〉 in a domain of size L as part of an infinite system. Now,
the standard thermodynamic relation 〈δN̂2〉 = kBT ∂N(µ)/∂µ in this effectively grand
canonical situation seems to indicate that these fluctuations vanish at zero temperature
which would imply a trivial result 〈O2(L)〉 ≡ 1 in the Gaussian approximation. This
is not true, however, because the relation only applies in the thermodynamic limit and
neglects boundary terms. For a careful calculation of 〈δN̂2〉 at zero temperature and in a
finite system, we generalize the analysis of Giorgini et al. ([28], see also [29, 30]) for Bose
gases in a d = 3 continuum to arbitrary dimensions. The particle number fluctuations

〈δN̂2〉 = Sd

∫ 2L

0

dr rd−1τ(r)n̄ν(r) , (6)

in a spherical domain of radius L can then be calculated from the pair distribution
function

ν(r) = δ(r) + n
(
g(2)(r)− 1

)
=

∫
ddq

(2π)2
eiq·rS(q) (7)
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and the volume τ(r) of the intersection between two d-dimensional balls of radius L
separated by the distance r. Here, Sd is the surface of a unit sphere in d dimensions
while S(q) is the standard static structure factor.

In the superfluid, the zero temperature static structure factor has the non-analytic
behavior S(q) ' α|q| at small wave numbers, characteristic for any compressible phase.
Since collective excitations exhaust the f sum rule for long wavelengths, the prefactor
α = ~/2mcs is, moreover, completely fixed by the exact sound velocity cs. As a result of
the non-analytic behavior of S(q), the associated pair distribution function exhibits an
algebraic decay ν(r) ' −α/πr2 in d = 1 and ν(r) ' −α/2πr3 in d = 2 at long distances.
The behavior of the number fluctuations for large L is then found to be

〈δN2〉 ∼ αn̄Ld−1 ln(L/ξh) (SF) , (8)

where the effective healing length ξh = ~/mcs serves as a short-distance cutoff. Within
the Gaussian approximation, therefore, the parity order

〈O2(L)〉 ∼

{
L−παn̄ (d = 1)

L−π
2αn̄L (d = 2)

(SF) (9)

decays to zero with a power law in the superfluid phase in one dimension while in two
dimensions, the decay is super-exponential.

In the MI phase, the quadratic number fluctuations are much smaller and the scaling
of 〈δN2〉 with system size L differs in a qualitative manner from that in the SF. Indeed, at
zero temperature, incompressibility of the MI implies that the structure factor vanishes
analytically for q → 0 and thus S(q) = γ(qξ)2 + · · · to leading order in an expansion
around q = 0. Here, ξ is the characteristic length of the exponential decay of the
one-particle density matrix mentioned in the previous section, while γ is a numerical
constant which relates the scales appearing in the density correlation and in the one-
particle density matrix. From perturbation theory, one finds that in one dimension γ is
proportional to (J/U)2 to leading order [31].

Since the static structure factor is analytic around q = 0, the pair correlation function
ν(r) decays exponentially on the characteristic scale ξ, effectively cutting off the integral
in Eq. (6). As a result, one finds that

〈δN2〉 → bLd−1 (MI) (10)

scales like the area of the boundary of the domain with a coefficient b = b0γn̄ξ, where
b0 is a numerical constant depending on the geometry and the precise functional form of
ν(r/ξ).

The results obtained within this Gaussian approximation are—of course—not exact.
Yet, as will be shown in sections 6 and 7 below, they give the correct qualitative behavior
of the parity order parameter as a function of the size L of the domain. On a basic
level, therefore, the different behavior of the non-local parity order in the MI and the
SF is a simple consequence of the fundamental difference between number fluctuations
in an incompressible versus a compressible system [32, 33]. In this context, it is also
instructive to note that the underlying scaling 〈δN2〉 ∼ αn̄Ld−1 ln(L/ξ) of the number
fluctuations in the compressible and gapless superfluid compared to 〈δN2〉 ∼ Ld−1 in the
incompressible and gapped MI are reminiscent of similar results obtained for the scaling
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of the entanglement entropy S(L). The fact that the fluctations of conserved quantities
are closely related to the latter, exhibiting a simple area law for gapped phases, has
been noted by Swingle and Senthil [34]. There are, however, a number of important
differences: the entanglement entropy typically scales like S(L) = b Ld−1 with a non-
universal prefactor b even in gapless phases while the corresponding number fluctuations
〈δN2〉 have an additional logarithmic enhancement factor for any phase with a finite
compressibility. For the entanglement entropy, violations of the area law by a logarithmic
factor of the form S(L) ∼ Ld−1 ln(L) appear, e.g., in free fermions with a Fermi surface
and also for Landau Fermi liquids, not in a gapless superfluid, however. Indeed, as noted
by Metlitski and Grover [35], its entanglement entropy S(L) = b Ld−1 + ∆S exhibits an
additive—not multiplicative—logarithmic contribution ∆S = ln

(
ρsL

d−1/cs
)
/2 which is

universal, i.e., it only depends on the superfluid stiffness ρs and the sound velocity cs as
effective low energy constants.

The simplicity of the Gaussian approximation for studying the parity order also allows
for a straightforward discussion of how the above results are affected by a finite temper-
ature. For a neutral SF, the structure factor at temperatures kBT � mc2s reads [36]
S(q) ' α|q| coth(cs|q|/2kBT ). The characteristic length scale at which the zero temper-
ature result S(q) ' α|q| is equal to the q = 0 thermal value S(q = 0) = 2kBTα/cs is
therefore given by rT = ~cs/2πkBT = λ2

T /ξh, where λT is the thermal wavelength and
ξh = ~/mcs the effective healing length. Since the parity order effectively probes number
fluctuations at a finite wave vector q ' 2π/L the zero temperature results remain valid
as long as rT � L. Since typical values of the healing length are of order ξh ∼ 1µm, the
characteristic scale of rT becomes larger than a lattice spacing at temperatures below
T ≈ 70 nK.

An equivalent reasoning can be applied in the Mott insulating phase, where the
thermal behavior of the structure factor S(q = 0) = n̄kBTκT involves the compressiblity
κT . For dimensional reasons, the latter must be of the form κT = (n̄∆)−1f(β∆) with
the Mott gap ∆ and a function f(β∆) ∼ e−β∆ which has a thermally activated form.
The zero temperature results are then valid as long as the domain size L satisfies

L . λT ξ

√
m∆

f(β∆)
. (11)

In the interesting regime T � ∆ this is easily satisfied due to the exponential form of
f(β∆). The actual constraint is rather the condition β∆� 1 which becomes increasingly
hard to satisfy as one approaches the critical point.

4. Perturbative analysis in the MI

Deep in the MI, where J/U � 1, exact results for the parity order can be obtained
by a systematic perturbation theory around the atomic limit J = 0 of the Bose-Hubbard
model. Here we make use of a method developed by van Dongen [37], which is an
extension of a formalism due to Harris and Lange [38]. The basic idea is to construct
a canonical transformation of the creation and annihilation operators, â† = eŜ b̂†e−Ŝ

with an anti-hermitian generator Ŝ such that in the new basis, the occupation numbers
and hence the interaction part remain invariant under hopping. Explicitly, one writes
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the Hamiltonian in the form Ĥ = UD̂ + K̂ and defines the hopping term for the new
particles

T̂ = −J
∑
〈i,j〉

b̂†i b̂j ⇔ K̂ = eŜ T̂ e−Ŝ . (12)

The requirement that D̂ is invariant under hopping is obeyed provided it is a constant
of motion, i.e., [Ĥ, D̂] = 0. This condition fixes the transformation Ŝ, which may be
calculated order by order in a systematic expansion

Ŝ =
∑
n≥1

1

Un
Ŝn, (13)

in powers of 1/U . By expanding the exponential and substituting the expansion of the
operator Ŝ, the POP takes the form

〈O2(L)〉 = 1 + e−iπN0

{∑
k

(iπ)
k

k!
〈Φ0|

[
1

U
Ŝ1 +

1

U2
Ŝ2 + · · · ,

(
N̂ (L)

)k]
|Φ0〉

+
∑
k

(iπ)
k

k!
〈Φ0|

1

2!

[
1

U
Ŝ1,

[
1

U
Ŝ1,
(
N̂ (L)

)k]]
|Φ0〉+ · · ·

}
, (14)

where N̂(L) is the total number operator within the domain D and N0 is the eigenvalue
of N̂(L) in the atomic limit ground state |Φ0〉. Since |Φ0〉 is an eigenstate of N̂(L), the
first term in the curly bracket vanishes at all orders. As a consequence, to calculate the
POP at order n in J/U , one needs to determine the operators Ŝ1, . . . , Ŝn−1.

Specifically, substituting Ŝ1 from equation (A.1) (cf. Appendix A) and evaluating
the commutators, one finds the result (4) stated already in section 3. In one dimension,
we have continued the perturbative expansion up to fourth order in J/U . For reasons of
space, the details of this calculation are deferred to Appendix A and we only give the
result here:

〈O2(L)〉 = 1− 8n̄(n̄+ 1)

(
J

U

)2

− 4

9
n̄(n̄+ 1)[n̄(473n̄+ 217)− 234]

(
J

U

)4

+ · · · . (15)

Just as the leading order term, the next-to-leading correction is independent of the
domain size L as long as the latter is larger than the order of perturbation. Hence,
〈O2(L)〉 is independent of L for sufficiently small J/U , in agreement with a DMRG
calculation in [12] where 〈O2(L)〉 was found to be essentially independent of L for J/U .
0.1 for domain sizes ranging from 1 to 60.

5. Duality transformation

In the following, we show that within a reduced description of the SF to MI transition
at fixed density in terms of a quantum rotor model [20], exact results for the parity order
parameter can be obtained from analyzing a (d+ 1)-dimensional classical lattice model.
This is particularly interesting in the d = 2 case where the parity order 〈O2(L)〉 can be
expressed in terms of an equal time Wilson-loop in a nontrivial U(1) gauge field which
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is dual to the original lattice boson model. Our aim is twofold: first of all, unlike the
qualitative arguments presented in section 3, the duality transformation permits us to
derive exact results for the large L behavior of 〈O2(L)〉 in both the MI and SF phases
within one unified framework. From a different point of view, however, the duality of the
lattice boson model to a dynamical gauge field in 2 + 1 dimensions can also be read the
other way, where ultracold atoms in an optical lattice provide a quantum simulator of a
nontrivial lattice gauge theory.

The starting point for the mapping is based on the realization that the SF to MI
transition at fixed density is driven by phase fluctuations only [19]. To isolate these from
the full Bose-Hubbard Hamiltonian, it is convenient to consider the limit of large filling
n̄ � 1, where the boson operators may be rewritten in a density-phase representation,
âj ' eiφ̂j

√
n̄+ δn̂j [19]. In the limit n̄� 1, the number fluctuations δn̂j can be expanded

up to second order and the Bose-Hubbard Hamiltonian is thus transformed into the
Hamiltonian

HJ =
U

2

∑
x

n̂2
x + EJ

∑
x,u

[1− cos(φ̂x+u − φ̂x)] (16)

of a system of quantum rotors at each lattice site x with a discrete eigenvalue spectrum
0,±1,±2, . . . which are coupled to nearest neighbors x + u by a Josephson energy EJ =
2n̄J . (Note that we have redefined δn̂x → n̂x, i.e., n̂x is now the deviation from the
average local occupation number).

Following a standard procedure, the partition function associated with the quantum
rotor model (16) can now be expressed in terms of a path integral by dividing the interval
[0, β] into Nτ subintervals of width ε = β/Nτ . Inserting a complete set of number states
at each step, one thus obtains a discretized path integral representation of the form

ZJ =
∑

nx,j∈Z
〈{nx,1}|e−εĤJ |{nx,2}〉 · · · 〈{nx,Nτ }|e−εĤJ |{nx,1}〉 , (17)

where the notion {nx,j} is a reminder of the fact that—at given j = 1, . . . , Nτ—there
are Nd variables nx,j ∈ Z for x ∈ (1, . . . , N)d that have to be summed over all integers
Z. In the limit ε→ 0, the non-commuting terms in exp(−εĤJ) can be factorized to give

ZJ =
∑

nx,j∈Z

∏
x,j,u

(
e−εUn

2
x,j/2〈{nx,j}|e−εEJ[1−cos(φ̂x+u−φ̂x)]|{nx,j+1}〉

)
. (18)

The matrix elements of the Josephson coupling terms can now be simplified by using the
so called Villain approximation2 [39]

exp{−εEJ[1− cos(φ̂x+u − φ̂x)]} '
∑
mx,u

exp

(
−
m2

x,u

2εEJ
− imx,u(φ̂x+u − φ̂x)

)
. (19)

Since the fundamental symmetry φ→ φ+2π due to the discreteness of the boson number
is retained, this leaves the physics qualitatively unchanged. In one spatial dimension, this

2a constant prefactor in (19) is suppressed because it only gives an irrelevant overall shift of the free
energy.
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approximation introduces one integer mlj per lattice site, in two spatial dimensions, it
introduces two integers mx,j = (mx,x,j ,mx,y,j) at each lattice site.

For each given j, one now uses the fact that∏
x

exp
(
−imx,u,j(φ̂x+u − φ̂u)

)
=
∏
x

exp
(
i(mx,u,j −mx−u,u,j) φ̂x

)
(20)

for a periodic chain with φ̂x+Nu = φ̂x and the identity 〈n′|eimφ̂|n〉 = δn′,n+m since the
operator eimφ̂ shifts the particle number by m. The resulting partition function

ZJ =
∑

nx,j∈Z
mx,u,j∈Z

exp

−εU
2

∑
x,j

n2
x,j −

1

2εEJ

∑
x,u,j

m2
x,u,j

 ∏
x,u,j

δ∇x·mx,j ,−∇τnx,j (21)

has a Gaussian form, however the variables nx,j and mx,j are integer-valued and are
connected by the constraint ∇x ·m+∇τn = 0, where ∇x,τ denotes the discrete derivative
on the dual lattice of links along the physical directions x and the ’time’ direction τ .
Thus, the variables nx,j and mx,j together form a divergenceless (d + 1)-dimensional
integer vector field n ≡ (n,m). In d = 1, this constraint may be resolved by introducing
a single integer field hx,τ such that n = ∇xh and m = −∇τh. The partition function
then becomes that of the discrete Gaussian model with height variable h which describes
the roughening transition of a 2d interface. Moreover, the POP is mapped on a two-point
correlation function of the local variable O(x) = exp(iπh(x)). This model is discussed in
section 6.

In d = 2, the constraint is automatically satisfied if one introduces a three-component
vector potential a such that n = ∇∧ a, where the lattice curl is defined as (∇∧ ax)i =∑
j,k εijk(ax−k̂,k − ax−̂−k̂,k). The partition function then becomes that of a (2 + 1)-

dimensional U(1) gauge theory, as will be discussed in detail in section 7. Remarkably,
under the duality transformation the parity order parameter is mapped onto an equal
time Wilson loop [40]

〈O2(L)〉 =

〈
exp

[
iπ
∑
x∈D

d2x (∇∧ a)τ

]〉
=

〈
exp

[
iπ
∑

x∈∂D

(∆x) · a

]〉
, (22)

where we have used the discrete version of Stokes’s theorem on the last line, ∂D is the
boundary of the domain D and ∆x is a unit vector directed along the boundary in the
positive mathematical sense. The Wilson loop is a gauge-invariant quantity which is
often used to characterize phases in gauge theories [41]. As will be shown in section 7,
in the present case, the transition between a phase with massless and one with massive
’photons’ in the underlying U(1)-gauge theory predicts qualitatively different behavior of
the parity order in the SF and MI phases of the original lattice Boson model, consistent
with the qualitative considerations discussed in section 3.

6. Discrete Gaussian interface model

As shown in the previous section, in the d = 1 case the partition function can be repre-
sented in terms of a single integer h on each lattice site such that (n,m) = (∇xh,−∇τh).
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Choosing ε = 1/U ,3 the resulting partition function

ZDG =
∑
{hlj}

exp

−1

2

∑
l,j

{
(∇xhlj)2 +

U

EJ
(∇τhlj)2

} (23)

defines an anisotropic discrete Gaussian (DG) model for an integer valued height variable
hlj above a two-dimensional, perfectly flat interface hlj ≡ 0 (note that an overall shift
hlj → hlj +Z of this reference plane is irrelevant). This mapping has been used earlier in
the context of the SF-MI transition in one dimension by one of the present authors [42].

The DG model is a classical model which exhibits a phase transition from a smooth
interface in the regime where U dominates to a rough phase in the limit EJ � U . The
smooth phase, which corresponds to the MI in the original quantum rotor model, is
characterized by a finite dimensionless step free energy fs [43] which is related to the
Mott gap ∆µ of the dual model (16) by 2fs = ∆µ/U [42]. The dimensionless step free
energy is a decreasing function of EJ/U and reaches fs ≡ 1/2 at EJ = 0. In this limit
an additional boson is described by a step of unit height which is parallel to the τ axis,
i.e., the boson world lines exhibit no quantum fluctuations.

When EJ/U ∼ 1, the model is essentially isotropic. To render this manifest, it is
convenient to choose ε = 1/

√
EJU so that

ZDG =
∑
{hlj}

exp

−1

2

√
U

EJ

∑
l,j

{
(∇xhlj)2 + (∇τhlj)2

} . (24)

In this representation, the ratio T̃DG =
√
EJ/U of kinetic and interaction energy in

the underlying quantum rotor Hamiltonian (16) plays the role of an effective tempera-
ture. The discrete Gaussian model (24) is known to have a roughening transition of the
Kosterlitz-Thouless type [44] at a critical temperature T̃R ' 0.73. In the smooth phase,
the mean square surface displacement

∆h2(L) = 〈(hlj − hl′j′)2〉 (25)

remains finite as the distance L = |(l, j) − (l′, j′)| between two points on the surface
approaches infinity. By contrast, the rough phase of the discrete Gaussian model at
T̃DG > T̃R is characterized by a logarithmically divergent ∆h2(L) ∼ ln(L).

These results on the discrete Gaussian model, for which the existence of a Kosterlitz-
Thouless transition has been proven rigorously by Fröhlich and Spencer [13], can now
be translated back to understand the nature of non-local order in the original Bose-
Hubbard or quantum rotor model. In particular, the qualitative results that were derived
in section 3 within a Gaussian approximation from considering the number fluctuations
within a domain of linear size L can now be put on a rigorous footing. This relies on the
fact that number fluctuations in the original model of bosons hopping on a lattice are
transformed, via the duality, to fluctuations of the normal vector of the 2d interface by

3Note that the Trotter decomposition in Eq. (17) is usually performed for finite β and thus Nτ =
β/ε→∞ requires ε→ 0. Here we keep ε finite but consider the limit of zero temperature β →∞.
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n = ∇xh. As a result, the nonlocal order parameter defined in Eq. (3) translates into
the characteristic function

〈O2(L)〉 = 〈exp(iπ[h(L)− h(0)])〉 (26)

of the probability distribution p(h, |(l, j)− (l′, j′)|) = 〈δ(hlj − hl′j′ − h)〉 that the height
variables at two sites at a distance L differ by h.

For a detailed understanding of the behavior of the parity order parameter, we can
now use exact results on the classical roughening transition of two-dimensional interfaces.
Specifically, within the smooth phase, Forrester [14] has obtained the exact probability
distribution for the height of a lattice site near the center in the body-centered solid-on
solid (BCSOS) model for fixed boundary conditions and the thermodynamic limit: it
turns out to be a discrete Gaussian distribution p(h) = N e−(h−1/2)2/2σ2

, where N is a
normalization constant, and with σ2 = C/

√
1− T/TR where C =

√
2/ ln 2. The non-

zero expectation of this distribution stems from the fact that in the BCSOS model, one
has to deal with two sublattices where the sites of one take only even values while the
sites of the other take only odd values. Since the outermost sites are fixed at values 0 and
1 (according to the sublattice), the height in the center may equivalently be seen as the
height difference to the border, or, in the thermodynamic limit, as the infinite-distance
limit of this difference. Hence, the characteristic function of this probability distribution
is just the two-point correlation function discussed above within the DG model. Since
the DG and the BCSOS model are in the same universality class, we may conclude that
in the limit of infinite distance, the probability distribution for the height difference
between two points in the DG model equally becomes a discrete Gaussian distribution

p(∆h = n) = N e−n2/2σ2

with4 σ2 = CDG/
√

1− T̃DG/T̃R. Using the Poisson formula,
one then obtains the characteristic function∑

n∈Z
p(n)eikn =

√
2πσ2∑

n∈Z e
−n2/2σ2

∑
m∈Z

e−σ
2(k−2πm)2/2 , (27)

i.e., the characteristic function is a periodic sum of Gaussians centered on 0,±2π,±4π, . . . .
The prefactor is just the ratio of the normalization constants of the continuous and the
discrete Gaussian distribution and tends to unity for σ2 � 1. As T̃DG approaches T̃R
from below, σ2 diverges and the individual peaks of the characteristic function become
very narrow. There are then only two contributions to the POP (from the peaks centered
on 0 and 2π) which goes to zero as

〈O2(∞)〉 = p(k = π) ∼ 2 exp

− π2CDG

2
√

1− T̃DG/T̃R

 , (28)

confirming the conjecture 〈O2(L)〉 ∼ exp{−A[(J/U)c− (J/U)]−1/2} made in [12] on how
the POP reaches zero as one approaches the critical point from the smooth phase (close

4Note that a priori, CDG 6= C [14]. The numerical values of the roughening temperatures are model-
specific as well.

12



to the critical point, writing 〈O2(L)〉 as a function of J/U rather than T̃DG ∝
√
J/U

only affects the non-universal constant A).
To understand the behavior of the parity order within the superfluid, which corre-

sponds to the rough phase of the associated 2d classical interface model, it is convenient
to use the equivalence between the DG model and the classical two-dimensional Coulomb
gas (CG) derived by Chui and Weeks [44]. Within the 2d CG picture, the underlying SF-
MI transition is translated into a phase transition of the Kosterlitz-Thouless type between
an insulating phase where charges are bound—the SF phase of the original model—and
a metallic phase of effectively free charges which describes the MI. The metallic phase
is characterized by a divergent polarizability

∫
d2r r2p(r), where p(r) is the probability

distribution function for the distance between a pair of opposite unit charges added to
the system. Indeed, as shown by Chui and Weeks [44], for 0 < ξ < 2π the two-point
correlation function of the DG model maps on the partition function of the Coulomb gas
in the presence of two opposite charges ±ξ at a distance r = |r1 − r2|,〈

eiξ[h(r1)−h(r2)]
〉

= e−βCGF (r,ξ) = p(r) , (29)

where F (r, ξ) is the free energy of the neutral Coulomb gas in the presence of the added
charges. It is well known [45] that when these added charges have unit strength [within
the mapping by Chui and Weeks, a unit charge corresponds to ξ = 2π in F (r, ξ)],

e−βCGF (r,2π) = exp

(
−e

2

ε0
ln r

)
= r−e

2/ε0 , (30)

with the dielectric constant ε0 which characterizes the insulating phase of the Coulomb
gas. At the unbinding transition, the polarizability diverges, i.e., the critical value of the
dielectric constant obeys (e2/ε0)c = 4. In our case of ξ = π, we are dealing with a pair
of half-unit charges5. As a result the POP

〈O2(L)〉 ∼ r−e
2/4ε0 , (31)

decays algebraically in the SF phase of the original lattice Bose model, and the mapping
to the Coulomb gas gives us the exact value of the universal jump of the exponent at the
roughening temperature: for T̃DG → T̃R from above, the exponent e2/4ε0 approaches one
before jumping to zero, a consequence of the universal jump of the superfluid stiffness
at the SF-MI transition of the 1d quantum rotor model (for a more detailed discussion
see [46]).

7. U(1) gauge theory in 2 + 1 dimensions

In d = 2, the duality mapping discussed in section 5 and the introduction of the three-
component vector potential a with n = ∇∧ a lead to a (2 + 1)-dimensional U(1) gauge
theory [2, 16, 17, 47, 48] (for an alternative approach to this type of duality mapping

5To avoid possible confusion, we stress that the right-hand side of Eq. (29) is well-defined for arbitrary
ξ, but the equality to the left-hand side (i.e., the existence of the mapping) is restricted to values 0 <
ξ < 2π, and thus to fractional charges. For ξ = 2πn with integer n, one trivially has eiξ[h(r1)−h(r2)] = 1.
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using the operator formalism, cf. [49]). Similarly to the 1d case, it is convenient to choose
ε = 1/

√
UEJ, which results in a partition function of the form

Z =
∑
{a}

exp

(
−1

2

√
U

EJ

∑
x,τ

(∇∧ a)2

)
. (32)

Since (∇∧a)2 = e2 + b2 is the energy density associated with a two-component ’electric
field’ ei = ∇τai − ∇iaτ and a scalar ’magnetic field’ b = ∇xay − ∇yax, this partition
function appears to describe the free field theory of pure electrodynamics in (2 + 1) di-
mensions [2]. It is gauge invariant since the action only depends on the curl of a and is
thus unchanged if the lattice gradient of an arbitrary function of x and τ is added to a.
What makes the model in Eq. (32) nontrivial is the fact that all fields take only integer
values on a discrete space-time lattice. The SF to MI transition of the underlying lattice
Bose model shows up at the level of the dual U(1) gauge theory as a transition between
a phase in which a really is a free field and the photon is massless and one with massive
photons.

In order to understand the physical meaning of this transition in terms of the gauge
field degrees of freedom, it is convenient to consider the equal-time one-body density
matrix in the quantum rotor model (16), which is mapped onto a ratio of two gauge field
partition functions

〈â†(x)â〉
n̄

= 〈eiφ̂(x)e−iφ̂(0)〉 =
Z[x, 0]

Z
= exp(−∆F [x, 0]) , (33)

where Z[x, 0] differs from Z in that the constraint ∇·n(y) = 0 is replaced by ∇·n(y) =
δy,x − δy,0 [50]. Physically, this corresponds to a configuration with a pair of oppositely
charged magnetic monopoles situated at x and 0. The fact that the one-body density
matrix approaches a constant in the SF and decays exponentially in the MI thus leads
to a fundamentally different behavior of the dimensionless free energy increase

∆F [x, 0] =

{
|x|/ξ (MI)
const.− cs

4πρs|x| (SF)
(34)

associated with the introduction of a monopole–antimonopole pair at distance x in the
dual gauge theory (here, ρs and cs denote the superfluid stiffness and sound velocity,
respectively). In particular, the exponential decay of the one-body density matrix in the
MI phase translates to a linear confinement while in the SF phase the monopoles interact
via a 3d Coulomb potential.

An effective low energy description of the gauge theory which properly accounts for
the two different phases is provided by a Gaussian model of the form

S =
1

2T̃

∫
d3x

{
[∇∧ a(x)]2 +

1

ξ2
[a(x)]2

}
, (35)

where a is now treated as a continuous variable and T̃ '
√
EJ/U is a renormalized

dimensionless temperature or coupling constant, similar to the one in the previous section.
In the SF regime, where T̃ is above a critical value of order one, the gauge field is in
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its Coulomb phase where ξ = ∞. Elementary excitations are then massless photons,
which are just the phonons of the superfluid with linear dispersion ω = cs|q| (note
that ’photons’ in (2 + 1)-dimensional electrodynamics have no polarization degrees of
freedom). By contrast, in the MI for small values of T̃ , the gauge field is in a confining
phase, with ξ = 1/m finite. The photons thus acquire a mass m and now represent the
elementary particle–hole excitations of the MI with dispersion ω = cs

√
m2c2s + q2 (at

the transition, one has cs = 4.8J for the Bose–Hubbard model with n̄ = 1 [51]). When
evaluating expectations for the massless phase, it is convenient to keep a finite ξ during
the calculation and only take the limit ξ →∞ at the end of the calculation, which avoids
the necessity of introducing an explicit gauge-fixing term [52]. This can be seen explicitly
in the correlation function of the vector potential, which reads

〈a(q)ja(q′)k〉 = T̃ (2π)3δ(q + q′)

[
[Pt(q)]jk
q2 + ξ−2

+
[Pl(q)]jk
ξ−2

]
, (36)

where [Pt(q)]jk = δjk − qjqk/q
2 and [Pl(q)]jk = qjqk/q

2 are the components of the
transverse and longitudinal projector with respect to q, respectively. Since the effective
model (35) is Gaussian, the calculation of the parity order parameter from the Wilson
loop in Eq. (22) is now easy and gives6

〈O2(L)〉 = exp

(
−π

2

2

〈(∫
D

d2x [∇∧ a(x)]τ

)2
〉)

. (37)

Using (36), the expectation appearing in the exponent in Eq. (37) reduces to〈(∫
D

d2x [∇∧ a(x)]τ

)2
〉

= T̃

∫
d3q

(2π)3

q2
x + q2

y

q2 + ξ−2

∣∣∣∣∫
D

d2x eiq⊥·x
∣∣∣∣2 , (38)

where q⊥ = (qx, qy). Note that q has three finite components whereas x is restricted to
the τ = 0 plane. For a circular disk of radius R, the spatial integral appearing in (38)
gives ∫

D
d2x eiq⊥·x =

2πR

q⊥
J1(q⊥R) . (39)

In the deconfined phase, which corresponds to the superfluid, the mass parameter 1/ξ is
equal to zero and the resulting parity order parameter is given by7

− ln〈O2(R)〉 ∼ π3T̃R ln(πR) . (40)

in agreement with the qualitative result obtained in Eq. (9) within the Gaussian approx-
imation. Conversely, in the confined phase corresponding to the MI, The q2 is negligible
compared with 1/ξ2, leading to a perimeter law

− ln〈O2(R)〉 ∼ T̃ ξ22πR ≡ R

`O
. (41)

6The resulting scaling of the parity order will thus turn out to be the same as found in section 3 up
to numerical factors, since both are obtained from a Gaussian model. Note, however, that the mapping
of 〈O2(L)〉 to a Wilson loop in the dual gauge theory provides a proper justification for these scalings.

7The momentum integrals in (38) are cut off at Λ ∼ π since the original problem is defined on a
lattice with lattice constant set equal to unity.
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Thus, the characteristic decay length of the POP scales as `O ∼ ∆2
√
U/J close to the

critical point. Remarkably, a measurement of the parity order, which only involves the
statistics of number fluctuations, therefore allows to extract the Mott gap.

8. Conclusion & Outlook

We have presented a detailed study of parity order 〈O2(L)〉 for lattice bosons in
both one and two spatial dimensions, using duality transformations. Consistent with
previous theoretical work [11] and recent experiments [12], it has been shown that the
Mott insulating phase in one dimension exhibits long range parity order. An intuitive
understanding of this result relies on the observation that for any incompressible phase,
the number fluctuations 〈δN̂2〉 ∼ Ld−1 in a domain of size L scale with the area of the
boundary ∼ Ld−1. Using the duality to a discrete, classical interface roughening problem
in two dimensions, these results have been put on a rigorous footing. In two dimensions,
the parity order again shows qualitatively distinct behavior in the MI and SF phase.
In this case, the variable 〈O2(L)〉 can be expressed in terms of an equal time Wilson
loop of a nontrivial U(1) gauge theory in 2 + 1 dimensions. This is related to the fact
that the density fluctuations in the original lattice Bose model are mapped to the scalar
magnetic field in the dual gauge theory. A quite interesting result obtained from this
mapping is the fact that the decay of parity order in the MI allows to measure the Mott
gap from the statistics of number fluctuations. Since experimental measurements of the
parity order in two dimensions are straightforward in principle, this seems a promising
route to infer microscopic information from single site resolution imaging which is very
difficult to obtain otherwise. The detailed numerical factors in the scaling of 〈O2(L)〉
can unfortunately not be predicted from our effective long wavelength description of the
quantum rotor model. Since we are dealing with a bosonic system, however, effective
numerical methods are available to obtain precise results in a realistic experimental
setup, as has been shown for thermodynamic properties and excitation energies [51].
In particular, numerical simulations directly deal with the Bose Hubbard model which
applies in the relevant case of low filling n̄ = 1 instead of the qualitatively similar situation
n̄� 1 that has been studied here within the quantum rotor model.

An important open question is, of course, to which extent our results for Bose Mott
insulators can be generalized to the fermionic case, which has also been realized experi-
mentally with ultracold atoms [53, 54]. Based on the qualitative description in terms of
the scaling of number fluctuations in section 3, we expect that the results obtained here
carry over to the fermionic case despite the fact that no duality transformations exist in
this case which allow to connect the parity order with a Wilson loop in a dual gauge the-
ory. The presence of long range parity order for 1d Mott insulators also in the fermionic
case is consistent with the results of a recent DMRG study of the fermionic Hubbard
model by Montorsi and Roncaglia [55]. A different kind of non-local order characterized
by sub-lattice parity was found in this Model by Kruis et al. several years earlier [56, 57].

Finally, a quite interesting direction of further research on non-local orders for cold
atoms in optical lattices is connected with the recent realization of a 1d transverse Ising
model using a tilted optical lattice [58]. Extending this setup to the case of two dimen-
sions, a number of complex phases may appear depending on the type of lattice and the
direction of the tilt [59]. A quite intriguing perspective would appear in a setup that
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allows to realize a ferromagnetic version of this standard model for quantum phase transi-
tions [20]. In the ferromagnetic case, the transverse Ising model is self-dual in one dimen-
sion, while in two dimensions the dual theory is given by an Ising gauge theory [41]. For
the latter, one can define non-local correlation functions as C(D) = 〈

∏
m∈D Ŝ

x
m〉, where

Ŝxm is the x component of the spin operator at site m and D is an area in two dimensions,
in complete analogy with our definition of the parity order in equation (3). After the
duality transformation, this observable is transformed into C(D) = 〈

∏
k∈∂D σ̂

z
k〉, where

σ̂zk is the z component of the spin operator at site k in the dual theory and ∂D are
the two sites at both ends of the string in one dimension or the border of the area in
two dimensions. As a result, one has in one dimension that limL→∞ C(L) > 0 for the
paramagnetic phase. In two dimensions, C(D) is a Wilson-Wegner loop around a closed
path [24, 41], which shows an exponential scaling with the perimeter of the loop in the
paramagnetic phase and with the enclosed area in the ferromagnetic phase of the orig-
inal model [41, 60]. However, the detection of the non-local order parameter requires
the measurement of the x component of the spin operator, which in turn requires the
single-site resolved detection of the phase coherence between superposition states with
different on-site occupation numbers, a technique that is so far not available.
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Appendix A. Details about the perturbative calculation

According to the program outlined in Section 4, calculting the POP to nth order
in J/U amounts to calculating the operators Ŝ1, . . . , Ŝn−1. Hence, for the second order
result, we only need to calculate one operator. One finds

Ŝ1 =
∑
D1,D2

′ 1

D2 −D1
P̂D2

T̂ P̂D1
, (A.1)

where the sums go over the eigenvalues D of the operator D̂ and P̂D is the projector on
the eigenspace corresponding to this eigenvalue. Moreover, here and in the following, a
prime on a sum indicates that values which make the denominator vanish are excluded
from the sum.

One may imagine the calculation of the expectation 〈O2(L)〉 as summing over all pos-
sible hopping processes where the order in J/U indicates the number of occurring hops.
For example, at second order, starting from a situation with uniform filling corresponding
to |Φ0〉, all possible processes consist of a single particle hopping to a neighboring site
and back again. Different contributions stem from the position of the starting lattice site
and its neighbor relative to the domain boundary and from the position of the operator
N̂(D) in the product of operators.
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The next non-vanishing contribution to the POP is of fourth order, so we need to
calculate Ŝ2,3. The former turns out to be given by

Ŝ2 =
∑

D1,D2,D3

′ 1

2 (D2 −D1)

(
1

D2 −D3
− 1

D3 −D1

)
P̂D2 T̂ P̂D3 T̂ P̂D1

+
∑
D1,D2

′ 1

(D2 −D1)
2

(
P̂D2 T̂ P̂D1 T̂ P̂D1 − P̂D2 T̂ P̂D2 T̂ P̂D1

)
. (A.2)

The expression for Ŝ3 is too unwieldy to reproduce here, so we limit ourselves to a
description of the involved hopping processes. They can be grouped into four types:

• Back- and forth hoppings of two particles separated by more than two lattice sites,
i.e., independent second order processes.

• Processes where the same particle or hole hops twice before returning to its original
site.

• Processes where a particle hops twice and is then followed by the created hole or
vice versa.

• Processes where two particles start or end on the same lattice site before hopping
back (cf. Fig. A.2).

Figure A.2: (Color online) Possible processes at fourth order where two particles start or end on the
same lattice site. The images show the configuration after two hopping events (the remaining two restore
uniform filling) for n̄ = 4.

Summing over all contributions finally yields Eq. (15).
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